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Abstract  

In order to investigate aerobic degradation potential for the herbicides bentazone, 

mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and 

three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, 

were screened for their degradation potential for the herbicides. In the presence of 

oxygen 14C-labelled bentazone and mecoprop were removed significantly from the two 

monitoring wells’ groundwater samples. Oxygen was added to microcosms in order to 

investigate whether different oxygen concentrations stimulate the biodegradation of the 

three herbicides in microcosms using groundwater and sandy aquifer materials. To 

maintain a certain oxygen concentration this level was measured from the outside of the 

bottles with a fiber oxygen meter using oxygen-sensitive luminescent sensor foil 

mounted inside the microcosm, to which supplementary oxygen was added. The highest 

oxygen concentrations (corresponding to 4-11mg L-1) stimulated degradation (a 14-27% 

increase for mecoprop, 3-9% for dichlorprop and 15-20% for bentazone) over an 

experimental period of 200 days. Oxygen was required to biodegrade the herbicides, 

since no degradation was observed under anaerobic conditions. This is the first time 

bentazone degradation has been observed in aquifer material at low oxygen 

concentrations (2mg L-1). The sediment had substantial oxygen consumption (0.92-

1.45mg O2 g-1 dw over 200 days) and oxygen was depleted rapidly in most incubations 

soon after its addition, which might be due to the oxidation of organic matter and other 

reduced species such as Fe2+, S2- and Mn in sediment before the biodegradation of 

herbicides takes place. This study suggests that oxygen enhancement around a drinking 

water abstraction field could stimulate the bioremediation of diffuse source 

contamination. 



3 

Keywords: herbicides mecoprop, dichlorprop and bentazone; groundwater; anaerobic 

aquifer; oxygen addition; enhanced aerobic degradation 

 

1. Introduction 

Herbicides, such as 3-Isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2-

dioxide (bentazone) and phenoxy acids (PA) 4-chloro-2-methylphenoxypropanoicacid 

(mecoprop) and 2,4-dichlorophenoxypropanoicacid (dichlorprop) are used extensively 

in agriculture as well as in public areas and gardens. Due to their relatively high 

solubility in water (Huber and Otto, 1994; Tomlin, 1997) and low sorption 

characteristics, they leach from the soil into aquifers and are often detected in 

groundwater (Barbash et al., 2001; Thorling et al., 2012; Malaguerra et al., 2012). 

Consequently, they pose a threat to drinking water supplies based on groundwater 

sources. Groundwater contamination with herbicides from diffuse sources is 

widespread, but it is usually at low concentrations in the nano- to microgram per litre 

concentration range (Kolpin et al., 1995; 2000; Thorling et al., 2012). This limits the 

possibilities for remedial actions in contrast to contamination from a point source 

characterized by higher concentrations, smaller volumes and distinct plumes (Tuxen et 

al., 2006a).  

 

The degradation of pesticides in aquifers depends on the physicochemical 

properties and degradability of the pesticides as well as the redox conditions present at 

the site. For instance, bentazone is biodegradable in topsoils under aerobic conditions 

(Huber and Otto, 1994; Leistra et al., 2001; Li et al., 2008; Rodriguez-Cruz et al., 2008; 

Larsbo et al., 2009), but it appears to be recalcitrant in aquifers under aerobic conditions 
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(Tuxen et al., 2000; Broholm et al., 2001). In contrast, the degradation of mecoprop and 

dichlorprop has been observed both in topsoil (Smith, 1989) and in aquifers under 

aerobic conditions (see the reviews of Buss et al., 2006; Reitzel et al., 2004; Janniche et 

al., 2010).  

 

Redox conditions are very important for the degradation of herbicides in 

groundwater. One approach for enhancing biodegradation in soil is the addition of 

electron acceptors, such as oxygen or nitrate, in order to stimulate indigenous microbial 

populations (Kanissery and Sims, 2011). Adding oxygen can enhance the aerobic 

biodegradation of phenoxy acids at high concentrations (45 µg L-1) in anaerobic aquifer 

materials emanating from phenoxy acid-contaminated point sources (Tuxen et al., 

2006b). We built upon the work of Tuxen et al. (2006a) and investigated the potential 

aerobic degradation of herbicides in aquifer materials at low concentrations (1 µg L-1) 

near to an operating drinking water abstraction field. Our experiments investigated 

whether enhanced oxygen concentrations around an abstraction well field could be a 

treatment option. The goal was to stimulate the degradation of a persistent herbicide – 

bentazone – as well as the phenoxy acids mecoprop and dichlorprop in groundwater and 

aquifer sediment. 

