
Zhou et al. Journal of Inequalities and Applications 2013, 2013:261
http://www.journalofinequalitiesandapplications.com/content/2013/1/261

RESEARCH Open Access

Asymptotic properties of wavelet-based
estimator in nonparametric regression model
with weakly dependent processes
Xing-cai Zhou1,2*, Jin-guan Lin1 and Chang-Ming Yin3

*Correspondence:
xczhou@nuaa.edu.cn
1Department of Mathematics,
Southeast University, Nanjing,
210096, P.R. China
2Department of Mathematics and
Computer Science, Tongling
University, Tongling, Anhui 244000,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider a nonparametric regression model with replicated
observations based on the ϕ-mixing and the ρ-mixing error’s structures respectively,
for exhibiting dependence among the units. The wavelet procedures are developed
to estimate the regression function. Under suitable conditions, we obtain expansions
for the bias and the variance of wavelet estimator, prove the moment consistency, the
strong consistency, the strong convergence rate of it, and establish the asymptotic
normality of wavelet estimator.
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1 Introduction
Consider the following nonparametric regression model:

Y (x) = g(x) + e(x), (.)

from a discrete set of observations of the process Y (·) at the points {xi,  ≤ i ≤ n}, {e(·)}
is a zero mean stochastic process, defined on a probability space (�,A,P), and g(x) is an
unknown function defined on a closed interval I = [, ].
It is well known that regression model has a wide range of applications in filtering and

prediction in communications and control systems, pattern recognition, classification and
econometrics, and is an important tool of data analysis. Of much interest about the prob-
lem have been the weighted function estimates of g ; see, for example, Priestley and Chao
[], Gasser and Müller [, ], Prakasa Rao [], Clark [] and the references therein for the
independent case; Roussas [], Fan [], Roussas and Tran [], Liang and Jing [], Yang and
Li [], Yang [] for the various dependent cases.
In this article, we discuss a nonparametric estimation problem in the model (.) with

repeated measurements. We assume that a random sample of m experimental units is
available and the observed data for the jth unit are the values, Y (j)(xi) (i = , . . . ,n), of a
response variable corresponding to the values, xi (i = , . . . ,n), of a controlled variable. Let
{(Y (j)(xi),xi),  ≤ j ≤ m,  ≤ i≤ n} obey the model (.), i.e.,

Y (j)(xi) = g(xi) + e(j)(xi), (.)
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where the xi’s are fixed with  ≤ x ≤ · · · ≤ xn ≤ , and the e(j)(xi)’s are zero mean ran-
dom errors. The model can be applied to many fields. For instance, in hydrology many
phenomena may be represented by a sequence of continuous responses y(j)(xi), where xi
represents the time elapsed from the beginning of a certain year, j indicates the corre-
sponding year, e(j)(xi) is the measurement of the deviation from the annual mean g(xi); in
some biological phenomena as the growth of individual (or populations) y(j)(xi) will be the
growth points of the j-individual, e(j)(xi) the measurement of the deviation from the mean
growth g(xi) of the response of the j-individual, and xi the points where measurements
are taken []. It is clear that the observations Y (j)(xi) (i = , . . . ,n) made on the same ex-
perimental unit will in general be correlated. Hart andWehrly [] studied the asymptotic
square mean error of a kernel estimator in the model with zero mean errors e(j)(xi)’s be
correlated, that is, cov(e(j)(xi), e(k)(xl)) = σ ρ(xi – xl) for j = k and zero elsewhere where
ρ(·) is a correlation function. The uncorrelated assumption between units is unrealistic.
In practice, sometimes the observed responses in different units are also correlated, more
precisely a sequence of responses curve {Y (j)(·), j ≥ } has an intrinsic dependence struc-
ture, such as mixing conditions. Under a weak error’s structure among units, Fraiman and
Iribarren [] proposed nonparametric estimates of g(·) in model (.) based on locally
weighted averages, and gave their local and global asymptotic behaviors.
In the paper, we develop wavelet methods to estimate a regression function in themodel

(.) with the ϕ-mixing and ρ-mixing error’s structures respectively, that is, {e(j)(·), j ≥ }
is a ϕ-mixing or ρ-mixing process. One motivation for using wavelet for the model (.) is
that most of the nonparametric analyses of regression models are based on an impor-
tant assumption that the regression function is smooth; but in reality, the assumption
may not be satisfied. The major advantage of the wavelet is that the hypotheses of de-
grees of smoothness of the underlying function are less restrictive. Up to now, there have
been no results on wavelet estimation for model (.). Another motivation for consider-
ing the model (.) with weakly dependent processes is that our interest is to avoid as far
as possible any assumptions on the error’s structure within {e(j)(x), . . . , e(j)(xn)} for each j
(j = , . . . ,m), and in the meantime to exhibit weakly dependence among the units.
For a systematic discussion of wavelets and their applications in statistics, see the recent

monographs by Härdle et al. [] and Vidakovic []. Due to their ability to adapt to local
features of unknown curves, many authors have applied wavelet procedures to estimate
the general nonparametric model. See recent works, for example, Antoniadis et al. []
and Xue [] on independent errors; Johnstone and Silverman [] for correlated noise;
Liang et al. [] onmartingale difference errors; Li and Xiao [] for longmemory data; Li
et al. [] on associated samples; Xue [], Sun and Chai [], Li and Guo [] and Liang
[] on mixing error assumptions.
For dealing with weakly dependent data, bootstrap and blockwise are well known. They

