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Abstract

Background: Modeling high-dimensional data involving thousands of variables is particularly important for gene
expression profiling experiments, nevertheless,it remains a challenging task . One of the challenges is to implement an
effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a
popular and widely used approach for feature selection owing to its low computational cost and high accuracy.
However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional
outliers.

Results: We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly
noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to
estimate the feature weights through local approximation rather than global measurement, which is typically used in
existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features,
even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving
classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the
proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN),
hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB).

Conclusion: Experiments on both synthetic and real-world datasets demonstrate the superior performance of the
proposed feature selection method combined with supervised learning in three aspects: 1) high classification
accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms.
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Background
Feature weighting is an important step in the preprocess-
ing of data, especially in gene selection for cancer classifi-
cation. The growing abundance of genome-wide sequence
data made possible by high-throughput technologies, has
sparked widespread interest in linking sequence informa-
tion to biological phenotypes. However, the expression
data usually consist of vast numbers of genes (≥ 10, 000),
but with small sample size. Therefore, feature selection
is a necessary for solving such problems. Reducing the
dimensionality of the feature space and selecting the most
informative genes for effective classification with new or
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existing classifiers are commonly adopted techniques in
empirical studies.
In general, the feature weights are obtained by assign-

ing a continuous relevance value to each feature via a
learning algorithm by focusing on the context or domain
knowledge. The feature weighting procedure is particu-
larly useful for instances based on learning models, in
which a distance metric is typically constructed using
all features. Moreover, feature weighting can reduce the
risk of overfitting by removing noisy features, thereby
improving the predictive accuracy. Existing feature selec-
tionmethods broadly fall into two categories: wrapper and
filter methods. Wrapper methods use the predictive accu-
racy of predetermined classification algorithms (called
base classifiers), such as the support vector machine
(SVM), as the criterion for determining the goodness of
a subset of features [1,2]. Filter methods select features
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according to discriminant criteria based on the charac-
teristics of the data, independent of any classification
algorithms [3-5]. Commonly used discriminant criteria
include entropy measurements [6], Fisher ratio measure-
ments [7], mutual information measurements [8-10], and
RELIEF-based measurements [11,12].
As a result of emerging needs in the biomedical and

bioinformatics fields, researchers are particularly inter-
ested in algorithms that can process data containing fea-
tures with large (or even huge) dimensions, for example,
microarray data in cancer research. Therefore, filter meth-
ods are widely used owing to their efficient computation.
Of the existing filter methods for feature weighting, the
RELIEF algorithm [13] is considered to be one of the
most successful owing to its simplicity and effectiveness.
The main idea behind RELIEF is to iteratively update
feature weights iteratively using a distance margin to esti-
mate the difference between neighboring patterns. The
algorithm has been further generalized (with the new
algorithm referred to as RELIEF-F) to average multiple
nearest neighbors, instead of just one, when computing
sample margins, whose name is RELIEF-F [13]. Sun et al.
showed that RELIEF-F achieves significant improvement
in performance over the original RELIEF. Sun also system-
atically proved that RELIEF is indeed an online algorithm
for a convex optimization problem [11]. By maximizing
the averaged margin of the nearest patterns in the feature
scaled space, RELIEF can estimate the feature weights in
a straightforward and efficient manner. Based on the the-
oretical framework, I-RELIEF, an outlier removal scheme,
can be applied since the margin averaging is sensitive to
large variations [11].
To accomplish sparse feature weighting, the author

incorporated a l1 penalty into the optimization by
I-RELIEF [12].
In this paper, we propose a new feature weighting

scheme within the RELIEF framework. The main con-
tribution of the proposed algorithm is that the feature
weights are estimated from local patterns approximated
by a locally linear hyperplane, and thus we call the pro-
posed algorithm as LH-RELIEF or (LHR), for short. It
is shown that the proposed feature weighting scheme
achieves good performance when combined with stan-
dard classification models, such as the support vector
machine (SVM), naive Bayes (NB) [14], k-nearest neigh-
bors (KNN), linear discriminant analysis (LDA) [15] and
kierarchical k-nearest neighbor (HKNN) [16]. The supe-
rior performance with respect to classification accuracy
and excellent robustness to data heavily contaminated by
noises make the proposed method promising for using
in bioinformatics, where data are severely degraded by
background artefacts owing to sampling bias or the high
degree of redundancy, such as in the simultaneous parallel
sequencing of large/huge numbers of genes.

The advantages of our method are as follows: (1) The
gene selection process considers the discriminative power
of multiple similar genes that are conditional on their lin-
ear combinations. This allows joint interactions between
genes to be fully incorporated to reflect the importance
of similar genes; (2) LHR assigns weights to genes and
thus allows the selection of important genes that can accu-
rately classify samples; (3) Using the genes selected by
LHR, classic classifiers including NB, LDA, SVM, HKNN
and KNN achieved comparable or even superior accuracy
as reported in the literature. This confirms that incor-
poration of interactions among similar genes in feature
weighting estimation under local linear assumptions not
only conveys information of the underlying bio-molecular
reaction mechanisms, but also provides high gene selec-
tion accuracy.

Results and discussion
To evaluate the performance of the proposed LHR, we
conducted extensive experiments on different datasets.
First, we performed experiments on a synthetic data
from the famous Fermat’s spiral problem [17]. We then
tested it on nine medium to large benchmark microarray
datasets, which were all used to investigate the relation-
ship between cancers and gene expression.