 

Bringing degradation potential observed in a laboratory out into the field is 

challenging. First, increasing the oxygen content in an aquifer may be difficult from a 

hydraulic and engineering point of view. However, providing sufficient amounts of 

oxygen with “smart” pumping strategies in or around drinking water abstraction wells 

may be possible. Second, oxygen-consuming processes related to organic matter and 
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reduced inorganic species present in the sediment, such as sulphide and ferrous iron, 

may be obstacles for point source application with complex geochemistry (Tuxen et al., 

2006a). This may in turn reduce oxygen concentrations below levels sufficient to 

support pesticide degradation. However, little is known of the oxygen concentrations 

required for aerobically degrading herbicides. Furthermore, oxygen demand is expected 

to be lower in pristine or diffuse source contaminated aquifers than in near point sources 

due to fewer reduced species (Heron and Christensen, 1995; Christensen et al., 2000; 

Hartog et al., 2002). Oxygen consumption by groundwater and the total amount of 

oxygen needed to obtain oxic conditions could be estimated based on the demand for 

oxygen by other dissolved compounds (Heron and Christensen, 1995), but determining 

the oxygen demand of the solid phase requires experiments with actual aquifer materials 

from the site. 

 

The aim of this study was to investigate (1) whether adding oxygen to anaerobic 

aquifer material would stimulate the biodegradation of bentazone, mecoprop and 

dichlorprop in laboratory microcosm experiments, (2) how much oxygen would be 

needed in order to significantly affect the biodegradation process and (3) how much 

oxygen would be consumed by the sediment compared to the amount of oxygen needed 

for pesticide degradation. The three herbicides were selected in order to relate the 

experiments to the recent detection of bentazone and dichlorprop at the Nybølle 

drinking water abstraction well field, to facilitate a comparison with previous 

experimental work with mecoprop (Tuxen et al., 2006b) and to improve knowledge of 

degradation in bentazone, a herbicide detected frequently worldwide and in Denmark. 
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2. Materials and Methods 

2.1. Nybølle site description 

Groundwater and sediment samples were obtained from a drinking water 

abstraction well field located in the town of Nybølle in the northern part of Zealand, 

Denmark (Figure 1). The upper aquifer is composed of sand, gravel and clay layers 

(Quaternary layers) underlain by a 10-30m thick chalk layer (Bryozoa). The water table 

is located 3±1m below the ground surface (mbs). The chalk aquifer in Nybølle is 

protected only by thin clay till layer (approximately 5m deep). Different herbicides, 

including bentazone and dichlorprop, have been detected in concentrations up to 0.25 

µg L-1 in the groundwater around the town (Rambøll, 2005). Site history, hydrogeology 

and groundwater quality have been described in detail elsewhere (Jessen, 2001; Region 

Hovedstaden, 2008). 

 

 
Fig. 1. The Nybølle abstraction field site, locations of the investigated wells and a geological 
profile of drinking water abstraction wells in Nybølle along the cross Section A–A′. The 
sediment samples were collected next to monitoring Well 200.2164. 
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2.2 Groundwater sampling 

Groundwater at the Nybølle site, which was sampled in February 2010 from 

monitoring wells I (DGU-nr. 200.3640) and II (DGU-nr. 200.3862) as well as drinking 

water abstraction wells III (DGU-nr. 200.3299), IV (DGU-nr. 200.3169) and V (DGU-

nr. 200.3766) (Figure 1) (Table 2), abstracted using an MP1 pump (Ø: 50 mm) lowered 

to 1m above the screen after at least three volumes of well water had been discarded. 