are useful techniques of resampling, which can preserve the dependent properties of the
data by appropriately choosing blocks of data. They have been sufficiently investigated by
many papers, for example, Bühlman and Künsch [], Yuichi [], Lahiri [], Lin and
Zhang [, ] and Lin et al. []. For the nonparametric regression model without re-
peated observations under weakly dependent processes, Lin and Zhang [] respectively
adopted bootstrap wavelet and blockwise bootstrap wavelet to generate an independent
blockwise sample from the original dependent data, defined the wavelet estimators of
g(·), and then took advantage of the independence of the blockwise sample to prove some
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asymptotic properties of the wavelet estimators. In addition, the weakly dependent condi-
tions A and A′

 in Lin and Zhang [] are weaker than the conditions for the consistency
and asymptotic normality of ρ-mixing and ϕ-mixing dependent sequences. In our paper,
we consider the nonparametric regression model with repeated observations under the
specific ρ-mixing and ϕ-mixing dependent processes. We do not use bootstrap and/or
blockwise to define wavelet estimator of g(·), but construct it by the following simple for-
mula (.), and can show directly some asymptotic behaviors of the wavelet estimator by
applying the fundamental properties of ρ-mixing and ϕ-mixing sequences and some proof
techniques.
Recall the definitions of the sequences of the ϕ-mixing and ρ-mixing random variables.

Let {Xm,m ≥ } be a sequence of random variables defined on a probability space (�,F ,P),
F l

k = σ (Xi,k ≤ i ≤ l) be σ -algebra generated by Xk , . . . ,Xl , and denote L(F l
k) to be the set

of all F l
k-measurable random variables with second moments.

A sequence of random variables {Xm,m ≥ } is said to be ϕ-mixing if

ϕ(m) = sup
k≥,A∈Fk

 ,P(A) �=,B∈F∞
k+m

∣∣P(B|A) – P(B)
∣∣ → , asm → ∞.

A sequence of random variables {Xm,m ≥ } is said to be ρ-mixing if maximal correla-
tion coefficient

ρ(m) = sup
k≥,X∈L(Fk

 ),Y∈L(F∞
k+m)

| cov(X,Y )|√
Var(X) ·Var(Y ) →  asm → ∞.

The concept of a mixing sequence is central in many areas of economics, finance and
other sciences. A mixing time series can be viewed as a sequence of random variables for
which the past and distant future are asymptotically independent. A number of limit the-
orems for ϕ-mixing and ρ-mixing random variables have been studied by many authors.
For example, see Shao [], Peligrad [], Utev [], Kiesel [], Chen et al. [] and Zhou
[] for ϕ-mixing; Peligrad [], Peligrad and Shao [, ], Shao [] and Bradley [] for
ρ-mixing. Some limit theories can be found in the monograph of Lin and Lu [].
The article is structured as follows. In Section , we introduce the wavelet estimation

procedures and establish main results. The proofs of the main results are provided in Sec-
tion .

2 Estimators andmain results
Defining Ȳ (xi) =

∑m
j= Y (j)(xi)/m, from (.), we have

Ȳ (xi) = g(xi) + ē(xi), (.)

where ē(xi) =
∑m

j= e(j)(xi)/m. Expressing the model in this way is useful since the problem
of estimating g(·) may now be regarded as that of fitting a curve through the samplemeans
Ȳ (xi). The wavelet technique is applied to estimate the regression function in model (.).
The detailed procedure is summarized below.
For convenience, we introduce some symbols and definitions along the line of Anto-

niadis et al. []. Suppose that φ(·) is a given scaling function in the Schwartz space with
order l. A multiresolution analysis of L(R) consists of an increasing sequence of closed

http://www.journalofinequalitiesandapplications.com/content/2013/1/261
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subspacesVk , k = . . . , –,–, , , , . . . , where L(R) is the set of square integrable functions
over the real line. The associated integral kernel of Vk is given by

Ek(x, s) = kE
(
kx, ks

)
= k

∑
l∈Z

φ
(
kx – l

)
φ
(
ks – l

)
,

where Z denotes the set of integers, k = k(n) >  is an integer depending only on n. Let
Ai = [si–, si] be a partition of the interval I with xi ∈ Ai for  ≤ i ≤ n. From (.), we now
construct the wavelet estimator of g ,

ĝm,n(x) =
n∑
i=

Ȳ (xi)
∫
Ai

Ek(x, s)ds =

m

m∑
j=

n∑
i=

Y (j)(xi)
∫
Ai

Ek(x, s)ds. (.)

In the sequel, let C,C, . . . denote generic finite positive constants, whose values are
unimportant and may change from line to line. Set ‖X‖r = (E|X|r)/r and suppose that
Ee(j)(x) =  for j ≥  and x ∈ I .
Before formulating the main results, we first give some assumptions, which are quite

mild and can be easily satisfied.
A. (i) {e(j)(x), j ≥ } is a sequence of ϕ-mixing (ρ-mixing);

(ii) {e(j)(x), j ≥ } is a sequence of identically distributed ϕ-mixing (ρ-mixing);
(iii) {e(j)(x), j ≥ } is a sequence of strictly stationary ϕ-mixing (ρ-mixing).

A. (i) supj≥,x∈I E|e(j)(x)| ≤ K < ∞;
(ii)

∑∞
n= ϕ

/(n) < ∞ (
∑∞

n= ρ(n) <∞);
(iii) supj≥,x∈I E|e(j)(x)|+δ ≤ K <∞ for some δ > ;
(iv)

∑∞
n= ϕ

(–a)/(n) < ∞ (
∑∞

n= ρ
–a(n) < ∞) for some  < a < .