Evaluationmethods
In this study, we tested the performance of the proposed
LHR by combining it with standard classifiers, including
NB, KNN, SVM, and HKNN [16]. We applied leave-one-
out cross-validation (LOOCV) or 10-fold cross validation
(CV) to evaluate classification accuracy. LOOCV provides
an unbiased estimate of the generalization error for sta-
ble classifiers such as KNN. Using LOOCV, each sample
in the dataset was predicted by the model built from the
rest of the samples and the accuracy for each predica-
tion was included in the final measurement. Using the
10-fold CV scheme, the dataset was randomly divided into
ten equal subsets. At each turn, nine subsets were used
to construct the model while the remaining subset was
used for prediction. The average accuracy for 10 iterations
was recorded as the final measurement. For classifiers
with tuning parameters (such as the SVM), the optimal
parameters were first estimated with 5-fold CV using the
training data and then used in the modeling. To simplify
the comparison, some of the accuracy results were taken
from the literature.

Parameter settings
LHR takes two parameters: the number of nearest neigh-
bors (k) and the regularized constant (λ). The choice of k
depends on the sample size. For small samples, k should be
small, such as 3 or 5, whereas for large samples, k should
be set to a larger value, such as 10 or 20. Performance
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generally improves as k increases, however, beyond a cer-
tain threshold, larger values of k may not lead to any
further improvement [18]. A rule of thumb is to set k to
be the odd number 7. λ helps to stabilize the matrix inver-
sion from singular and is generally a tiny constant. In our
experiments, we set λ = 10−3.

Synthetic experiments on Fermat’s spiral problem
In the first experiment, we tested the performance of
the proposed method on the well-known Fermat’s spi-
ral problem. The test dataset consists of two classes
with 200 samples for each class. The labels of the spi-
ral are completely determined by its first two features.
The shape of the Fermat’s spiral distribution is shown
in Figure 1(a). Heuristically, the label of a sample can
easily be inferred from its local neighbors. Therefore, clas-
sification based on local information thus gives a more
accurate result than global measurement based predic-
tion (or classification) since the latter is sensitive to noise
degradation. To test the stability and robustness of LHR,
irrelevant features following the standard normal distri-
bution were added to the spiral for classification test-
ing. The dimensions of the irrelevant features were set
to {0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
10000}. To compare the ability to recover informative
features, both the I-RELIEF and LOGO algorithms were
also used because of its intrinsic closeness to LHR. The
three feature weighting schemes were first applied to
rank the importance of the features. Only the top five
ranked features were retained to test the robustness of fea-
ture selection schemes under noisy contamination. Per-
formance comparisons were conducted on the truncated
dataset using five classic classifiers: SVM, LDA,NB, KNN,

and HKNN. For each experiment, both 10-fold CV and
LOOCV were used to evaluate the classification accuracy.
To eliminate statistical variations, we repeated the experi-
ments ten times on each dataset and recorded the average
classification errors. The detailed numerical results are
given in Tables 1 and 2 for 10-fold CV and LOOCV,
respectively. To visualize the results, we created a box plot
of the distributions thereof for the experimental results
after 10-fold CV and LOOCV in Figure 1(b) and (c),
respectively. Each plot represents the classification accu-
racy for a single dataset. Figure 1(b) shows the 10-fold
CV accuracy for each of the five classifiers against the
dimensions of the noisy features. Figure 1(c) shows the
LOOCV accuracy values against the dimensions of the
noisy features. We use dark colors to denote the accu-
racy results achieved using I-RELIEF and LOGO, while a
light color is used for those by LHR. In most cases, the
performance of LHR coupled with various classifiers is
superior to that of both I-RELIEF and LOGO, and thus the
corresponding box plot lies above the ones for I-RELIEF
and LOGO.
The line graph of the average performance confirms

that the proposed method is more robust to noise than
I-RELIEF and LOGO. In both CV experiments, we
observed that the performance of the three methods was
very similar in case where the dimension of the irrelevant
features was small. For example, with a zero dimension
of irrelevant features, i.e, no noisy features, classification
results by the five classifiers were very similar. The average
accuracy is 75.2% for LHR and 75.4% for 10-fold CV, 72.3%
for LHR and 72.0% for LOOCV. However, as the dimen-
sion of the irrelevant features increases, both the per-
formance of I-RELIEF and LOGO are severely degraded
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Figure 1 Experiments on the Fermat’s Spiral problem. (a) The Spiral consists of two classes, each having 200 samples labeled by different colors;
Boxplot results after LHR, I-RELIEF and LOGO through five classifiers on (a), degraded by noise features whose dimension extending from 0 to 10000.
Two criteria of 10-fold CV (b) and LOOCV (c) are used to evaluate the performance of the feature selection methods. The result after various classifier
is marked in red circle. The averaged values were connected to highlight the different performance.
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Table 1 Ten-fold CV experiments on robustness of the featureweighting on the spiral with irrelevant noisy feature

Spiral data LHR I-RELIEF LOGO

Dimension SVM LDA NB KNN HKNN Aver. SVM LDA NB KNN HKNN Aver. SVM LDA NB KNN HKNN Aver.

