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ABSTRACT

Two iterative methods are described for obtaining horizontal winds from the pressure-height field by means of

higher-order geostrophic approximations for the purpose of improving upon the geostrophic wind. The convergence
properties of the iterative methods are discussed; and in a simple theoretical case, one of the methods is found to
diverge with strong cyclonic motion. Both iterative methods were applied to analyzed 500-mb. height charts and
over most of the map converged in a few scans to wind values somewhere between the geostrophic wind and the wind
obtained from the balance equation. However in a few locations continued iteration led to increasing differences
between successively computed winds: i.c., the methods appeared to diverge. In fact, wind values in adjacent areas
gradually tended to be corrupted. This lack of convergence, oceurring mainly in areas of negative vorticity and
additionally in the case of method II in areas of strong cyclonic vorticity, was associated with the development of
excessive horizontal wind divergence, which after three or four iterations sometimes exceeded the relative vortieity.
Stream functions were computed by relaxing the relative vorticity of the winds obtained by methods I and 11, generally

after one iteration.
significant differences were noted.

These were compared to the stream function obtained by solving the balance equation and no
Barotropic forecasts prepared from the stream functions derived from the two

methods are essentially the same as forecasts with the stream funetion obtained from the balance equation.

1. INTRODUCTION

Few meteorological discoverics have been of more
immediate and widespread use than the geostrophic wind
law. Although exceedingly helpful in both practical and
theoretical work, its obvious shortcomings have prompted
a number of attempts at refinement by adding corrective
terms consisting of higher order derivatives of pressure.
In a remarkable paper on this subject in 1939, H. Philipps
[1] expressed the horizontal wind, V, as an infinite series

in terms of the geostrophic wind, V, and its total deriva-
tives d"V,/dt", where in the limit n approaches infinity.
Although the series may converge for a properly restricted
pressure distribution, it is of limited practical value
because the total derivative contains the unknown wind,
V, itself. Thus if the series is truncated to a finite
number of terms, m, the result is an algebraic equation
for V of the mth order. It appears however from Philipps’
study that a meaningful extension of the geostrophic
wind law may be obtained by setting n=1, which amounts
175
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to the same as replacing the acceleration termm in the
equation for horizontal motion by its geostrophic counter-

part. Since the total derivative
d 0
pTa +V V+w op (1)

contains the wind V, one may either replace V by V,
in (1) or retain it unaltered. The latter has been recom-
mended by Eliassen [2] on the grounds that it, at least
theoretically, leads to a better approximation. This
point is treated at some length in section 2.

With the advent of electronic computers, wind calcula-
tions of the kind described above have become a possibility
in routine operations and might from the point of view of
time used be more economical to obtain than winds derived
by solving the so-called balance equation. A relevant
point, however, is whether the wind so computed is
meteorologically more realistic than the geostrophic wind.
Assuming this to be the case, the question of truncation
and convergence of iterative procedures may have tobe
considered.

In a recent article, Endlich [3] proposed a method
whereby a ‘‘gradient” wind is obtained by successive
approximations, The method is appealing because of its
simplicity in application and also because it appears in
general to give winds that in the case of curved isobars
are better than the geostrophic wind. A drawback,
however, is that in areas of strong cyclonic curvature the
iteration produces values for the wind that oscillate with
undiminished or increased amplitude and will therefore
never approach any fixed value; i.e., the procedure
diverges.

One of the authors has elsewhere [4] studied theorectically
the convergence properties of two iterative methods for
solving the non-linear balance equation, one of which is
in essence the same as the method proposed by Endlich.
1t was shown that the latter diverges in areas ol strong
cyelonic vorticity. This is further demonstrated in this
paper by means of a simple theoretical case, as well as
through computations from observed 500-mb. pressure
heights. The other method was shown to converge in
the case of non-divergent winds. This paper describes
the application of similar methods to wind computations
fromm 500-mb. heights. In this case no restrictions are
imposed on the horizontal velocity divergence, and as a
result both methods fail to give realistic winds in certain
areas of the map. This failure manifests itself in the
development of excessive vorticity and velocity diver-
gence. By terminating the iterative procedure after one
or two iterations, at least one of the methods appears to
give winds that are everywhere better than the geostrophic
winds. Winds derived by means of both methods were
used as initial data to obtain stream functions from which
24- and 48-hour barotropic forecasts were made. The
forecasts were essentially the same as those obtained
through the use of the balance equation.
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2. HIGHER-ORDER GEOSTROPHIC WIND
APPROXIMATIONS