A. σ  = E(e()(x)) + 
∑∞

j= E(e()(x)e(j+)(x)).
A. g(·) ∈Hυ , υ > /, where Hυ is the Sobolev space of order υ , i.e., if h ∈Hυ , then

Hυ = {h : ∫ |ĥ(w)|( +w)υ dw < ∞}, where ĥ denotes the Fourier transform of h.
A. g(·) satisfies the Lipschitz condition of order γ > .
A. φ(·) is q regular with q > υ , satisfies the Lipschitz condition with order  and has a

compact support, and satisfies |φ̂(ξ ) – | =O(ξ ) as ξ → , where φ̂(·) is the Fourier
transform of φ(·).

A. max≤i≤n |si – si–| =O(/n).
A. k = k(n), k → ∞ as n→ ∞, and n = n(m), n→ ∞ asm → ∞, such that

m/nγ → , and nγ =O((υ–)k), where υ and γ are defined in (A) and (A),
respectively.

Remark . We refer to the monograph of Doukhan [] for properties of ϕ-mixing and
ρ-mixing, and more mixing conditions.

Remark . It is well known that (A)-(A) are the mild regularity conditions for wavelet
smoothing; see Antoniadis et al. [], Chai and Xu [], Xue [], Sun and Chai [], Zhou
and You [] and Li and Guo [].

Remark . (A) is satisfied easily. For example, n = m(+b)/γ for any b > , and k =
d logn –(υ – )– logc for d = γ /(υ – ) and c > .

Our results are listed as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/261
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Theorem . Assume that (A)(i) and (A)(i), and (A)-(A) are satisfied. Then
(a) Bias(ĝm,n(x)) =O(n–γ ) +O(τk), where τk is defined in Lemma .;
(b) ϕ-mixing: Var(ĝm,n(x)) =O(( + 

∑m
i= ϕ

/(i))/m);
ρ-mixing: Var(ĝm,n(x)) =O(( + 

∑m
i= ρ(i))/m).

Theorem . Under (A)(i), (A)(i)(ii), and (A)-(A), we have

lim
min(m,n)→∞

sup
x∈I

E
∣∣ĝm,n(x) – g(x)

∣∣ = .

Theorem . Assume that [(A)(ii) and (A)(i)(ii)] or [(A)(i) and (A)(iii)], and (A)-
(A) are satisfied. Then

lim
min(m,n)→∞

∣∣ĝm,n(x) – g(x)
∣∣ = , a.s.

Theorem . Assume that (A)(ii), (A)(i)(ii), and (A)-(A) are satisfied. If υ > /, k =
c logn, and n =O(md/c), where  < c ≤ / and  < d < /, then

sup
x∈I

∣∣ĝm,n(x) – g(x)
∣∣ =O

(
–k

)
, a.s.

Theorem . Assume that (A)(iii), (A)(i)(iv), (A), and (A)-(A) are satisfied. For a
fixed x and each ε > , there exists η = η(ς ) verifying sup|h|≤ς E|e(j)(x + h) – e(j)(x)| ≤ η(ς ),
where η(ς ) →  as ς → . Then

m/(ĝm,n(x) – g(x)
) d−→ N

(
,σ ),

where
d−→ denotes convergence in distribution.

3 Proofs of themain results
In order to prove the main results, we first present several lemmas.

Lemma . Suppose that (A) holds.We have
(a) sup≤x,s≤ |Ek(x, s)| =O(k).
(b) sup≤x≤

∫ 
 |Ek(x, s)|ds≤ C.

(c)
∫ 
 Ek(x, s)ds→  uniformly in x ∈ I , as k → ∞.

The proofs of (a) and (b), and (c) respectively can be found in Antoniadis et al. [] and
Walter [].

Lemma . Suppose that (A)-(A) hold, and h(·) satisfies (A)-(A). Then

sup
≤x≤

∣∣∣∣∣h(x) –
n∑
i=

h(xi)
∫
Ai

Ek(x, s)ds

∣∣∣∣∣ =O
(
n–γ

)
+O(τk),

where

τk =

⎧⎪⎨
⎪⎩
(/k)υ–/ if / < υ < /,√
k/k if υ = /,

/k if υ > /.

It follows easily from Theorem . of Antoniadis et al. [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/261
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Lemma . (a) Let {Xn,n ≥ } be a ϕ-mixing sequence, X ∈ Lp(F k
 ), Y ∈ Lq(F∞

k+n) with
p,q ≥  and 

p +

q . Then

|EXY – EXEY | ≤ ϕ/p(n)‖X‖p‖Y‖q.

(b) Let {Xn,n ≥ } be a ρ-mixing sequence, X ∈ Lp(F k
 ), Y ∈ Lq(F∞

k+n) with p,q ≥  and

p +


q . Then

|EXY – EXEY | ≤ ρ(n)

p∧ 

q ‖X‖p‖Y‖q.

Lemmas .(a) and (b) respectively come from Lemmas ..d and ..c of Lin and Lu [].

Let Sj =
∑j

i=Xj for j ≥ , and Sl(i) =
∑l+i

j=l+Xj for i ≥  and l ≥ . The following
Lemma .(a) and (b) can be found in Shao [] and Shao [] respectively.

Lemma . (a) Let {Xn,n≥ } be a ϕ-mixing sequence.
(i) If EXi = , then

ESl (i) ≤ ,i exp

{


�log i∑
j=

ϕ/(j)
}

max
l+≤j≤l+i

EX
j .