0 83.0 83.0 51.3 83.8 52.5 75.2 81.0 81.0 51.5 82.5 51.5 75.4 53.0 52.5 53.0 80.3 80.3 63.8

1000 86.0 61.2 61.8 92.0 87.0 77.6 59.8 53.8 55.0 57.7 59.0 57.0 56.0 59.3 60.7 63.7 65.8 61.1

2000 90.0 69.0 67.0 92.0 89.0 81.4 57.0 54.0 58.0 57.3 57.5 56.8 57.0 58.5 59.5 80.3 83.0 67.7

3000 87.5 67.0 64.0 91.8 86.8 79.4 54.5 55.0 53.3 49.5 54.5 53.3 56.3 55.0 55.8 77.8 76.8 64.3

4000 88.5 64.0 66.3 92.3 88.5 79.9 55.8 56.5 58.3 51.7 56.0 55.6 59.3 62.8 61.5 77.5 79.8 68.2

5000 89.0 67.8 66.8 92.8 87.8 80.8 79.3 59.8 55.0 75.8 78.0 69.5 62.0 62.3 62.7 83.0 82.7 70.5

6000 88.8 66.3 67.5 92.0 88.3 80.5 65.8 55.8 60.0 60.8 63.0 61.0 54.0 51.0 56.0 79.2 81.3 64.3

7000 89.3 69.5 70.0 92.0 89.0 81.9 83.8 60.8 55.8 79.7 78.0 71.6 67.3 63.2 67.3 81.5 83.5 72.5

8000 86.8 65.0 66.8 93.8 88.3 80.1 55.0 58.5 57.0 53.5 52.5 55.3 66.8 64.8 66.5 78.5 83.3 72.0

9000 88.8 68.5 70.8 92.8 87.0 81.6 56.0 51.2 53.0 54.8 54.0 53.8 64.0 59.0 61.3 55.5 58.5 59.7

10000 88.8 68.5 70.8 92.8 87.0 81.6 84.0 57.5 56.3 82.5 83.3 72.7 59.8 57.3 57.8 78.5 81.5 67.0

When using 10-fold CV criteria, the LHR outperforms both LOGO and I-RELIEF in terms of accuracy by classical classifier of SVM, LDA, NB, KNN and HKNN. The better averaged value after the three methods are highlighted in
bold. With the increase of dimension of the irrelevant features, the performance of LHR keeps stable.
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Table 2 LOOCV experiments on robustness of the featureweighting on the spiral with irrelevant noisy feature

Spiral data LHR I-RELIEF LOGO

Dimension SVM LDA NB KNN HKNN Aver. SVM LDA NB KNN HKNN Aver. SVM LDA NB KNN HKNN Aver.

0 84.0 53.3 50.0 87.0 87.0 72.3 84.0 51.7 50.0 87.0 87.0 72.0 51.0 51.5 52.0 84.3 84.3 64.6

1000 86.0 61.2 61.8 92.0 87.0 77.6 59.3 54.3 54.8 78.3 60.5 61.4 56.8 57.7 59.3 82.3 64.3 64.1

2000 90.0 69.0 67.0 92.0 89.0 81.4 56.8 57.0 55.8 72.3 57.8 59.9 57.3 57.8 60.3 88.5 83.8 69.5

3000 87.5 67.0 64.0 91.8 86.8 79.4 56.8 55.3 52.8 74.3 56.3 59.1 60.0 54.8 54.5 85.3 76.5 66.2

4000 88.5 64.0 66.3 92.3 88.5 79.9 55.5 58.8 57.3 71.3 55.3 59.6 59.0 60.5 61.8 86.5 79.5 69.5

5000 89.0 67.8 66.8 92.8 87.8 80.8 81.3 59.5 57.0 85.3 77.8 72.2 61.8 60.8 63.7 88.8 81.0 71.2

6000 88.8 66.3 67.5 92.0 88.3 80.5 64.3 57.3 59.5 74.0 61.0 63.2 54.8 54.5 57.0 87.5 82.5 67.3

7000 89.3 69.5 70.0 92.0 89.0 81.9 83.5 61.0 54.8 88.0 79.5 73.3 63.0 65.5 67.0 87.8 83.8 73.4

8000 86.8 65.0 66.8 93.8 88.3 80.1 0.0 56.5 59.3 69.8 55.0 48.1 66.5 67.5 69.3 89.3 82.5 75.0

9000 88.8 68.5 70.8 92.8 87.0 81.6 51.5 49.0 51.2 68.0 53.5 54.6 62.0 57.5 61.0 73.3 57.0 62.1

10000 88.8 68.5 70.8 92.8 87.0 81.6 51.5 49.0 51.2 68.0 53.5 54.6 57.0 57.5 56.0 86.5 81.8 67.8

When using LOOCV criteria, the LHR outperforms both I-RELIEF and LOGO in terms of accuracy after classical classifier of SVM, LDA, NB, KNN and HKNN. The better averaged value after the two methods are highlighted in
bold. With the increase of dimension of the irrelevant features, the performance of both LOGO and I-RELIEF are degraded while LHR keeps stable.
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by the noisy features. In comparison, the performance
of LHR is very stable and superior to that of the other
combinations. In both experiments, the overall accuracy
by LHR is better than that of I-RELIEF and LOGO.
We also observed that the accuracies after LOGO, when
combining with the five classifiers, were in small vari-
ance. This nice property implies that the LOGO method
could derive features that are less dependent on classifi-
cation model, and thus are less redundant than LHR and
I-RELIEF do.

Empirical large/hugemicroarray datasets
In the second experiment, we tested the performance
of the proposed algorithm on nine binary microar-
ray datasets. The benchmark datasets, which have been
widely used to test a variety of algorithms, are all related
to human cancers, including the central nervous system,
colorectal, diffuse large B-cell lymphoma, leukemia, lung,
and prostate tumors. Characteristics of the datasets are
summarized in Table 3.
We note that most of the test datasets have small

sample sizes (less than 100). This poses a difficulty in
evaluating the performances of classifiers using the stan-
dard fold CV schemes. In this experiment, the LOOCV
method was used instead to estimate the accuracy of
the classifiers. Each sample in the dataset was predicted
by a classifier constructed using the rest of the sam-
ples. To assess the generality of the selected informa-
tive genes, classic classifiers including LDA, KNN, NB,
HKNN and SVM were tested on the selected genes. The
experimental results are summarized in Table 4. Note
that some of the results were taken directly from the
literature.
For the individual dataset, LHR outperformed or

achieved comparable performance to the best result
reported in the literature. For the CNS data, the LHR-
SVM, LHR-LDA and LHR-HKNN achieved superior per-
formances with almost 100% accuracy, which is much
higher than the second best performance by k-TSP [19].