The water was collected in 1L glass bottles, filled by creating an overflow, and capped 

tightly in order to prevent oxygen contamination. The sampling of groundwater from 

monitoring well II (DGU-nr.200.3862) was repeated in December 2010. In addition, 

water samples were collected in 1L glass bottles from three screens (B1, B2 and B3) in 

monitoring well DGU-nr. 200.6164, in order to determine pesticide concentrations at 

different depths of the aquifer. 

 

 

 

 

 

 



8 

2.3 Sediment sampling 

Sediment cores (2.3 to 7.1 mbs) were collected in December 2010 less than 1m 

from monitoring well DGU-nr.200.6164 (2.3 to 7.1 mbs) using a Geoprobe® macro 

corer (Figure 1). The collected sediment cores (PVC lines, Ø: 50 mm) were flushed in 

the field immediately with nitrogen gas to prevent oxygen contamination, sealed at both 

ends with plastic stoppers and wrapped in aluminum foil.  

 

In addition, a chalk core was provided by NIRAS from well K2, Hellestedvej 22, 

Hellested, at a depth of 14.65-14.95 mbs (Damgaard et al., 2009). The collected 

sediment cores and groundwater samples from the Nybølle site were kept at 10°C until 

the experiments were set up, no later than five days after collection.   

 

2.4. Groundwater and sediment characterisation 

The oxygen, pH, temperature and electrical conductivity levels of the collected 

groundwater samples were measured in the field with a flow cell (WTW 

Microprocessor pH meter and a WTW microprocessor oximeter). The groundwater 

samples were filtered through 0.2 µm and 0.45 µm membrane filters, except the samples 

used for analysing methane and microbial activity (ATP) measurements. The 
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groundwater samples were preserved by adding four drops of 4M HNO3 (pH<2) on site 

so that they could be analysed in the laboratory for chloride, nitrate, sulphate, ferrous 

iron, ammonium, dissolved manganese and magnesium, calcium, potassium and 

dissolved organic carbon (DOC) (Milosevic et al., 2012). Pesticide analyses were 

conducted by Eurofins Miljoe A/S Laboratories, Denmark. The detection limit was 0.01 

μg L− 1 for all pesticide compounds in the water samples. 

The water content of the mixed sediment samples from 2.3-7.1 mbs was 

measured for weight loss after 24h at 105°C. Total organic carbon (TOC) of the solids 

was measured with a total elemental analyser (LECO CS-225) after removing the 

inorganic carbon (TIC) by adding 6% H2SO3. Grain size distribution was characterized 

by sieving (sieves 0.063-2.0 mm) and for particles below 63 µm by particle distribution 

(Sedigraph 5100, Micromeritics Gemini). The specific surface area was measured by 

utilising multipoint N2-BET analysis (Micromeritics, Gemini III 2375 surface area 

analyser), after outgassing (Micromeritics, FlowPrep 060 Degasser) for 4h at 70°C, as 

described by Janniche et al. (2011). Grain volume (Vg) was measured with a Helium 

porosimeter (Edinburg Petroleum Service HGP 100, England), while porosity was 

calculated from Vg and total volume (Vt). 

 

2.5. Herbicides 

The experiments were carried out with [carbonyl-14C] Bentazone (Izotop, 

Budapest, Hungary, 97.96% radiochemical purity, 44 mCi mmol-1) and two phenoxy 

acid herbicides, [ring-14C] mecoprop (Izotop, Budapest, Hungary, 95% radiochemical 

purity, 23 mCi mmol-1), [ring-14C] dichlorprop (Izotop, Budapest, Hungary, 99.03% 

radiochemical purity, 25 mCi mmol-1) (Table 1).  
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2.6. Mineralisation potential in groundwater 

In order to investigate mineralisation potential, groundwater samples from the 

monitoring wells and drinking water abstraction wells were incubated (seesection 2.2). . 