(ii) Suppose that there exists an array {cln} of positive numbers such that
max≤i≤n ESl (i) ≤ cln for every l ≥ , n≥ . Then, for any q ≥ , there exists a
positive constant C = C(q,ϕ(·)) such that

E max
≤i≤n

∣∣Sl(i)∣∣q ≤ C
(
cq/ln + E max

l<i≤l+n
|Xi|q

)
.

(b) Let {Xn,n≥ } be a ρ-mixing sequence with EXi = . Then, for any q ≥ , there exists
a positive constant C = C(q,ρ(·)) such that

E max
≤j≤n

|Sj|q ≤ C

(
nq/ exp

{
C

�logn∑
j=

ρ
(
j

)}
max
≤j≤n

(
E|Xj|

)q/

+ n exp

{
C

�logn∑
j=

ρ/q(j)
}
max
≤j≤n

E|Xj|q
)
.

Lemma . Let {Xn,n ≥ } be a ϕ-mixing (ρ-mixing) sequence of identically distributed
random variables with

∞∑
n=

ϕ/(n) < ∞
( ∞∑

n=

ρ
(
n

)
<∞

)
, E|X|r <∞

for some  ≤ r < . Then


n

n∑
i=

(Xi – EXi) = o
(
n–(–/r)

)
, a.s.

http://www.journalofinequalitiesandapplications.com/content/2013/1/261
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Lemma . can be found in Theorem .. of Lin and Lu []. Ibragimov [, ] gave
the following Lemma ., which also can be found in Lin and Lu [].

Lemma . Let {Xn,n ≥ } be a strictly stationary ϕ-mixing (ρ-mixing) sequence of
random variables with EX = , E|X| < ∞ and σ 

n = ESn → ∞. If
∑∞

n= ϕ
/(n) < ∞

(
∑∞

n= ρ(n) < ∞), then

Sn/σn →N(, ).

We are now in a position to give the proofs of the main results.

Proof of Theorem . From (.) and (.), we have

Bias
(
ĝm,n(x)

)
= E

(
ĝm,n(x)

)
– g(x) =

m∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x). (.)

By Lemma ., (a) holds.
Denote V (j)(x) =

∑n
i= e(j)(xi)

∫
Ai
Ek(x, s)ds. By supj≥,x∈I E(e(j)(x)) ≤ K < ∞ and Lem-

ma .(b),

∥∥V (j)(x)
∥∥
 = E

∣∣∣∣∣
n∑
i=

e(j)(xi)
∫
Ai

Ek(x, s)ds

∣∣∣∣∣


≤ E

( n∑
i=

∣∣e(j)(xi)∣∣
∫
Ai

∣∣Ek(x, s)
∣∣ds

)

= E

( n∑
i=

∫
Ai

|Ek(x, s)|ds∫ 
 |Ek(x, s)|ds

· ∣∣e(j)(xi)∣∣
∫ 



∣∣Ek(x, s)
∣∣ds

)

≤
n∑
i=

∫
Ai

|Ek(x, s)|ds∫ 
 |Ek(x, s)|ds

· E
(∣∣e(j)(xi)∣∣

∫ 



∣∣Ek(x, s)
∣∣ds)

≤ K
(∫ 



∣∣Ek(x, s)
∣∣ds)

≤ C. (.)

For ϕ-mixing, by Lemmas .(a) and (.), we have

Var
(
ĝm,n(x)

)
= E

(
ĝm,n(x) – E

(
ĝm,n(x)

)) = E

(

m

m∑
j=

V (j)(x)

)

=

m

( m∑
j=

∥∥V (j)(x)
∥∥
 + 

∑
≤i<j≤m

E
(
V (i)(x)V (j)(x)

))

≤ 
m

( m∑
j=

∥∥V (j)(x)
∥∥
 + 

∑
≤i<j≤m

ϕ/(j – i)
∥∥V (i)(x)

∥∥


∥∥V (j)(x)
∥∥


)

≤ 
m

(
Cm + C

∑
≤i<j≤m

ϕ/(j – i)
)

≤ C

m

(
 + 

m∑
i=

ϕ/(i)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/261
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Therefore, (b) holds for ϕ-mixing. Similar to the arguments, we obtain (b) for ρ-mixing
by Lemma .(b). �

Proof of Theorem . We know that E|ĝm,n(x) – g(x)| =Var(ĝm,n(x)) + (Eĝm,n(x) – g(x)). It
follows easily from Theorem .. �

Proof of Theorem . From (.) and (.), we have

ĝm,n(x) – g(x) =

m

m∑
j=

V (j)(x) +

( n∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x)

)
, (.)

where V (j)(x) is defined in the proof of Theorem .. Note that

∣∣∣∣∣
n∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x)

∣∣∣∣∣ =O
(
n–γ

)
+O(τk) = o() (.)

as n→ ∞ by Lemma .. It remains to show that

Im =

m

m∑
j=

V (j)(x) → , a.s. (m→ ∞). (.)