Table 3 Summary of the testedmicroarray datasets [19]

Dataset Platform Gene no. Samples no.

Colon cDNA 2000 62

Leukemia Affy 7129 72

CNS Affy 7129 34

DLBCL Affy 7129 77

Lung Affy 12533 181

Prostate1 Affy 12600 102

Prostate2 Affy 12625 88

Prostate3 Affy 12626 33

GCM Affy 16063 280

For the colon data, although the accuracy of the LHR-
based classifier is worse than that of BMSF-SVM, IVGA-
SVM and LOGO, the accuracy of all the five classifiers
are similar. This implies that the selected genes are very
robust to the choice of different classifiers. Similar results
are observed on the DLBCL, prostate2 and prostate3
datasets. For the GCM, leukemia, lung and prostate1
datasets, the LHR-based classifier was ranked either first
or second. The selected genes tested by the five clas-
sifiers show similar performance on the leukemia, lung
and prostate1 datasets. For the prostate2 data, BMSF-
SVM realized remarkably good accuracy, although the
results using the other three classifiers with BMSF fea-
ture selection are less impressive. LOGO also performed
nicely, yet the average is suboptimal to LHG. In com-
parison, the performance using LHR feature selection is
fairly stable. For the prostate3 data, LOGO based clas-
sifiers performed very well, while the LHR based ones
were slightly less accurate than the top ones. Compared
with LOGO in terms of the ability to select informa-
tional genes, the proposed algorithm achieved compa-
rable performance by reaching the classification accu-
racy of 97.39%, which is slightly less than LOGO of
97.61%.
When considering the average accuracy for each algo-

rithm across all cancers datasets, the top four methods
with the highest average accuracy are LOGO-HKNN,
BMSF-SVM, LHR-KNN/LOGO-KNN, LHR-SVM and
LHR-HKNN. The proposed scheme has a slightly lower
average accuracy than BMSF-SVM and LOGO-HKNN,
but a higher accuracy than the others. However, the val-
ues for mean ± standard deviation of the averaged
accuracy are 96.65 ± 0.725 for LHR, 97.61 ± 1.5 for
LOGO and 94.88 ± 2.191 for BMSF. This shows that
the proposed LHR outperforms both LOGO and BMSF
in terms of overall accuracy as well as confirming its
excellent stability in terms of the choice of classification
method.

Comparison with standard feature selectionmethods
For comparison with other feature selection models,
eleven standard techniques were tested as well as the pro-
posed LHR. The selected techniques include t-statistic
(t-stat), twoing rule (TR), information gain (IG), Gini
index (Gini), max minority (MaxM), sum minority
(SumM), sum of variances (SumV), one-dimensional sup-
port vector machine (OSVM), minimum redundancy
maximum relevance (mMRM) [27] and I-RELIEF [28].
The code for the first eight schemes is available through
RankGene at http://genomics10.bu.edu/yangsu/rankgene.
The code for mRMR is available at http://penglab.janelia.
org/proj/mRMR/, where two implementations of mRMR:
namely, MID and MIQ, are provided. The I-RELIEF pack-
age is available at http://plaza.ufl.edu/sunyijun/ [28].

http://genomics10.bu.edu/yangsu/rankgene
http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/
http://plaza.ufl.edu/sunyijun/
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Table 4 Classificationaccuracies (%) on 9 real data sets