The chalk sediment from the Hellested site was crushed in a plastic bag with a sledge 

hammer prior to setting up the experiments. Before adding th water samples all bottles 

with chalk sediment were autoclaved three times at 1.5 bars and 120°C to ensure that 

active bacteria present in the bottles originated from the groundwater and not from the 

chalk. Autoclaved chalk sediment was added as a substratum for the bacteria. The 

microcosms were incubated for 200 days in the dark at 10°C under atmospheric air-

saturated conditions. A total of 18 incubations were set up with 40g autoclaved chalk 

and 60mL groundwater added to 100mL DURAN bottles with Teflon inlayer caps, as 

described by Janniche et al. (2011). Groundwater from two monitoring wells (Well I 

and II) was used for the bentazone and mecoprop investigations, while the dichlorprop 

experiments were set up with groundwater from the monitoring and drinking water 

abstraction wells (Well I, II, III, IV and V). Well I and II were chosen for bentazone 

experiments due to the high concentrations of bentazone detected in the wells. The wells 

for mecoprop and dichlorprop experiments were selected randomly. [carbonyl-14C] 

labelled bentazone, [ring-14C] labelled mecoprop and dichlorprop were added separately 

to the microcosms at a concentration of 1µg L-1. Control incubations were prepared by 

autoclaving three times at 20 min at 1.5 bars and 121°C.  

 

For 14C- activity measurements, 2mL water subsamples were collected, filtered 

through a 0.2 μm PTFEfilter (Advantec/MFS 13HP) and then transferred to a 20mL 

polyethylene scintillation vial containing a 6ml scintillation vial with 1mL 0.5m NaOH 
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(Janniche et al., 2011). The subsamples were acidified by adding 0.1mL 37% HCl to 

strip off 14CO2. The 6mL inner vial of this ‘double vial’ system served as a CO2 trap and 

was removed after 48 hours. Scintillation liquid (Optiphase HiSafe 3, Wallac) was 

added and the 14C-activity of both the 20mL vial and the 6mL vial was quantified by 

counting for 20 minutes in a liquid scintillation counter (WinSpectralTM, Wallac 1414 

Liquid Scintillation Counter).  

2.7. Stimulated mineralisation with groundwater and sandy sediment from the Nybølle 

site  

 The effect of stimulating the degradation potential of herbicides by applying 

different oxygen concentrations was investigated through the use of groundwater and 

aquifer material collected freshly from the Nybølle site. Laboratory batch microcosms 

were set up with anaerobic groundwater from monitoring well II (DGU-nr.200.3862) 

and anaerobic aquifer sediment samples from DGU-nr. 200.6164, including the sandy 

layer only at a depth of 2.3-7.1 m.b.s. (Figure 1). The outer 0.5cm of the sediment core 

which may have been in contact with the core barrel was removed. In total, 48 

incubations were set up with 40g wet aquifer material (sediment and pore water) and 

3.5mL groundwater in 50mL sterilized infusion glass bottles with butyl rubber stoppers 

in an anaerobic glove box (Coy Laboratory Products, Inc.) (Tuxen et al., 2006b). 14C-

herbicides were added separately to the microcosm, to a final concentration of 1µg L-1 

of each pesticide. The bottles were then flushed with an 80% N2 / 20% CO2 gas mixture 

in order to remove any trace amounts of hydrogen gas from the anaerobic box.  

 

Pure oxygen was added to the microcosm bottles to a final concentration of 0.1, 

0.5, 1, 2, 4, 5, 8, 9 or 11mg L-1at the beginning of the experiment, while two bottles 
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remained anaerobic. The amount of pure oxygen to be added to each microcosm, in 

order to reach the desired oxygen concentrations, was calculated in the PHREEQC 

program (Pankhurst and Appelo, 1999). During the experiment the oxygen 

concentrations in the bottles were measured from outside with a fiber optical oxygen 

meter (PreSens precision Sensing GmbH) using oxygen-sensitive luminescent sensor 

foil mounted inside the microcosms. The detection limit was 0.15mg L-1. If the oxygen 

concentration decreased, additional oxygen was added, and the bottles were shaken for 

10-15 min before and after this addition. Each bottle was equipped with a glass vial 

with 1mL 0.5m NaOH to trap the evolved 14CO2. At regular intervals NaOH was 

collected by a syringe through the butyl stoppers, mixed with a 10mL Wallac OptiPhase 

Hisafe 3 scintillation cocktail (Turku, Finland) and then counted by a WinSpectralTM, 

Wallac 1414 liquid scintillation counter to quantify pesticide mineralisation. Abiotic 

control incubations were prepared by autoclaving the microcosms with groundwater and 

sediment three times at one-day intervals for 20 min at 1.5 bars and 121°C before 

pesticide addition. Duplicates were set up for bottles with oxygen concentrations of 0.1 

and 11mg L-1. The microcosms were incubated in the dark at 10°C for 200 days. 