() ϕ-mixing. Here, we consider Im under two different assumptions: [(A)(ii) and
(A)(i)(ii)] and [(A)(i) and (A)(iii)], respectively.
If the assumptions are [(A)(ii) and (A)(i)(ii)], denote e(j) (xi) = e(j)(xi)I(|e(j)(xi)| ≤ md)

and e(j) (xi) = e(j)(xi)I(|e(j)(xi)| > md) for  < d < , ẽ(j) (xi) = e(j) (xi) – Ee(j) (xi), V
(j)
 (x) =∑n

i= ẽ(j)(xi)
∫
Ai
Ek(x, s)ds. Note that e(j)(xi) = ẽ(j) (xi) + e(j) (xi) – E(e(j) (xi)). We have

|Im| ≤
∣∣∣∣∣ m

m∑
j=

V (j)
 (x)

∣∣∣∣∣ +
∣∣∣∣∣ m

m∑
j=

n∑
i=

e(j) (xi)
∫
Ai

Ek(x, s)ds

∣∣∣∣∣
+

∣∣∣∣∣ m
m∑
j=

n∑
i=

Ee(j) (xi)
∫
Ai

Ek(x, s)ds

∣∣∣∣∣
=: Im + Im + Im. (.)

For q > , by Lemma .(a), we have

∞∑
m=

P(Im > ε)

≤
∞∑
m=

(mε)–qE

∣∣∣∣∣
m∑
j=

V (j)
 (x)

∣∣∣∣∣
q

≤ C
∞∑
m=

m–q

[(
m exp

{


�logm∑
j=

ϕ/(j)
}

max
≤l≤m

E
∣∣V (l)

 (x)
∣∣)q/

+
m∑
j=

E
∣∣V (j)

 (x)
∣∣q]

≤ C
∞∑
m=

m–q(mq/ +mm(q–)d) ≤ C
∞∑
m=

(
m–q/ +m–(–d)q–d+) < ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/261
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Therefore, it follows from the Borel-Cantelli lemma that

Im = o(), a.s. (.)

Note that supx∈I E(|e()(x)|)r < ∞ (r = ). By Lemma ., we have 
m

∑m
j= |e(j)(xi)| –

E|e()(xi)| = o() a.s. Therefore,


m

m∑
j=

∣∣e(j)(xi)∣∣ < ∞, a.s. (.)

By (.) and Lemma .(ii), one gets

Im ≤
n∑
i=

(

m

m∑
j=

∣∣e(j)(xi)∣∣I(∣∣e(j)(xi)∣∣ >md))∫
Ai

∣∣Ek(x, s)
∣∣ds

≤ 
md

n∑
i=

(

m

m∑
j=

∣∣e(j)(xi)∣∣
)∫

Ai

∣∣Ek(x, s)
∣∣ds

≤ C

md

∫ 



∣∣Ek(x, s)
∣∣ds≤ C/md = o() a.s. (.)

Further, we have

Im ≤ 
m

m∑
j=

n∑
i=

E
∣∣e(j)(xi)∣∣I(∣∣e(j)(xi)∣∣ >md)∫

Ai

∣∣Ek(x, s)
∣∣ds

≤ 
md+

m∑
j=

n∑
i=

E
∣∣e(j)(xi)∣∣

∫
Ai

∣∣Ek(x, s)
∣∣ds

≤ C

md

∫ 



∣∣Ek(x, s)
∣∣ds ≤ C/md = o(). (.)

From (.), (.), (.) and (.), we obtain (.).
If the assumptions are [(A)(i) and (A)(iii)], note that ϕ(m) →  as m → ∞, hence∑�logm
j= ϕ/(j) = o(logm). Further, exp{λ∑�logm

j= ϕ/(j)} = o(mt) for any λ >  and t >
. Take q =  + δ, next take t >  small enough such that –( + δ/) + t( + δ/) < –. By
Lemma .(a), we have

∞∑
m=

P(Im > ε) ≤
∞∑
m=

(mε)–(+δ)E

∣∣∣∣∣
m∑
j=

V (j)(x)

∣∣∣∣∣
+δ

≤ C
∞∑
m=

m–(+δ)

[(
m exp

{


�logm∑
j=

ϕ/(j)
}

max
≤l≤m

E
∣∣V (l)(x)

∣∣)(+δ)/

+
m∑
j=

E
∣∣V (j)(x)

∣∣+δ

]

≤ C
∞∑
m=

m–(+δ)(m(+t)(+δ)/ +m
)
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≤ C
∞∑
m=

(
m–(+δ/)+t(+δ/) +m–(+δ))

< ∞.

Therefore, from the Borel-Cantelli lemma, we obtain (.).
() ρ-mixing. We also consider Im under two different assumptions: [(A)(ii) and

(A)(i)(ii)] and [(A)(i) and (A)(iii)], respectively.
Note that ρ(m) →  as m → ∞, hence

∑�logm
j= ρ/q(j) = o(logm) for q ≥ . Further,

{λ∑�logm
j= ρ/q(j)} = o(mt) for any λ >  and t > .

If the assumptions are [(A)(ii) and (A)(i)(ii)], from (.)-(.), it is known that we only
need to prove (.) for obtaining (.). Taking q > , we have q/ >  and (q – )( – d) > .
Next, take t >  small enough such that q/ – t >  and (q – )( – d) – t > . By
Lemma .(b), we have

∞∑
m=

P(Im > ε) ≤
∞∑
m=

(mε)–q
∣∣∣∣∣

m∑
j=

V (j)
 (x)

∣∣∣∣∣
q

≤ C
∞∑
m=

m–q

(
mq/ exp

{
C

�logm∑
j=

ρ
(
j

)}
max
≤j≤m

(
E
∣∣V (j)

 (x)
∣∣)q/

+m exp

{
C

�logm∑
j=

ρ/q(j)
}

max
≤j≤m

E
∣∣V (j)

 (x)
∣∣q)

≤ C
∞∑
m=

m–q(mq/+t +m+tm(q–)d)

= C
∞∑
m=

(
m–(q/–t) +m–[(q–)(–d)–t+]) <∞.