Omitting friction and the vertical advection terms?
wOu/Op and wdv/dp, we may write the ecquations for
horizontal motion as follows:

ou ou, ou .
st-—%—u ag-l—z) @——fz/
a (2)
v
+ b?fH +by
where the notations are those commonly used. It is

desired to solve the systemt (2) with respect to » and »;
i.e., express the wind as a function of the geopotential 4.
A first approximation is the geostrophic relation

10¢

Uy==—7F < zzgzj Y (3)
For motions on synoptic scale at iddle and high latitudes,
the approximation (3) is presumably accurate enough to
apply also in differentiated form. This means that we
may replace the derivatives of » and » in (2) by the
corresponding derivatives of u, and », and then solve the
resulting equations for w and ».  Thus we may obtain the
following expressions for » and »:

bug>]

G
A

where
(=) (1450 )+ 5 S o)

A necessary condition for (4) to be a solution to (2) is that
G50. Since the system (2) is quadratic in u and v,
there may be more than one solution for a given pressure
distribution. The meteorologically appropriate solution
for the wind should have essentially the same direction as
the geostrophic wind and be identical with it in the case
of straight, parallel isobars. Hence » should be of the
same sign as 0¢/0r and wu of opposite sign to 0¢/dy, to-
gether with G#£0. 1t is not obvious how to achieve this
in all cases, but one may be guided by the criteria appli-
cable to the balance equation [4]. In solving this equa-
tion, the appropriate solution is obtained by requiring

o ou
o ou o ©
v U z
<f+25§><f_ >+ bxbz

and the additional restriction on the height field

LIt is apparent that if several pressure levels were considered simultaneously, the
vertical velocities could he computed diagnostically, and thus the terms odufop and
wOr/op could be included.
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%f”rvwmvf -y >0 (7)

where ¢ 1s the stream function. When the balance
equation is linearized in the same way as the svstem (2),
the criteria (6) are replaced by the weaker restrictions

v ou
(62)
ou buOZf
(430 (=35 3s

This suggests that we impose the following limitations in

solving (4):

Olg_ . ou
f‘i—a]7 >0;

T=,>0 G>0. (6b)

Elimination of u, and v, from (5) by means of (3) gives the
following expression for G':

G=L+Vo+ [ (brtbyy—¢0") —'Vf - Vo
—'fg {f T (¢z¢w 4 ¢u¢rz/> +fy (¢7y¢rz -

which resembles (7).
what cumbersome in practice and involves the solution
of the non-lincar differential inequality (5a). Rather
than modily the pressure field in accordance with (6b),
one may for practical reasons prefer to replace f+ (v, /0x),
f—(ou.0y), and G by suitable threshold values in the
course of computing # and » from (4). This was done in
the calculations reported on in this paper.

An inherent difficulty in applying (4) to height charts is
the occurrence of time derivatives. Since initial height
tendencies are not available, and height changes for the
past 12 or 24 hours are of little value, one has little choice
but to omit the time derivatives in the application of
(4). Although this omission cannot be generally sub-
stantiated on theoretical grounds, there is some indirect
empirical evidence (Rosenthal [5]) that at least at 500
mb. the time derivatives may be omitted. Rosenthal
found that determinations of the 500-mb. gcopotential
field from observed winds by the use of the divergence
equation corresponding to (2) (with time derivatives
omitted) were quite accurate and as good, or slightly
better, when the terms involving the space derivatives
of velocity divergence were included. 'This suggests that
winds obtained from (2) may be as useful as those obtained
from the balance equation. We shall therefore ignore
the time dependent terms with the reservation that such
computed winds will be less accurate for pressure systems

&:8)] >0 (5a)

moving rapidly or in a stage of intense development. Thus
(4) is reduced to
y—— [<f_% ¢, 00 0¢
G oy Ox
(4a)
09 Ou, 0¢
-G i:(f+ dr ox Oy

and should be solved subject to conditions (6b).
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A strict adherence to (6b) is some-
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On the assamption that the wind derived from (4a) is
better than the geostrophic wind, defined by (3), one can
presumably iterate (4a) according to the scheme