Method
Datasets

Average
CNS Colon DLBCL GCM Leukemia Lung Prostate1 Prostate2 Prostate3

TSP [20] 77.90 91.10 98.10 75.40 93.80 98.30 95.10 67.60 97.00 88.26

k-TSP [19] 97.10 90.30 97.40 85.40 95.83 98.90 91.18 75.00 97.00 92.01

PAM [19] 82.35 89.52 85.45 82.32 94.03 97.90 90.89 81.25 94.24 88.66

sumdiff-PAM [21] 79.41 87.10 87.01 83.57 95.83 98.34 93.14 77.27 96.97γ 88.74

mul-PAM [21] 85.29 90.32 92.21 82.86 95.83 98.90 92.16 79.55 93.94 90.12

sign-PAM [21] 85.29 88.71 94.81 81.07 95.83 98.90 90.20 76.14 100 90.11

HBE [22] 96.10 98.61 96.08

IVGA-SVM [23] 91.61 97.22 92.06

BBF-SVM [24] 87.10 92.71 94.12

SVM [25] 82.35 83.87 96.10 93.57 98.61 98.90 91.18 76.14 100 91.19

NB [25] 79.41 58.06 79.22 82.5 98.61 98.34 62.75 80.68 93.94 81.50

BMSF-SVM [25] 94.12 95.16 97.40 98.57 98.61 99.45 97.06 98.86 100 97.69

BMSF-LDA [25] 97.06 87.10 96.10 90.36 98.61 97.79 95.10 94.32 96.97η 94.82

BMSF-QDA [25] 97.06 90.32 94.81 90.36 97.22 97.23 94.12 90.91 100 94.67

BMSF-NB [25] 94.12 87.10 88.31 87.86 95.83 98.90 89.22 89.77 100 92.34

LHR-SVMξ 100 87.10 94.81 100 98.61 100 96.08 95.45 100 96.89

LHR-LDAξ 99.47 87.38 95.00 99.44 98.75 99.47 97.09 95.42 99.47 96.83

LHR-NBξ 97.79 90.32 92.21 97.24 98.61 97.24 98.04 89.77 97.79 95.44

LHR-KNNξ 98.45 91.94 96.10 91.00 100 100 99.02 94.32 99.45 96.70

LHR-HKNNξ 100 90.32 97.40 97.40 100 100 97.06 94.32 100 97.39

I-RELIEF-SVMη [12] 83.43 75.81 92.21 92.21 94.44 83.98 88.24 82.95 81.12 86.04

I-RELIEF-LDAη [12] 81.17 74.05 89.46 89.46 92.86 80.06 80.64 87.50 80.18 83.93

I-RELIEF-NBη [12] 85.08 67.74 84.42 84.42 91.67 86.74 73.53 81.82 87.29 82.52

I-RELIEF-KNNη [12] 88.4 82.26 96.10 96.10 94.44 88.40 91.18 86.36 87.85 90.12

I-RELIEF-HKNNη [12] 83.98 77.42 96.10 96.10 95.83 86.16 85.29 77.27 83.98 86.90

ξClassification with our selected genes.
ηClassification with selected genes by [11].
γ The value of 96.97 in [26] could have been rounded to 97.00 and is suboptimal.
The optimal and suboptimal values on each tested data are highlighted in bold and italic, respectively. The averaged performance of the proposed method with
HKNN classifier is suboptimal to BMSM-SVM by a neglectable difference. Besides, the averaged performance of LHR, coupling with five classifiers show a dramatically
smaller variance (0.725) than other BMSM does (2.191), thus implying a high capability of stability with respect to classification models.

It has been suggested by the author in [25,27] that
accurate discretization could improve the performance
of mRMR. The author also reported consistent results
when the expression values are transformed into 2 or 3
states using μ ± kσ with k ranging from 0.5 to 2, and
whereμ and σ are gene specific mean and standard devia-
tion, respectively (http://penglab.janelia.org/proj/mRMR/
FAQ_mrmr.htm). In our experiments, we followed the
transformation rule suggested in [25] to simplify the com-
parison. Expression values greater than μ + σ were set to
1; values betweenμ−σ andμ+σ were set to 0; and values
less than μ − σ were set to −1.
In each experiment, a feature selection scheme was

first used to select the informative genes, followed by

classification tests on the truncated dataset. For sub-
jective comparison, we set the number of informative
genes for the selected feature selection scheme to be
the same as that determined by LHR, which usually
finds a relatively small number of genes (less than 30).
This allowed us to examine whether the limited num-
ber of informative genes generated by LHR had more
discriminative power than those generated by the other
methods.
The LOOCV accuracy for each of the five classifica-

tion algorithms (LDA, NB, SVM, KNN, and HKNN) is
reported in Table 5. The number of genes selected by
LHR is listed in the second column and the same num-
ber is used to create the truncated data for the other

http://penglab.janelia.org/proj/mRMR/FAQ_mrmr.htm
http://penglab.janelia.org/proj/mRMR/FAQ_mrmr.htm
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Table 5 Performance comparison of the LHR with 12 standard feature selection schemes (FSSs)

Classifier FSS DLBCL Prostate1 GCM Prostate2 CNS Leukemia Prostate3 Colon Lung Avg.