Therefore, (.) holds.
If the assumptions are [(A)(i) and (A)(iii)], take q =  + δ, next take t >  small enough

such that δ/ – t > . By Lemma .(b), we have

∞∑
m=

P(Im > ε) ≤
∞∑
m=

(mε)–(+δ)E

∣∣∣∣∣
m∑
j=

V (j)(x)

∣∣∣∣∣
+δ

≤ C
∞∑
m=

m–(+δ)

(
m(+δ)/ exp

{
C

�logm∑
j=

ρ
(
j

)}
max
≤j≤m

(
E
∣∣V (j)(x)

∣∣)(+δ)/

+m exp

{
C

�logm∑
j=

ρ/(+δ)(j)
}

max
≤j≤m

E
∣∣V (j)(x)

∣∣+δ

)

≤ C
∞∑
m=

m–(+δ)(m(+δ)/+t +m+t)

= C
∞∑
m=

(
m–(+δ/–t) +m–(+δ–t)) < ∞.

Thus, we obtain (.).
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So, we complete the proof of Theorem .. �

Proof of Theorem . Here, we use some symbols of the proof of Theorem .. From (.),
we have

sup
x∈I

∣∣ĝm,n(x) – g(x)
∣∣ ≤ sup

x∈I

∣∣∣∣∣ m
m∑
j=

V (j)(x)

∣∣∣∣∣ + sup
x∈I

( n∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x)

)
. (.)

By Lemma ., for υ > /, one gets

sup
x∈I

( n∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x)

)
=O

(
–k

)
. (.)

Note that E(x, s) satisfies the Lipschitz condition of order  on x. We have

sup
x∈I

∣∣∣∣∣ m
m∑
j=

V (j)(x)

∣∣∣∣∣ = sup
x∈I

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

Ek(x, s)ds

∣∣∣∣∣
= sup

x∈I

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

Ek(x, s)
n∑
l=

I(sl–<x≤sl )ds

∣∣∣∣∣
≤ sup

x∈I

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

n∑
l=

[
Ek(x, s) – Ek(xl, s)

]
I(sl–<x≤sl )ds

∣∣∣∣∣
+ sup

x∈I

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

n∑
l=

Ek(xl, s)I(sl–<x≤sl )ds

∣∣∣∣∣
≤ sup

x∈I

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

n∑
l=

[
Ek(x, s) – Ek(xl, s)

]
I(sl–<x≤sl )ds

∣∣∣∣∣
+ max

≤l≤n

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

Ek(xl, s)ds

∣∣∣∣∣
≤ C sup

x∈I

m

m∑
j=

n∑
i=

∣∣e(j)(xi)∣∣
∫
Ai

n∑
l=

k|x – xl|I(sl–<x≤sl )ds

+ max
≤l≤n

∣∣∣∣∣ m
m∑
j=

n∑
i=

e(j) (xi)
∫
Ai

Ek(xl, s)ds

∣∣∣∣∣
+ max

≤l≤n

∣∣∣∣∣ m
m∑
j=

n∑
i=

Ee(j) (xi)
∫
Ai

Ek(xl, s)ds

∣∣∣∣∣ + max
≤l≤n

∣∣∣∣∣ m
m∑
j=

V (j)
 (xl)

∣∣∣∣∣
=: J + J + J + J. (.)

Note that supj≥,x∈I E|e(j)(x)| < ∞, for p = , , by Lemma ., we have


m

m∑
j=

(∣∣e(j)(xi)∣∣p – E
∣∣e(j)(xi)∣∣p) → , a.s.
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Therefore,


m

m∑
j=

∣∣e(j)(xi)∣∣p < ∞, a.s. (.)

By (.), one gets

kJ = C sup
x∈I

k

m

m∑
j=

n∑
i=

∣∣e(j)(xi)∣∣
∫
Ai

n∑
l=

k|x – xl|I(sl–<x≤sl )ds

≤ C
k

n

n∑
i=

(

m

m∑
j=

∣∣e(j)(xi)∣∣
)

≤ Ck/n =

{
o() if  < c < /,
O() if c = /,

a.s.

Thus, we obtain

J = o
(
–k

)
or O

(
–k

)
, a.s. (.)

By Lemma .(ii), (.), supx∈I E|e()(xi)| < ∞ and nc =O(md), we have

kJ ≤ k max
≤l≤n


m

m∑
j=

n∑
i=

∣∣e(j)(xi)∣∣I(∣∣e(j)(xi)∣∣ >md)∫
Ai

∣∣Ek(xl, s)
∣∣ds

≤ k

md max
≤l≤n

n∑
i=

(

m

m∑
j=

∣∣e(j)(xi)∣∣
)∫

Ai

∣∣Ek(xl, s)
∣∣ds

≤ C
k

md max
≤l≤n

∫ 



∣∣Ek(xl, s)
∣∣ds≤ C

nc

md =O(), a.s.

and

kJ ≤ k max
≤l≤n


m

m∑
j=

n∑
i=

E
∣∣e(j)(xi)∣∣I(∣∣e(j)(xi)∣∣ >md)∫

Ai

∣∣Ek(xl, s)
∣∣ds

≤ k

md max
≤l≤n


m

m∑
j=

n∑
i=

E
∣∣e()(xi)∣∣

∫
Ai

∣∣Ek(xl, s)
∣∣ds

≤ C
k

md ≤ C
nc

md =O().

Therefore,

J =O
(
–k

)
a.s. and J =O

(
–k

)
. (.)