D l:(f aum) ad’ o™ d¢
by oy ox
4h)
7(n+1)_ l:<f a?)(n) %_au(n)%
amw dz O0x Oy
with the restrictions
,ooum o™
(6¢)

ou™

o i'(”) au(m a,l,(n)

G *<f_ )( o oy "

in the expectation that ™™ and o™ might converge to
a stationary solution of (2). A similar procedure has been
applied to the balance equation [4] and shown to converge
siibject to conditions analogous to (6); .e., stricter con-
ditions than (6¢). This would indicate that enforcement
of (6¢) would not always insure that the iterative scheme
(4b) leads to a solution of (2) (omitting Ou/0f and 0v/0t).
[f it converges at all, it may well lead to a solution inter-
mediate between the g(‘O‘SUOp])l(’ wind and a wind satisfy-
ing (2). Another possibility is that (4b) is semi-convergent
in the sense that a few iterations will improve upon the
geostrophic wind and that further iterations will either
destroy the initial gain or not improve it any further.
Actual computations indicate that this may be the case
at least in some areas ol the map.

Because of the difficulty in properly applying (6¢) to
the iterative scheme (4b), a simpler method will be dis-
cussed briefly. This method consists in omitting u/0t
and 0¢/dt in (2) as before, but replacing the remaining
acceleration terms entirely by their geostrophic counter-
parts, and then solving with respect to » and ». If

repeated, this procedure leads to the iterative scheme
(n) ypin) (n) J(n)
LD :ug__u o™ p™ ov
J o ox  f oy
O ) ) g ®)
u n U n ) n U n
v (n+1) ﬂzg_*_

Joox T oy

In this case no apparent restrictions need to be imposed on
the pressure field. A scheme similar to (8) was discussed
by Endlich [3} who proposed its use for routine operations
as a replacement for the geostrophic wind and the wind
derived by the balance equation. The iterative scheme
(8) has been applied to the solution of the balance equa-
tion and shown to diverge under certain conditions [4].

In order to illustrate the difference between (8) and
(4b) and the condition under which (8) does not converge,
we shall apply both schemes to the gradient wind equation

g-l—f?;:leg Q)
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TaBLE 1.—Shown here are the resulls of successive ilerations of methods I and 1 applied to the gradient wind equalion for several cases of sta-

Cyclonic Motion

tionary cyclonic and anlicyclonic molion

|
Anticyclonic Motion

vg=0.5 fr v,=1.0fr vy=15fr vg=—fé fr 1‘rg=-—é—fr re=—7fr
n I I I T I 1I 1 I I IT I 1T
0.6670, 0. 5000, 0. 5000, 0. 0002, 0. 4000, —0. 5000 1.067r, 1. 063, 11400, 1.130¢, 1.333, 1.2500,
0. 7500 ¢ 0. 8750, 0.667v, 1. 000, 0.625p, | -+0.6250, 1,071, 1,071z, 1. 1660, 1. 1580, 1. 5000 13917,
0. 7270, 0. 6092, 0.6000, 0. 0000, 0.5160, | +0.414p, 1.0720, 1,172, 1.170p, 1.167r, 1. 600 1.483p,
0. 7330, 0.8107, 0. 6250 1. 000, 0.5040, | 0. T43n, | 11717, 11702, 16770, 1. 5507,
0. 7320, 0.6720, 0.6150, 0. 000, 0.5420, | 40.172, 11720, 11710, 17180, | 1601y,
0. 77p, 0.619z, 1,000, 0.5520, | +40.956r, 1171y, 1. 7800, 1641,
0. 701z, 0.6182, 0.547n, i —0.360r, || 11720, 17780, | 1.673¢,
0. 7540, 0.54%, | -+0.7950, 1. 800z 1.7000,
0. 7150, | 4005l 1.8180, 1,722,
0. 43p, 409962, 1. 8330, 1. 741z,
0. 7230, = —0. 4880, || 1. 8460, 1. 7580,
0.738g, 3 0. 6420, 1.857v, 1.773¢,
0. 7280, E 4+0.381p, 1.8670, 1. 786,
0. 7850, = +0. 7820, || 1. 8750, 17970,
0. 7300, b 0. 0820, 1,882, 1.807r,
0. 7340, o 0. 9840, ‘ 18897, 1.817p,
0. 731y, ‘, —0. 4701, | 1. 8950, 1. 8250,
| i
v 0.732 v, 0.618 v¢ 0.549 v, ‘\ 1.072 2, 1172 2, 2.00 2,
1