No. genes 27 22 6 24 7 23 6 18 5

SVMη

IG 93.5 96.1 81.8 84.1 88.2 97.2 100 87.1 99.4 91.9

TR 94.8 97.1 82.1 84.1 85.3 97.2 100 91.9 99.4 92.4

Gini 93.5 95.1 80.7 81.8 88.2 95.8 100 83.9 99.4 90.9

SumM 94.8 93.1 81.8 70.5 85.3 98.6 100 88.7 98.9 90.2

MaxM 94.8 97.1 82.1 84.1 85.3 97.2 100 91.9 99.4 92.4

SumV 94.8 97.1 82.1 84.1 85.3 97.2 100 91.9 99.4 92.4

t-stat 92.2 91.2 83.2 81.8 82.4 95.8 100 87.1 98.9 90.3

OSVM 98.7 93.1 80.7 73.9 85.3 95.8 72.7 85.5 98.3 87.1

MIDξ 75.3 75.3 75.3 75.3 73.5 65.3 72.7 64.5 82.9 73.4

MIQξ 75.3 75.3 75.3 75.3 73.5 65.3 72.7 64.5 82.9 73.4

I-RELIEF 92.2 88.2 81.2 83.0 83.4 94.4 81.2 75.8 84.0 84.8

LHR 94.8 96.1 100 95.5 100 98.6 100 87.1 100 96.9

LOGO 100 100 88.9 92.0 97.1 100 100 91.9 100 96.7

LDA

IG 88.2 90.1 82.9 79.6 88.3 92.0 100 80.5 97.3 88.8

TR 88.0 90.1 82.9 80.3 86.7 93.0 100 82.6 97.8 89.0

Gini 79.5 90.2 83.6 79.9 88.3 94.5 100 82.6 98.3 88.5

SumM 86.1 92.1 82.5 71.9 89.2 91.6 100 79.3 98.3 87.9

MaxM 90.7 94.2 82.9 80.7 84.2 94.3 100 80.7 97.8 89.5

SumV 90.9 91.2 82.1 84.0 88.3 92.9 100 74.0 97.3 89.0

t-stat 77.5 89.4 83.9 84.2 82.5 91.6 97.5 80.5 93.4 86.7

OSVM 97.4 92.3 79.6 84.4 85.0 92.9 40.0 82.4 98.9 83.7

MIDξ 75.5 83.9 81.6 83.9 90.8 78.9 84.2 77.6 96.7 83.7

MIQξ 76.3 79.3 78.2 72.9 73.3 85.9 83.3 78.8 95.6 80.4

I-RELIEF 89.5 80.6 80.7 87.5 81.2 92.9 80.2 74.0 80.1 83.0

LHR 95.0 97.1 99.4 95.4 99.5 98.8 99.5 87.4 99.5 96.8

LOGO 98.6 98.0 90.0 95.6 86.7 100 100 86.9 100 95.1

NB

IG 88.3 93.1 80.0 84.1 91.2 95.8 100 87.1 98.9 90.9

TR 89.6 93.1 80.0 84.1 88.2 95.8 100 88.7 98.9 90.9

Gini 89.6 92.2 80.4 83.0 91.2 95.8 100 88.7 98.9 91.1

SumM 89.6 92.2 80.7 73.9 91.2 95.8 100 88.7 98.9 90.1

MaxM 89.6 93.1 80.0 84.1 88.2 95.8 100 88.7 98.9 90.9

SumV 89.6 93.1 80.0 84.1 88.2 95.8 100 88.7 98.9 90.9

t-stat 89.6 94.1 82.5 83.0 91.2 98.6 100 79.0 98.3 90.7

OSVM 90.9 94.1 81.1 81.8 91.2 95.8 100 83.9 98.3 90.8

MIDξ 76.6 76.6 80.5 75.3 88.2 84.7 84.8 80.6 97.8 82.8

MIQξ 80.5 83.1 77.9 79.2 73.5 94.4 84.8 74.2 97.2 82.8

I-RELIEF 84.4 73.5 87.3 81.8 85.1 91.7 87.3 67.7 86.7 82.8

LHR 92.2 98.0 97.2 89.8 97.8 98.6 97.8 90.3 97.2 95.4

LOGO 98.7 93.1 84.3 94.3 97.1 100 100 90.3 100 95.3

IG 92.2 96.1 85.7 84.1 91.2 98.6 100 88.7 98.9 92.8

TR 90.9 98.0 84.6 84.1 88.2 98.6 100 87.1 98.9 92.3

Gini 90.9 92.2 86.1 84.1 88.2 98.6 100 85.5 98.9 91.6

SumM 93.5 92.2 84.3 86.4 94.1 98.6 100 87.1 98.9 92.8
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Table 5 Performance comparison of the LHRwith 12 standard feature selection schemes (FSSs) (Continued)

KNNη

MaxM 90.9 98.0 84.6 84.1 88.2 98.6 100 87.1 98.9 92.3

SumV 90.9 98.0 84.6 84.1 88.2 98.6 100 87.1 98.9 92.3

t-stat 93.5 94.1 86.8 86.4 91.2 97.2 100 88.7 99.4 93.0

OSVM 90.9 93.1 87.9 80.7 91.2 94.4 84.8 85.5 98.9 89.7

MIDξ 88.3 89.6 90.9 87.0 85.3 90.3 93.9 77.4 91.2 88.2

MIQξ 93.5 87.0 87.0 89.6 85.3 91.7 93.9 79.0 91.2 88.7

I-RELIEF 96.1 91.2 87.8 86.4 88.4 94.4 87.8 82.3 88.4 89.2

LHR 96.1 99.0 100 94.3 99.4 100 99.4 91.9 100 97.8

LOGO 100 99.0 94.6 96.6 94.1 100 100 91.9 100 97.4

HKNNη

IG 90.9 97.1 83.9 85.2 91.2 95.8 100 83.9 98.9 91.9

TR 90.9 95.1 82.5 85.2 88.2 97.2 100 87.1 98.9 91.7

Gini 90.9 93.1 84.3 84.1 94.1 98.6 100 87.1 98.9 92.3

SumM 92.2 91.2 83.9 84.1 91.2 98.6 100 87.1 100 92.0

MaxM 90.9 95.1 82.5 85.2 88.2 97.2 100 87.1 98.9 91.7

SumV 90.9 95.1 82.5 85.2 88.2 97.2 100 87.1 98.9 91.7

t-stat 89.6 91.2 81.4 81.8 94.1 97.2 100 83.9 99.4 91.0

OSVM 89.6 92.2 83.9 79.5 91.2 97.2 87.9 87.1 99.4 89.8

MIDξ 80.5 81.8 87.0 83.1 79.4 84.7 90.9 79.0 95.0 84.6

MIQξ 88.3 83.1 80.5 89.6 82.4 91.7 90.9 75.8 93.9 86.2

I-RELIEF 96.1 85.3 84.0 77.3 84.0 95.8 84.0 77.4 86.2 85.6

LHR 97.4 97.1 100 94.3 100 100 100 90.3 100 97.7

LOGO 100 99.0 96.8 96.6 97.1 100 100 91.9 100 97.9
ξPreprocessing of the data via t-test with confidence leel of 0.01 to reduce the computation burden on estimating of mutual information.
ηHyper-parameters are estimated via 5-fold cross validation.
The number of genes is determined by LHR and used for all other FSSs. LOOCV criteria is used to evaluate the performance of the FSSs, coupling with five classification
models. The optimal and suboptimal accuracy (columnwise) on each tested data are highlighted in bold and italic, respectively.

feature selection schemes. In most cases, the variables
selected by LHR achieved the optimal or suboptimal
LOOCV accuracy when coupled with the five classi-
fiers. To investigate the extent of the information con-
veyed by the selected genes, we created a box plot of
the LOOCV accuracy for the five classification algo-
rithms (LDA, SVM, KNN, NB, and HKNN) on each of
the tested datasets in Figure 2. A remarkable character-
istics of the proposed LHR is its low dependence on the
classifiers, resulting in the corresponding box plot having
a narrower bandwidth than that for the other methods,
shown in Figure 2. This property implies that the genes
selected by LHR are highly informative, and thus the
discriminative performance is robust to the choice of
different classifiers.