To complete the proof of the theorem, it is suffices to show that

J =O
(
–k

)
, a.s. (m → ∞), (.)

by (.)-(.) and (.)-(.).
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Here, we show (.) under ϕ-mixing and ρ-mixing, respectively.
() ϕ-mixing. Taking q > (d + c)/( – d)c, we have (d– /)q+d/c < –, (d– )q–d +

d/c < –, and (d + c)/( – d)c > . By Lemma .(a), we have

∞∑
m=

P
(
J > –kC

) ≤
∞∑
m=

n∑
l=

P

(∣∣∣∣∣ m
m∑
j=

V (j)
 (xl)

∣∣∣∣∣ > –kC

)

≤ C
∞∑
m=

n∑
l=

kq

mq E

∣∣∣∣∣
m∑
j=

V (j)
 (xl)

∣∣∣∣∣
q

≤ C
∞∑
m=

n∑
l=

kq

mq

[(
m exp

{


�logm∑
j=

ϕ/(j)
}

max
≤l≤m

E
∣∣V (l)

 (xl)
∣∣)q/

+
m∑
j=

E
∣∣V (j)

 (xl)
∣∣q]

≤ C
∞∑
m=

n∑
l=

kq

mq

(
mq/ +mm(q–)d)

≤ C
∞∑
m=

(
m(d–/)q+d/c +m(d–)q–d+d/c+) < ∞.

Thus, (.) holds by the Borel-Cantelli lemma.
() ρ-mixing. Similar to the arguments in the proof ofTheorem., {λ∑�logm

j= ρ/q(j)} =
o(mt) for any λ >  and t > . Taking q > (d+ c)/(–d)c, we have (d–/)q+d/c < – and
(d–)q–d+d/c < –.Next, take t >  small enough such that (d–)q–d+d/c+t < –.
By Lemma .(b), we have

∞∑
m=

P
(
J > –kC

) ≤
∞∑
m=

n∑
l=

P

(∣∣∣∣∣ m
m∑
j=

V (j)
 (xl)

∣∣∣∣∣ > –kC

)

≤ C
∞∑
m=

n∑
l=

kq

mq E

∣∣∣∣∣
m∑
j=

V (j)
 (xl)

∣∣∣∣∣
q

≤ C
∞∑
m=

n∑
l=

kq

mq

(
mq/ exp

{
C

�logm∑
j=

ρ
(
j

)}
max
≤j≤m

(
E
∣∣V (j)

 (xl)
∣∣)q/

+m exp

{
C

�logm∑
j=

ρ/q(j)
}

max
≤j≤m

E
∣∣V (j)

 (xl)
∣∣q)

≤ C
∞∑
m=

n∑
l=

kq

mq

(
mq/ +m+tm(q–)d)

≤ C
∞∑
m=

(
m(d–/)q+d/c +m(d–)q–d+d/c+t+) <∞.

Therefore, we also obtain (.).
So, we complete the proof of Theorem .. �
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Proof of Theorem . Denote U (j)(x) =
∑n

i=(e(j)(xi) – e(j)(x))
∫
Ai
Ek(x, s)ds. For each x ∈ I ,

we have

m/(ĝm,n(x) – g(x)
)
= m/

( n∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x)

)

+m–/
m∑
j=

n∑
i=

e(j)(xi)
∫
Ai

Ek(x, s)ds

= m/

( n∑
i=

g(xi)
∫
Ai

Ek(x, s)ds – g(x)

)

+m–/
m∑
j=

U (j)(x) +m–/
m∑
j=

e(j)(x)
∫ 


Ek(x, s)ds

=: H +H +H.

Since we have

H =O
(
m/τk

)
+O

(
m/n–γ

)
= o(),

by Lemma . and (A), it suffices to show that

H = op() (.)

and

H
d−→ N

(
,σ ). (.)

Let G = {(u, v)||xu – x| ≤ ς , |xv – x| ≤ ς ,  ≤ u, v ≤ n}, and ζ (ς ) =
∑n

u=
∫
Au

|Ek(x, s)|ds×
I(|xu – x| > ς ). Under the assumption of ϕ-mixing, denote ψ(·) = ϕ/(·); if we consider
ρ-mixing, then ψ(·) is ρ(·). By Lemma ., we have

∣∣E(
U (j)(x)U (l)(x)

)∣∣
=

∣∣∣∣∣E
( n∑

u=

(
e(j)(xu) – e(j)(x)

)∫
Au

Ek(x, s)ds
n∑
v=

(
e(l)(xv) – e(l)(x)

)∫
Av

Ek(x, s)ds

)∣∣∣∣∣
=

∣∣∣∣∑
u,v

∫
Au

Ek(x, s)ds
∫
Av

Ek(x, s)dsE
((
e(j)(xu) – e(j)(x)

)(
e(l)(xv) – e(l)(x)

))∣∣∣∣
≤

∑
(u,v)∈G

∫
Au

∣∣Ek(x, s)
∣∣ds∫

Av

∣∣Ek(x, s)
∣∣dsE∣∣(e(j)(xu) – e(j)(x)

)(
e(l)(xv) – e(l)(x)

)∣∣

+
∑

(u,v)∈Gc

∫
Au

∣∣Ek(x, s)
∣∣ds∫

Av

∣∣Ek(x, s)
∣∣dsE∣∣(e(j)(xu) – e(j)(x)

)(
e(l)(xv) – e(l)(x)

)∣∣

≤
∑

(u,v)∈G

∫
Au

∣∣Ek(x, s)
∣∣ds∫

Av

∣∣Ek(x, s)
∣∣ds ·min

(
η(ς ),Cψ

(|j – l|))