where 7 is the radius of curvature, positive for cyclonic
motion and negative for anticyclonic motion; » is the

wind speed, and v,, its geostrophic counterpart. KEqua-
tion (9) has the two solutions
fr \/ 4p, ‘o
= 42 a)
2 1+ 1 /, \wa)

In the cyclonic case, »>0, the plus sign applies; when
r<{0, both solutions give rotation in the same sense around
the high pressure center. The negative sign corresponds
to the so-called anomalous solution discussed elsewhere
[6]. Tt can be seen dircetly from (9a) that the plus sign
corresponds to f+2(»/r)>0 and the minus sign to
f+2(@/r)<<0. The condition for a real solution of (9) is
>0 (10)
47 " r =
which leads to the additional restriction for the normal
solution; i.c., the one corresponding to the plus sign,

<20, (10a)
In applying the iterative schemes (4b), denoted I below,
and (8), denoted 11, we shall distinguish between anti-
eyclonic and ecyelonic motion; and in the eyeclonic case
further distinguish between (a) v,<fr, and (b) v,>/r.
The solution of (9a) with which we compare is the normal
solution. Table 1 shows the results of the computations.
Apparently method I approaches the true solution in all
cases, although very slowly for the limiting case v,— — fr.
The convergence of method 11 is slower and it diverges
in the case of cyclonic motion when »,>fr, as predicted
by theory [4]. Note the wvacillating amplitude of the
error of method IT when »,>fr; this is further illustrated
in figure 1. ;

In Endlich’s article [3], method II is shown
to converge in the two cases selected. These turn out to
correspond to v,=5fr/16 and »,= —5/r/36, respectively.

The following section deseribes the application of both
methods to 500-mb. heights from analyzed maps.

3. RESULTS OF WIND AND VORTICITY COMPUTA-
TIONS FROM ANALYZED HEIGHT MAPS

The iterative schemes (4b) and (8), denoted methods I
and I respectively, were applied to analyzed 500-mb.
height charts.  In applying method 1, the following
restrictions were imposed in accordance with (6¢):

(a) an arbitrary lower limit of 0.25 was imposed

1 opt® 1 ou™
the terms (1 —}—‘7. > and <1——} vé?)

{b) the quantity G/f? was not allowed to become
smaller than 0.125.

As it turned out both methods gave essentially the same
results over most of the map and converged within a
few scans to a certain wind value in much the same way
as in the case of the gradient wind treated in the previous
section. In certain spots, however, both methods showed
lack of convergence in that the difference between suc-
cessive lterations cither increased with the number of
iterations or oscillated undiminished.  With an increased
number of iterations, these initially simall “trouble spots”
would expand and ultimately corrupt the winds else-
where.  This lack of convergence was closely associated
with the development of pronounced horizontal wind
divergence which after three or four iterations might
equal or surpass the relative vorticity. In retrospect
this is not so surprising since neither method has any
inherent controls on the horizontal velocity divergence.
This lack of control would seem to explain why method
[ shows instability as applied here, although it is stable
when applied to the balance equation; i.e., in deriving
non-divergent winds. Attempts to restrict somewhat
arbitrarily the magnitude of the velocity divergence
in the course of the iterations did to some extent suppress

or
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1 2 3 4 5 6 7 8 9 00 12 13 14 15 16 I7
n—s
Freure 1.—Graph showing successive approximations to the gra-
dient wind speed (horizontal line) for eyclonie motion (v, cxpressed
in terms of fr). Dashed lines join approximations computed by
method I; solid lines join approximations computed by method 11

the instability of both methods but did not eliminate it.
This instability was also reduced by ellipticizing the
height field by imposing (7).