 

3. Results and discussion 

3.1 Groundwater and sediment characterisation  

The drinking water abstraction wells were screened in the chalk aquifer, which 

was overlaid by Quaternary layers of 10m of sand, gravel and clay till deposits (Figure 

1). The primary aquifer was approximately 30m thick. The monitoring wells were 

screened mainly in the upper Quaternary strata (see Table 2). The sediment sample used 

for the experimental work was characterized as sandy (57 ± 23%) with a silt content of 
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16 ± 5.6% and a clay content of only 3.1 ±2.2%. The organic carbon content (TOC) of 

the sediment was 0.18%.  

 

Phenoxy acids, related chlorophenols, bentazone and a few other pesticides were 

identified in groundwater samples at the Nybølle site (Table 2). The concentrations of 

dichlorprop (0.11 µg L-1), 4-CPP (0.56 µg L-1) and 2,6-diclorbenzamid (BAM) (0.75 µg 

L-1) were highest in the samples taken from monitoring well DGU-nr. 200.6164 (screen 

B1). 4-CPP may either be an impurity from the production of phenoxy acids or a 

metabolite (Reitzel et al. 2004; Milosevic et al., 2013). Mecoprop and chlorophenols, 

such as 2,4-dichlorphenol, 2,6-dichlorphenol and 4-chlor-2-methylphenol, were not 

detected in any of the groundwater samples. Bentazone was detected in groundwater 

samples from well I (200.3640) (0.071 µg L-1) and well V (200.3766) (0.018 µg L-1).  

 

The groundwater in the wells (Table 3) was anaerobic (<0.35mg of O2 L-1) with 

0.02-2.2mg L-1 nitrate. Significant concentrations of dissolved iron, dissolved 

manganese, ammonium and methane indicate strongly reduced redox conditions. 

Dissolved iron was present in high concentrations (52-68mg L-1) in the upper part of the 

aquifer, which could be explained by the reduction of iron (III) to iron (II). Low 

concentrations of sulphate (0.5-5mg L-1) in the same area could be a result of sulphate 

reduction processes. pH values in the groundwater samples were neutral (pH 6.6- 8.3), 

while dissolved organic carbon (DOC) concentrations in the upper part of the aquifer 

(Well DGU-nr. 200.6164) were in the range of 29.3-33.7mg L-1. In summary, 

groundwater at the Nybølle site was characterized by anaerobic groundwater 

contaminated with two phenoxy acids – bentazone and BAM – in some of the 
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monitoring wells in the area. None of the pesticides was detected in the two drinking 

water wells (well III and IV). 

 

 

3.2 Pesticide mineralisation potential in groundwater only experiments  

Screening results for the degradation potential of bentazone, mecoprop and 

dichlorprop in groundwater samples from the Nybølle site, with autoclaved chalk under 

oxygen-saturated conditions corresponding to 11mg L-1 O2, are shown in Figure 2. The 

degradation of mecoprop was limited, with only 2-5% of 14C-mecoprop recovered as 

14CO2 at the end of the experiment (Figure 2B). However, mecoprop was removed 

substantially during the experiment (>50% in 180 days). The observed degradation 

potential of mecoprop is in accordance with previous investigations involving chalk 

under aerobic conditions (Janniche et al., 2011, Johnson et al., 2000), although these lag 

phases were slightly shorter. In a study of the importance of initial concentration on 

biodegradation kinetics, mecoprop degradation was faster at a concentration of 100 µg 

L-1 than at 1 µg L-1 (Toräng et al., 2003). No dichlorprop degradation was observed 

under aerobic conditions with any of the groundwater samples from the monitoring or 

drinking water abstraction wells (Figure 2C). This persistence of dichlorprop is in 
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accordance with the findings of Pedersen (2000) at an initial concentration of 50 µg L-1 

under aerobic conditions, but it contrasts with the complete degradation of dichlorprop 

in a laboratory column experiment (Tuxen et al. 2000) and a continuous field injection 

experiment (Broholm et al. 2001) in an aerobic aquifer.  