Computation complexity
Solving of the LHR algorithm involves in a quadratic min-
imization problem (Eq. (4)) for each sample. Therefore,
it needs a much higher computational cost than linear
method does, such as I-RELIEF and LOGO. Although
the matrix of HTWH in Eq. (4) is positive-definite

and in small size, the minimization problem of Eq. (4)
can be solved in polynomial time (O(n3) for n NNs of
a sample). Thus, the complexity in each iteration are
approximately O(n3 ∗ N) times higher than I-RELIEF
does.

Conclusions
In this paper, we proposed a new feature weighting
scheme to overcome the common drawbacks of the
RELIEF family. The nearest miss and hit subsets are
approximated by constructing a local hyperplane. Then
feature weight updating is achieved by measuring the
margin between the sample and its hyperplane in a
general RELIEF framework. The main contribution of
the new variation is that the margin is more robust
to the noise and outliers than those of earlier works.
Therefore, the feature weights can characterize the local
structure more accurately. Experimental results on both
synthetic and real-world microarray datasets validated
our findings when combining the proposed method with
five classic classifiers. The performance of the pro-
posed weighting scheme performed is superior in terms
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Figure 2 Performance comparison of the LHRwith 12 standard feature selection schemes (FSSs). Nine benchmarked microarray datasets
(a-i), whose name was positioned in middle below of the x-axis, were used to test the performance of the FSSs. For each tested data, the results
after five classification, coupling with 13 FSSs through LOOCV are box plotted. The proposed LHR outperformed or archived comparable
performance to other methods. Moreover, the results after LHR show small variation on LOOCV error when tested with different classifiers, implying
a high degree of robustness.

of classification error on most test datasets. Extensive
experiments demonstrated that the proposed scheme
has three remarkable characteristics: 1) high accuracy
in classification, 2) excellent robustness to noise and
3) good stability with respect to various classification
algorithms.

Methods
RELIEF
The RELIEF algorithm has been successfully applied in
feature weighting owing to its simplicity and effective-
ness [12,13]. The main idea of RELIEF is the iterative
adjustment of feature weights according to their ability
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to discriminate among neighboring patterns. Mathemat-
ically, suppose that X = {x1, x2, · · · , xn}d×N is a ran-
domly selected sample matrix of binary class data where
each sample x has d dimensions, x = {x1, x2, · · · , xd}.
One can estimate the two nearest neighbors, where
one is from the same class (called the nearest hit or
NH) and the other is from a different class (called
the nearest miss or NM). Then, weight wf of the f -th
( f = 1, 2, · · · , d) feature is updated by the heuristic
estimation:

wf ← wf + ∣∣xf − NMf
∣∣ − ∣∣xf − NHf

∣∣ (1)

where NMf ,NHf denote the f -th coordinate value of vec-
tor NM and NH , respectively. Since no exhaustive or
iterative search is needed for RELIEF updates, this scheme
is very efficient in processing data with huge dimensions.
Thus, it is particularly promising for large-scale problems
such as analysis of microarray data [3,12,27]. The author
generalized the updates scheme to compute themaximum
expected margin E[ρ(w)] by scaling the features [11,12]
to overcome the drawbacks of RELIEF, such as outlier
detection and inaccurate updates:

E[ρ(w)] .= wT
(

E
xn∈NM(xi)

[|xn − xi|] − E
xn∈NH(xi)

|[xn − xi |)
)

= wT

⎛
⎝ ∑

xn∈NM(xi)
P (xn = NM (xi) |w) |xn − xi|

−
∑

xn∈NH(xi)
P (xn = NH (xi) |w) |xn − xi|

⎞
⎠

= wTzn
(2)

with zn = ∑
xn∈NM(xi) P(xn = NM(xi)|w)|xn − xi| −∑

xn∈NH(xi) P(xn = NH(xi)|w)|xn − xi|, where NM(xi) =
{xn : 1 ≤ n ≤ N , yi �= yn} and NH(xi) = {xn : 1 ≤
n ≤ N , yi = yn} are index sets of the nearest miss
and the nearest hit for the sample xi. N is the sample
size. P(xn = NM(xi)|w) (or P(xn = NH(xi)|w)) is the
probability of a sample xn being in the set of NM(xi)
(or NH(xi)) in the feature space scaled by weights w.
Though the probability distributions are initially
unknown, they can be estimated through kernel den-
sity estimation [29]. The authors called this method
I-RELIEF and showed that it achieved significant per-
formance improvement over the traditional models.
Classification of a feature scaled dataset achieved
higher accuracy than standard techniques such as the
SVM [1,2,30] and NN model [31]. Feature weighting
is also robust to noisy features. To obtain a sparse
and economic feature weighting, Sun incorporated
the l1 penalty into the optimization of I-RELIEF and