Some of the results are summarized in tables 2--5.
Table 5 displays the difference between the two methods
in the case of large cyclonic vorticities.  As predicted by
theory [4], method Il appears to diverge in points where
the ratio ¢,/f exceeds unity. The locations of the selected
points A, B, (!, D, E are shown on the geostrophic vorticity
map, figure 3. Figure 2 shows the areas where method T
displays instability in relation to the pressure pattern.
These areas do not occur at high latitudes and are pre-
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TaBLE 2.—Marimum diflerence between computed and geostrophic

wind speeds observed in selected areas of well-defined cyclonic
curvature

\
Geostroph- | Method 1 Method IT
Location tewind | |
speed
1 IVil=IVel | Vel =Vl | Vil=iVel | [Val=|V,!
(m.p.s.) \ (m.p.s ) (m.p.s.) (m.p.s.) (m.p.s.)
Fastern United States__. 50-58 —17 —14 —26 —
Eastern Atlantie. . 30-38 —12 -9 —-19 —5
Eastern Europe____ 30-38 —8 —6 —11 —4
Off East Coast of Asi 50-62 | ~—20 —12 -31 —2
Central Pacific. _______ . 50-60 | —19 —13 —28 -7

TaBLE 3-—Maximum difference between compuled and geostrophic
wind speeds observed in selected areas of well-defined anticyclonic
curvature

Geostroph- Method I Method IT
Location ic wind .
speed

Vil=IVel | Vel =Vl | IVil=[Vel | [Vel—| V4l

Off East Coast of North {(m.p.s.) (m.p.s) (m.p.s.) (m.p.s.) (m.p.s.)
America_._ ____. - 15-20 +13 —+9 +7 +4
Siberia____. ._____.._____ 25-31 +8 +8 —+6 +7
Central Pacifie.__._ 30-39 +18 +8 +11 +12
Western Canada_ . 4-14 +3 +2 —+2 +2

TasLe 4.-—Maximum value of center of cyclonic relative vorticity;
unit 1075 sec.”!

Maximum value of eenter of eyelonie relative

} vorticity

Position of associated Tow T T -
Method I Method IT

I Y R I R

,‘ G4 & %] &3
39° N, W0 Koo . 67 52 56 54 47 60 59
e NG, 2° B 85 i 72 71 63 70 9
38.59 \' ,33°F - 80 | 63 68 67 58 73 63
8.5 '° N., 880 E. 38 34! 34 34 34| 36 34
54° N, 147° B.__ 75 61 | 63 63 A7 65 62
56° N, 1640 W___ 59 51 52 52 50 | H 51 52
£4° N, 135° W_ 57 51 52 52 50 { 52 52
55° N, 71° W I o1 75 7 79 71 74 7
46° N, 23° W__ I 99 68 83 76 59 92 67

|

dominantly associated with negative relative vorticities.

Outside the dashed areas, the difference V;— 1V, is less
than 3 m. sec.”™" and mostly less than 1 m. sec.”™ It is
apparent [rom tables 2—4 that in areas of marked cyclonic
curvature both methods result in sub-geostrophie wind
speeds; the reverse holds true in areas of anticyelonice
curvature.

When wind values obtained [rom successtve iterations
oscillate, obviously it would be advantageous to reduce the

oscillation.  This can be accomplished either by averaging
wind values obtained from two successive iterations and

utilizing these averages for evaluating the velocity deriva-
tives in the next iteration; or by deliberately “under-
relaxing’’; i.e., applying only a fraction of the correction
due to the acceleration terms to the geostrophic wind.
If the latter method is employed such “under-relaxation”
coefficients clearly must be chosen to approach unity in
successive iterations. Similarly, in regions where the
wind values obtained [rom successive iterations monotoni-
cally approach a limit, a series of “over-relaxation”
coeflicients progressively approaching unity could be used
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Freuvre 2.—January 3, 1958, 0000 cmr.
(Vi—1%), as computed by method I.