 

Surprisingly, 30-44% of bentazone was removed from the water phase over183 

days, while only 5% was removed in the abiotic controls (Figure 2A). Bentazone 

mineralisation was lower than 1% in all the groundwater samples from Well I and Well 

II, but this was higher than in the autoclaved control incubations (0.25%), thus 

indicating microbial mineralisation. Even though bentazone is usually considered to be 

recalcitrant in aquifers (Broholm et al., 2001), it was significantly removed at low 

concentrations in laboratory experiments with groundwater only. Thus, groundwater 

provides degradation potential.  

 

The selected herbicides were not degraded or decreased in concentration in any 

of the abiotic control incubations with aerobic or anaerobic conditions. This indicates a 

microbially mediated process as opposed to removal by sorption only. Overall, our 

results suggest that groundwater from Well I and Well II displayed degradation 

potential for bentazone and mecoprop at the Nybølle site. 
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Fig. 2. Bentazone, mecoprop and dichlorprop concentrations (% C/Co) and mineralisation (% 
14CO2) in groundwater from Wells I, II, III, IV or V (see Fig. 1 and Table 2) within autoclaved 
chalk under aerobic conditions at an initial concentration of 1 μg L− 1. Controls are 
autoclaved and represented by open symbols. 
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3.3 Mineralisation potential in groundwater and sediment experiments, stimulated by 

oxygen 

The degradation potential for pesticides observed in groundwater from Well II 

(see section 3.2) was seen in supplemented aquifer sediment, which is considered to 

carry much more bacteria (Albrechtsen et al., 1996) and thus a higher degradation 

potential compared to incubations where microorganisms only are added by the water 

samples (Figure 2). The presence of fresh aquifer sediment resulted, in general, in a 

higher degradation potential at the highest addition of oxygen (equivalent to saturation) 

(Figure 3B, D, F). This was expressed as both degradation of all three herbicides and as 

a higher mineralisation degree. The importance of oxygen concentration for this 

degradation potential was investigated for bentazone, mecoprop and dichlorprop (Figure 

3). All three pesticides were mineralised at both low (0.1-0.4mg g-1 dw corresponding to 

0.5-2mg L-1) and high (0.76-1.67mg g-1 dw corresponding to 4-11mg L-1) oxygen 

concentrations during the 200 days of incubation except for dichlorprop at an oxygen 

concentration below 0.37mg g-1 dw (corresponding to ca 2mg L-1). No degradation was 

observed in the autoclaved control microcosms or in microcosms without added 

oxygen, thus verifying that the degradation was microbial. In most microcosms, the 

measured 14CO2 production exceeded the radiochemical impurities level, therefore 

confirming the mineralisation of the added 14C-bentazone, mecoprop and dichlorprop.  

 

The results also confirmed the requirement of oxygen for biodegrading the 

pesticides. Low oxygen additions resulted in almost linear mineralisation curves (Figure 

3). At the higher oxygen additions (0.76-1.67mg O2 g-1 dw) the mineralisation was 
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faster, especially for bentazone and mecoprop (Figure 3B,D) in the first part of the 

incubation process.  

 

Figure 3: Mineralisation of 14C-labelled bentazone (A–B), mecoprop (C–D) and dichlorprop 
(E–F) to 14CO2 with groundwater from 200.3862 (Well II) and sand aquifer materials from 
200.6164, amended with different oxygen concentrations. The mineralisation incubations were 
carried out as individual bottles (except in bottles amended with 0.0, 0.1 and 11 mg L−1 
oxygen, which were duplicates). Controls are autoclaved and represented by open symbols. 
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Bentazone mineralisation was highest in response to 1.48 O2 g-1 dw sediment, 

corresponding to an oxygen concentration of 11mg L-1, with 20% 14C-bentazone 

mineralized to 14CO2 (Figure 3A). Even at a low oxygen addition of 0.29mg O2 g-1 dw 

sediment, bentazone degradation was substantially increased compared to incubation 

without adding oxygen, reaching 7% mineralisation in 200 days. Mecoprop degradation 

was highest in response to adding 1.4mg O2 g-1 dw where 27% 14C-mecoprop was 

mineralized to 14CO2. Degradation was lowest in samples with an additional 0.02mg O2 

g-1 dw (Figure 3C). Degradation of mecoprop, with up to 53% mineralisation at high 

oxygen concentrations and 32% at low oxygen concentrations, was previously observed 

in laboratory experiments with point source-contaminated aquifer materials (Tuxen et 

al. 2006b). However, the pesticide concentrations investigated in that study were much 

higher (45 µg L-1) than in our study.  