named the algorithm by Logo (fit locally and think glob-
ally) [12]. Extensive experiments have demonstrated
that Logo could accurately grasp the intrinsic structure
of the data and match nicely with classic classification
models.
However, the expectation in Eq. (2) is obtained by aver-

aging the nearest neighbors. Therefore, feature weight
estimation may be less accurate if the samples contain
many outliers or most of the features are irrelevant.
In both cases, the distance between the tested sample
and its nearest neighbor is a large value. It follows that
large bias is introduced to margin estimation by using
the such averaging operation. Although the influence of
abnormal samples can be reduced by introducing ker-
nel distribution estimation [11,12], this in turn intro-
duces additional free parameters. Moreover, probability
estimation via kernel approximation is sensitive to the
sample size [28]. Therefore, it limits the empirical appli-
cations such as analysis of microarray data, which the
data are notoriously known for the fact that the dimen-
sion of the sample observations is much smaller than
that of the sample features [32]. In this paper, we pro-
pose using a local hyperplane to approximate the set
of the nearest hit and miss, and then estimate the fea-
ture weight by maximizing the expected margin defined
by the hyperplane. The advantage of this approxima-
tion is that the hyperplane is more robust to noisy
feature degradation than averaging all the neighbors
[11-13].

Local hyperplane conditional on feature weight
Processing high-dimensional data by mapping the data
of interest into an embedded non-linear manifold within
the higher-dimensional space has attracted wide interest
in machine learning. The local hyperplane approximation
shares similar merits with local linear embedding meth-
ods [12,26,33]. It assumes that the samples’ structure is
locally linear and therefore each sample lies on a local lin-
ear hyperplane, spanned by its nearest neighbors. Math-
ematically, let us assume that the feature weights w .=
{w1,w2, · · · ,wI} are known in advance. Thus, sample x
can be represented by a local hyperplane of class c, condi-
tional on the feature weight w, as:

LHc(x) = {s | s = WHα}, (3)

where H is an I × n matrix comprising n NNs of sam-
ple x: H = {h1, h2, · · · , hn}, with hi being the i-th nearest
neighbor (called the prototype) of class c. W is a diago-
nal matrix with diagonal element wi being the weight of
the i-th feature. The parameters of α = (α1, . . . , αn)

T are
the weights of the prototypes {hi, i = 1, 2, . . . , n}. These
can be viewed as the spanning coefficients of subspace
LHc(x). Therefore, the hyperplane can be represented as:
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{· |Hα = α1Wh1 + α2Wh2 + . . . + αnWhn}. The projec-
tion LHc(x) of x onto the hyperplane can be computed by
minimizing the distance between sample x and the hyper-
plane, both of which are dependent on the feature weight.
Therefore, the value of α can be estimated as:

Jc(α) = argmin
α

⎧⎨
⎩1
2

I∑
i=1

(wixi − si)2 + λ

n∑
j=1

α2
i

⎫⎬
⎭

= argmin
α

{
1
2

(x − Hα)T W (x − Hα) + λαTα

}
Subject to

k∑
i=1

αi = 1, α ≥ 0

(4)

The regularization parameter λ is used to empha-
size the “smoothing” effect of the optimum solution,
which degenerates to be an unit vector in certain radical
cases.
We propose using a hyperplane to represent the set

of the nearest miss NM(x) and nearest hit NH(x) for a
given sample x. The advantage of the representation is
the robust characterization of the local sample patterns.
Then the distances between the sample and its NH (or
NM) set can be estimated from the local hyperplane rather
than averaging across all samples within the set. There-
fore, we redefine the margin for a sample x as ρn

.= d(xn−
LHNM(xn)) − d(xn − LHNH(xn)). The feature weights are
then estimated by maximizing the total margin:

maxw E[ρ(w)] = 1
N

maxw

N∑
n=1

( I∑
i=1

ωi

∣∣∣x(i)
n − LH(i)

NM (xn)
∣∣∣

−
I∑

i=1
ωi

∣∣∣x(i)
n − LH(i)

NH (xn)
∣∣∣
)

= maxw wT 1
N

N∑
n=1

( I∑
i=1

∣∣∣x(i)
n − αH(i)

NM (xn)
∣∣∣

−
I∑

i=1

∣∣∣x(i)
n − βH(i)

NH (xn)
∣∣∣
)

= maxw wTzn
(5)

where vector zn is defined as: zn = 1
N

∑N
n=1

(∑I
i=1 |x(i)

n −
αH(i)

NM(xn)| − ∑I
i=1 |x(i)

n − βH(i)
NH(xn)|

)
, where HNM(xn)

and HNH(xn) are the nearest neighbors of the set of the
nearest miss and hit of sample xn. αn and βn are the coef-
ficients for spanning hyperplane LH(n)

NM and LH(n)
NH . w is

a vector with its i-th element w(i) being the weight of

the i-th feature, for i = 1, 2, . . . , I. To solve the mini-
mization problem of Eq. (5), the parameters of αn, βn,
which are dependent on the nearest neighbors, must be
estimated. The main problem with this estimation, how-
ever, is that the nearest neighbors of a given sample are
unknown before learning. In the presence of many thou-
sands of irrelevant features, the nearest neighbors defined
in the original space can be completely different from
those in the induced space. Therefore, the nearest neigh-
bors defined in the original feature space may not be
the same in the weighted feature space. To address these
difficulties, we use an iterative algorithm, similar to the
Expectation Maximization algorithm and I-RELIEF [11],
to estimate the feature weights. The detailed numeri-
cal solution is provided in Additional file 1: S.1. The
pseudo-code for LH-RELIEF is summarized in Additional
file 2: S.2.
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