TasLe 5.—Successive vorticities computed by methods I and 11 for
cases of high ¢,/f ratios

‘e ! Method I ’ Method 11
A
f { ! i ‘

A, 114 1 105 67 95 w7 | 105 ‘ 2 ’ 122 2
B IS 8 | 113 \ W 1er| et TV B
Cooieer| 0.95 J | m| w| | vg;\ii?ﬂ 88 67
Docooe] 0.99 | 6| 7 72 “ 90 \7 2| s
E..____. \ 1.04 \ 99 ; 68 \ 83 76 \ 99 ! | 97| 53

500-mb. contours (solid) with velocity differences (dashed) between second and third iterations
Outside instability areas, velocity differences are less than 3 m. sec.”1

to expedite convergence. Such methods were applied
and generally accomplished the desired results. However
in the previous trouble spots, though the oscillations were
initially reduced, they were not entirely eliminated; and
both iterative methods eventually diverged in these areas.

The relative vorticity of winds derived by the above
discussed methods after 1-2 iterations is approximately
the same as derived by means of the balance equation,
Both methods, however, give non-zero velocity divergence;
and it is of interest to know whether this has any synoptic
significance. In an attempt to judge this, method T was
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Fieure 3.—The ficld of geostrophic relative vorticity in units of 107¢ see.”t, January 3, 1958, 0000 ¢MT.

A, B, C,

, correspond to

points for which the computations of table 5 were made.

applied to an 850-mb. chart’and the horizontal wind
divergence formed; the latter was also computed by means
of a simple prediction model [7]. These results are in
figures 4 and 5 superposed upon the 850-nib. height con-
tours; obviously they differ greatly. Since the velocity
divergence derived by means of the prediction model
could account for the observed displacement of the major
pressure systems, it is tentatively concluded that the
divergence obtained by method I, shown in figure 4, is
essentially a noise phenomenon. It should also be men-
tioned that the velocity divergence computed by either
method did not change appreciably with succeeding itera-
tions, except in the small instability areas mentioned
above.

4. BAROTROPIC FORECASTS USING HIGHER-ORDER
GEOSTROPHIC WIND APPROXIMATIONS

Stream functions corresponding to the relative vorticities
obtained by methods [ and II are easily obtained by solv-

ing the Poisson equation?® {= (g/j)Vgx[z using the relaxation
technique. This equation was in most cases solved for
n=1 only, i.e., one iteration; and the following discussion
is confined to this case alone except when stated otherwise.
A comparison of the computed stream function fields with
those obtained by solving the balance equation reveals
that, in all instances, the gradient of ¢ between the North
Pole and the octagonal grid boundaries for the fields com-
puted by the methods of this study is slightly greater than
those computed through the balance equation. In the
cases studied the difference varied {from 200 to 400 feet.
This means that the non-divergent parts of the winds
computed by the methods described herein slightly exceed
those obtained through the balance equation. Since the
difference in the stream function gradient is almost uni-
form [rom the North Pole to the boundaries, the difference
in wind speed at any point is only of the order of centi-
meters per second.

2 ¢ so defined has the dimension of length; the corresponding wind is V=(g/}')kXV¢.
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>
500’\

s

Ficure 4.—0300 amT, April 5, 1955.
(dashed lines).

An examination of the stream fields obtained by method
I reveals that the decrease in the amplitude of major
height troughs is slightly greater than that obtained by
means of the balance equation. 'This decrease in ampli-
tude is more pronounced in the y-fields computed by
means of method II, presumably because of the under-
estimation of the wind by this method as previously
mentioned. As the number of iterations increases this
weakening of troughs decreases, the amplitude of the
features being approximately the same as those ol the
y-fields of the balance equation.

In order to investigate the feasibility of using the
stream functions derived by means of methods I and 11
as initial fields for forecasts, a few 24- and 48-hour prog-
noses were made using the barotropic vorticity equation

2 0¥ _un oy
Vi W

Z 5 =" (11)

850-mb. contours (solid) with the horizontal velocity divergence obtained by method I superimposed
Units 1077 see. ™t

where ] is the Jacobian operator [8]. The term — (un/¥)
oy/ot is added to the vorticity equation for non-divergent
flow in order to stabilize the planetary waves. In these
computations p was assigned the value 4, in accord-
ance with the results derived by Cressman [9]. For the
sake of comparison, forecasts were also made by means
of the stream function obtained through the balance
equation. For verification purposes, difference fields were
formed and a “pillow” and a root-mean-square error were
computed over the entire grid using the formulae

1977
2.(A4—B),
PiHO\VA%'?*** (12)
1977
>3(A— B)—Pillow]?
RMSE="Y/ ! (13)