Conclusively, biodegradation of the three herbicides was stimulated by adding 

oxygen, not only at high concentrations but also at substantially lower concentrations 

(0.4mg O2 g-1 dw (corresponding to 2mg L-1)). To date, bentazone mineralisation in 

aquifer sediment materials has to our knowledge not been documented. It is important 

and novel knowledge that bentazone at 1 µg L-1 can be mineralized in aquifer sediments 

with low oxygen amendment. 

 

3.4 Relation between oxygen addition and pesticide degradation 

Overall, the total mineralisation (14CO2 produced during 200 days of incubation) 

of the three investigated herbicides increased linearly according to the amount of 

oxygen added (Figure 4). For dichlorprop, the mineralisation was slower and 

subsequently the slope was smaller (Figure 4C). This linearity was somewhat surprising 
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because thresholds were expected, e.g. a lower threshold below which no mineralisation 

was occurring, or an upper threshold above which the mineralisation was constant 

despite the increased addition of oxygen. 

 

Figure 4: Effects of the total amount of oxygen added to each bottle during the experiments 
on final evolved 14CO2 (total amount of 14CO2 evolved) expressed as a % of the amount of 
14C-bentazone,mecoprop and dichlorprop initially added after the 200-day incubation period. 
The total amount of oxygen added to each bottle is calculated in relation to the sediment 
added to the bottles. 
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3.5 Oxygen consumption of sediment 

Oxygen was consumed very rapidly during the experiments, so it was a 

challenge to maintain a certain oxygen concentration in the microcosms. The total 

oxygen consumption in each microcosm was estimated as the accumulated amount of 

oxygen added during the incubation in order to maintain the desired oxygen 

concentration in the water phase. The differences between the total amount of oxygen 

added and the amount present in the bottles were set as the oxygen demand.  

 

The relation between the total amount of oxygen added and oxygen 

concentration measured in the water phase (at day 100) is shown in Figure 5. By adding 

less than 0.3mg O2 g-1 dw sediment, oxygen consumption was fast, so additions below 

this amount did not leave any oxygen in the water phase. Furthermore, the substantial 

variation in oxygen consumption between the sediment in the different microcosms and 

the resulting oxygen concentration in the water phase shows the heterogeneities in the  

sediment. 

The abiotic controls generally had a higher oxygen concentration than the biologically 

active sediments after adding a given amount of oxygen, which demonstrates that a 

major part of oxygen consumption is related to microbial activity. Oxygen is probably 

consumed in the sediment by oxidizing natural reductants such as organic matter, 

sulphides (S2-), pyrite (FeS2), ferrous iron (Fe2+), siderite (FeCO3) or manganese (Mn2+) 

(Hartog et al. 2002). 

 



22 

 

Figure 5: Relation between the total amount of oxygen added at day 77 and oxygen 
concentration measured in the water phase at day 100. The light-grey area indicates rapid 
oxygen consumption, whereas the dark-grey area shows that oxygen concentrations reach ca. 2 
mg L− 1 O2 after adding a certain amount of oxygen. The open symbols indicate abiotic control 
incubations. 
 

This oxygen consumption may limit the availability of oxygen needed for the 

degradation of contaminants (Heron and Christensen, 1995). Additions of more than 

2mg O2 g-1 dw were needed to reach saturation in the water phase, and by the end of the 

experiment, after more than 200 days, the sediment was still consuming added oxygen, 

which indicates that the sediment had not fully oxidized. Tuxen et al. (2006a) reported 

oxygen consumption values between 2.2-2.6mg O2 g-1 dw in laboratory studies with 

anaerobic sediments amended with oxygen comparable to our results.  