+
∑

(u,v)∈Gc

∫
Au

∣∣Ek(x, s)
∣∣ds∫

Av

∣∣Ek(x, s)
∣∣ds ·Cψ

(|j – l|)
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≤
( n∑

u=

∫
Au

∣∣Ek(x, s)
∣∣dsI(|xu – x| ≤ ς

))( n∑
v=

∫
Av

∣∣Ek(x, s)
∣∣dsI(|xv – x| ≤ ς

))

·min
(
η(ς ),Cψ

(|j – l|))
+

[( n∑
u=

∫
Au

∣∣Ek(x, s)
∣∣dsI(|xu – x| > ς

))( n∑
v=

∫
Av

∣∣Ek(x, s)
∣∣ds

)

+

( n∑
u=

∫
Au

∣∣Ek(x, s)
∣∣ds

)( n∑
v=

∫
Av

∣∣Ek(x, s)
∣∣dsI(|xv – x| > ς

))]
·Cψ

(|j – l|)

≤ Cmin
(
η(ς ),Cψ

(|j – l|)) + Cζ (ς )ψ
(|j – l|)

≤ Cη(ς )aC–aψ
(|j – l|)–a + Cζ (ς )ψ

(|j – l|).
Therefore,

EH
 ≤ m–

m∑
j=

m∑
l=

∣∣E(
U (j)(x)U (l)(x)

)∣∣

≤ Cm–
m∑
j=

m∑
l=

(
η(ς )aψ –a(|j – l|) + ζ (ς )ψ

(|j – l|))

≤ C

(
η(ς )a

∞∑
j=

ψ –a(j) + ζ (ς )
∞∑
l=

ψ(l)

)
,

which can be made arbitrarily small if we first choose ς such that η(ς ) is small, and for
this ς we choose m large enough so that n = n(m) makes ζ (ς ) arbitrarily small. Thus, we
obtain (.).
It remains to establish (.). Denote Sm = Sm(x) =

∑m
j= e(j)(x) and σ 

m = ESm. By
Lemma ., and (iv) implies (ii), for ϕ-mixing and ρ-mixing, we have


m

σ 
m ≤ C


m

(
m max

≤j≤m
E
∣∣e(j)(x)∣∣) ≤ C. (.)

For anym ≥ , from (.) and the dominated convergence theorem,


m

σ 
m =


m

m∑
j=

E
(
e(j)(x)

) + 
m

∑
≤i<j≤m

E
(
e(i)(x)e(j)(x)

)

= E
(
e()(x)

) + 
m–∑
l=

(
 –

l
m

)
E
(
e()(x)e(l)(x)

)

→ E
(
e()(x)

) + 
∞∑
l=

E
(
e()(x)e(l)(x)

)
< ∞.

Hence, σ  = E(e()(x)) + 
∑∞

l= E(e()(x)e(l)(x)) converges absolutely for ϕ-mixing and ρ-
mixing, that is,


m

σ 
m → σ . (.)
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We easily obtain

H =
∑m

j= e(j)(x)
σm

· σm√
m

·
∫ 


Ek(x, s)ds

d−→ N
(
,σ ),

since σ –
m

∑m
j= e(j)(x)

d−→ N(, ) by Lemma ., m–/σm → σ >  by (.), and∫ 
 Ek(x, s)ds→  by Lemma ..
Thus, we complete the proof of Theorem .. �

4 Conclusion and discussion
The paper studies a nonparametric regression model with replicated observations under
weakly dependent processes by wavelet procedures. For exhibiting dependence among
the units, we assume that {e(j)(·), j ≥ } is a ϕ-mixing or ρ-mixing process, and avoid as
far as possible any assumptions on the error’s structure among {e(j)(x), . . . , e(j)(xn)} for
each j (j = , . . . ,m). Under suitable conditions, we obtain expansions for the bias and the
variance of wavelet estimator, prove the moment consistency, the strong consistency, the
strong convergence rate of it, and establish the asymptotic normality of wavelet estima-
tor. For the general nonparametric model, consistency results of linear wavelet estimator
can be derived from general results on regression estimators in the case of dependent
errors. But our results cannot be derived directly from general results on regression es-
timators because the nonparametric regression model with repeated measurements we
considered has complex dependent error’s structure. Bootstrap and blockwise are useful
techniques of resampling, which can preserve the dependent properties of the data by ap-
propriately choosing blocks of data. They have been sufficiently investigated forweakly de-
pendent data by many papers, for example, Bühlman and Künsch [], Yuichi [], Lahiri
[], Lin and Zhang [, ] and Lin et al. []. In the future, we may try bootstrap and
blockwise methods into our model. Since linear wavelet is not adaptive, nonlinear wavelet
and design-adapted wavelet have also received considerable attention recently; see, for
example, Li [], Liang and Uña-Álvarez [] and Chesneau [] for (conditional) den-
sity estimator; Li and Xiao [] and Uña-Álvarez et al. [] for nonparametric models;
and Delouille and Sachs [] for nonlinear autoregressive models, and so on. At present,
our paper mainly concentrates on linear wavelet estimator in nonparametric regression
model with repeated measurements under weakly dependent processes. Although it is
easy to construct nonlinear wavelet estimator in our model, it is very difficult to establish
asymptotic theory of nonlinear wavelet estimator and to prove it since the structure of
our model is complex. It will be a challenging work. Interesting work for further research
includes nonlinear wavelet and design-adapted wavelet estimations for our model.
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