1977
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Fiaure 5—0300 amT, April 5, 1955.

lines) is the horizontal veloeity divergence computed by means of a simple prediction model [7].

where A is the computed stream function and B, the
forecast value. There appeared to be no significant differ-
ence in either the “pillow” or the root-mean-square error
in the cases studied. Table 6 shows the results of six
forecasts, and figures 6 and 7 illustrate a typical case.
The error fields show marked similarity in the regions
of errors greater than 200 feet. It is tentatively concluded
that both methods will produce stream [unctions which
essentially lead to the same barotropic 500-mb. forecasts
as obtained by using the balance equation. However,
since method I converges more rapidly than method II,
particularly in areas of large cyclonic vorticity, the
former appears preferable.

A final remark concerns the [easibility of obtaining
the predicted geopotential field at the end of a forecast
period, assuming this parameter is specifically desired.
Since prediction is made with a stream function repre-
senting the non-divergent part of the original calculated

633645—62——-2

850-mb. stream funetion (solid lines) obtained through the balance equation.

Superimposed (dashed
Units 107 see.™!

wind field and the end product is a similar stream function,
the final total wind field is uvnavailable. Hence the
inverse problem to the solution of equation (2) for the
wind field, namely, the recovery of the geopotential
field from the corresponding wind field is not strictly
solvable at the end of the prediction period. However,
the predicted stream function could be used to obtain
the non-divergent part of the wind, and this in turn

TABLE 6.—Results of 24- and 48-hour forecasts

24-hour barotropic 48-hour barotropic
Method used to obtain initial stream forecasts forecasts
function
Pillow ! RMSE Pillow ! RMSE
Balance equation____________________ (—)23 151 (—)43 226
Method I (—)25 161 (—)53 241
Method XL ___ .. _______________ ()24 149 (—)48 221

1 The numbers here give the average magnitude of the pillow; the sign in parentheses
gives most frequent sign,
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Ficure 6.—0000 aumT, January 4, 1958.

500-mb. stream function (solid lines) obtained from method I after one iteration.

Superimposed

(dashed) is the error map of the 24-hr. forecast from 0000 ¢mt, January 3, 1958.

could be used in equation (2) to determine the geopo-
tential field. This 1s, of course, equivalent to solving
the balance equation for the geopotential field, which
is a straightforward relaxation procedure. Since system-
atic differences were noted between the stream fields
computed herein and those obtained from the balance
equation, similar differences may be expected in the
recovered geopotential fields. However the character
of these differences suggests that an empirical correction,
which is a function of latitude, might be applied to give a
more accurate height field.

5. SUMMARY AND CONCLUSIONS

This paper deals with two methods for obtaining
horizontal winds fro:n the pressure-height distribution in
an attempt to improve upon the geostrophic wind and
avold solution of the so-called balance equation. Both
methods involve computations of higher-order height

derivatives, and successive iterations are used for the
purpose of a gradual refinement. The convergence
properties of both iterative schemes are discussed at some
length.

A few barotropic 500-mb. forecasts were made based on
stream functions derived from both methods of wind
computations and compared with barotropic forecasts
using a stream function derived by solving the balance
equation. The following conclusions were reached:

a) Wind and vorticity derived by either method are in
general intermediate between their geostrophic counter-
parts and those obtained by means of the balance equation.

b) Sueccessive iteration does not always lead to improved
In areas of strong height derivatives combined
with negative relative vorticity, both methods may
break down in the sense that differences between succes-
sive wind approximations become larger with increasing

winds.

L]
[
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FraUrE 7.—0000 amr, January 4, 1958, 3500-mb. stream function (solid lines) obtained through the balance equation. Superimposed
(dashed) is the error map of the 24-hr. forecast from 0000 emT, January 3, 1958.

number of iterations. 'This breakdown is accompanied
by development of excessive velocity divergence.

¢) If one applies one or two iterations only, one of the
methods at least results in winds that may be considered
a fair substitute for those obtained by the use of the
balance equation. This may be of some importance for
the tile economy of routine operations.

d) Barotropic forecasts using initial wind data com-
puted by either method without iteration are essentially
the same as barotropic lorecasts with the stream function
from the balance equation.
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