 

An awareness of this substantial oxygen consumption is important in designing 

the field-scale bioremediation of pesticide-contaminated aquifers through adding 

oxygen, especially considering that the oxygen required directly to mineralize the added 

pesticides is almost insignificant.  
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4. Challenges in implementing oxygen-enhanced biodegradation 

The enhanced biodegradation of pesticides after adding oxygen – as observed in 

our laboratory experiments – is promising and may provide the potential for the 

microbial remediation of pesticide-contaminated abstraction fields. A significant 

challenge is the transfer of the results from the controlled degradation experiments in 

the laboratory to the field scale. Model simulations show that different pumping 

strategies (pumping rates, placement of pumping wells and screens) could result in 

different oxygen levels around the well or well field (Jepsen et al. 2012). It thus seems 

possible to form a pumping strategy whereby the resulting flow regime will mix shallow 

aerobic groundwater into the deeper anaerobic aquifer, consequently causing enhanced 

oxygen concentrations in the lower part of the aquifer. This will depend highly on local 

hydrogeological systems and infiltration patterns, including possible connections with 

aerobic stream waters. Thus, field testing of potential oxygen enhancement at the actual 

well fields would be needed to explore these model scenarios. Injecting oxygen into 

groundwater implies a high potential for physical and biological clogging. The oxygen 

may also oxidize reduced species in the sediment such as e.g. sulphides or ferrous iron 

which lead to dissolution of toxic compounds such as ar senic and nickel (Larsen and 

Postma,1997). Physical clogging might occur due to the precipitation of iron (Fe3+ 

oxides) during groundwater aeration (Timmer et al., 1999) as a consequence of 

oxidation caused by iron bacteria. The microbial growth of iron bacteria on piped 

surfaces or on the walls of wells might lead to bioclogging of a porous medium with 

reductions in porosity and hydraulic conductivity (Seifert and Engesgaard, 2012). The 

development of preferential flow paths that consist of regions with high pore water 
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velocity is also expected due to bioclogging. In addition, microorganisms might have 

less time to utilise the contaminant in regions with high velocity where hydraulic 

conductivity is reduced. Therefore, bioclogging may reduce the efficiency of 

contaminated groundwater bioremediation.  

 

Nevertheless, our results for the degradation of pesticides are valuable in the 

development of treatment strategies for protecting drinking water wells. In situ solutions 

may be good alternatives to closing abstraction wells or employing advanced treatment 

processes at waterworks. In conclusion, the most suitable pumping strategy as a result 

of model simulations (Jepsen et al. 2012) could be the plausible strategy for 

implementing oxygen-enhanced biodegradation in aquifers simply by drawing 

oxygenated groundwater from the surface into the well. Thus, mixing aerobic 

groundwater from the upper part of the aquifer with the deeper anaerobic groundwater 

could result in increased oxygen concentrations and stimulated biodegradation of 

pesticides in the aquifer by pumping strategies.  

 

5. Conclusions  

The degradation potential of bentazone and mecoprop under aerobic conditions 

was evident in groundwater samples with autoclaved chalk material. The addition of 

oxygen stimulated the degradation of bentazone, mecoprop and dichlorprop at 

environmentally relevant concentrations (1 µg L-1) for anaerobic aquifer sediment 

material. The relationship between total 14CO2 production and the total amount of added 

oxygen was almost linear, and even adding small amounts of oxygen stimulated 

degradation.  
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No degradation was observed in our anaerobic incubations, showing that oxygen 

was required in order to biodegrade the herbicides. Oxygen consumption by naturally 

occurring reduced species in the sediment was substantial, and significant amounts of 

introduced oxygen were needed to increase dissolved oxygen concentrations. Therefore, 

biodegradation stimulation could be limited by this high oxygen consumption. Proper 

mixing between oxygen containing upper groundwater and the water body with the 

contaminant could also be limited due to oxygen moving into high permeability zones 

while contaminants are present in low-permeability zones or clay layers. However, 

enhancing oxygen levels – even to relatively low concentrations – could be a promising 

bioremediation technology for drinking water abstraction fields, in order to microbially 

degrade herbicides arising from diffuse source contamination. 
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