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Particle Filter for Fault Diagnosis and Robust
Navigation of Underwater Robot

Bo Zhao, Roger Skjetne, Member, IEEE, Mogens Blanke, Senior Member, IEEE, Fredrik Dukan

Abstract—A particle filter based robust navigation with fault
diagnosis is designed for an underwater robot, where 10 failure
modes of sensors and thrusters are considered. The nominal
underwater robot and its anomaly are described by a switching-
mode hidden Markov model. By extensively running a particle
filter on the model, the fault diagnosis and robust navigation are
achieved. Closed-loop full-scale experimental results show that
the proposed method is robust, can diagnose faults effectively, and
can provide good state estimation even in cases where multiple
faults occur. Comparing with other methods, the proposed
method can diagnose all faults within a single structure, it can
diagnose simultaneous faults, and it is easily implemented.

Index Terms—Fault diagnosis, fault tolerance, particle filter,
switch-mode hidden Markov model, ROV, underwater navigation.

I. INTRODUCTION

DUE TO the increasing requirements on safety, reliability,
and availability, fault tolerant control systems design has

drawn significant attention. This methodology aims to prevent
that a minor fault in a component leads to loss of system
functionality. Since fail-operational architectures are costly, a
fault tolerant architecture is a natural choice for system design
[1]. Towards realization of a fault tolerant system, the first
step is to diagnose faults, where the term fault diagnosis (FD)
includes fault detection, isolation, and estimation.

Model-based analytical FD is discussed in detail in [1], [2]
and [3]. Residual signals in FD are functions of the inputs and
measurements of the system and a fault is detected whenever
the residual exceeds a pre-designed threshold. This method is
practical and has many applications, such as a detailed fault
tolerant design for ship propulsion in [4] and fault tolerant
design for station-keeping in [5].

Classical techniques in combined state and parameter esti-
mation include the Kalman filter and the Extended Kalman
Filter; see [6] for linear systems, and extended to a class
of nonlinear systems in [7]. FD based on combined state
and parameter estimation were discussed in [8]. Observers
for nonlinear systems in using estimated faults as states and
sliding mode techniques were suggested in [9]. An unscented
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Kalman filter (UKF)-based method was developed in [10] to
detect and isolate both temperature sensor and valve faults.

Particle filters (PFs) [11], [12] inherited from the Bayesian
estimation and the Monte Carlo method, can also be used
for this purpose. In [13] the authors developed a method
that combined state estimation by a PF in a multiple model
environment and likelihood ratio approach to detect and isolate
faults in stochastic nonlinear systems.

Another approach using PFs for fault diagnosis was pre-
sented in [14], suggesting a hidden Markov model (HMM)
with variable transition probabilities that were estimated on-
line from data and applied to multi-sensor fusion for land
vehicle positioning. The underwater vehicle problem is quite
different. Artifacts in sensor signals, such as outliers and
temporal dropouts of signals occur frequently and are essential
to consider to obtain robust navigation. Another application
of using a PF in fault detection is [15]. In this paper, the
fault detection problem for a space rover was studied, and the
so-called risk sensitive PF and variable resolution PF were
reported. PFs have also been used for failure prognosis; see
[16] that dealt with crack growth prediction.

This paper employs a switching-mode HMM as system
description. Failure modes are included in the model, and a
method is suggested using a PF to solve the FD problem on
this model, hereafter called a FDPF design. The computational
burden of the approach by [14] is eased significantly by
formulating a model with prior and fixed probabilities of
failure modes. The paper discusses how to design for a
tradeoff between false alarm and detection probabilities, and
it describes how this is implemented. The resulting algorithm
is shown to be compact, easy to implement, and resulting in
moderate computational complexity that makes the algorithm
run with ease in real-time. Having introduced the PF design,
the paper focus on the realization of a robust FDPF design
for a remotely operated underwater vehicle (ROV). A proto-
type implementation is described together with results from
experiments in full-scale at sea where the algorithm was used
in closed loop control of the ROV Minerva belonging to the
Applied Underwater Robotics Lab (AUR-Lab) at NTNU.

ROVs are widely used in various safety critical operations,
where accurate positioning and control of the ROVs are
required. It is necessary to realize high-precision and fault
tolerant ROV navigation. Applications of ROV integrated
navigation are reported in [17], [18]. Sensor and actuator faults
are encountered frequently in practice [19]; hence, fault detec-
tion and fault handling are essential for ROV reliability. For
instance, the update intervals of ROV position measurement
are relatively long and uneven. This phenomenon combined
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Fig. 1. ROV Minerva with kinematics notations. There are one lateral thruster,
two longitudinal thrusters and two vertical thrusters. Photo: Johanna Jarnegren.

TABLE I
NOTATIONS FOR ROV MODEL.

DOF Force
and
moment

Linear
and
angular
velocities

Positions
and
Euler
angles

motion in xb direction (surge) X u N
motion in yb direction (sway) Y v E
motion in zb direction (heave) Z w D

rotation about xb axis (roll) K p φ
rotation about yb axis (pitch) M q θ
rotation about zb axis (yaw) N r ψ

with frequent outliers makes the navigation problem more
complex. Detection of actuator faults and faults in navigation
sensors are considered as a combined problem in this paper,
and experimental data are used to assess the occurrence of
different fault types. Actuator reconfiguration possibilities are
rather limited on the vessel considered and are not within the
scope of this brief paper.

The paper is organized as follows: Section II describes the
model of the ROV used in the experiment and its failure
modes. Section III, presents the switched Hidden Markov
Model, the Particle Filter and the navigation system design.
Results from ROV sea trials are presented in Section IV.

II. PROBLEM DESCRIPTION

A. ROV and ROV control system

The ROV Minerva [18], shown in Figure 1, is a SUB-
fighter 7500 ROV. It is powered from and communicates with a
surface supply vessel through a 600m umbilical cable. Minerva
is equipped with five thrusters and various navigation sensors.
A hydroacoustic positioning reference (HPR) system, is used
to measure the position of the ROV relative to a transducer on
the surface vessel. A Doppler velocity log (DVL) is installed
to measure the ROV velocity. An inertial measurement unit
(IMU) provides turn rate and heading measurements. Depth is
provided by the HPR and also by a pressure gauge.

1) Kinematics: Adopting the notations of [20], the kinemat-
ics is described by the degrees-of-freedom (DOFs) in Table I.
The ROV is designed to be passive and stable in roll and pitch,
the dynamics in these DOFs are ignored. The kinematic model
of the ROV is then given by the 4-DOF model,

η̇ = R (ψ)ν, (1)

where η = [N EDψ]> is the ROV position and heading in
the NED (North-East-Down) reference frame, ν = [u v w r]>
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Fig. 2. (a) A segment of the HPR measurement with the measurement index
along the horizontal axis. (b) The histogram of the update intervals of the
HPR measurement.

is the body-fixed velocity and yaw rate vector, and R (ψ) is
the rotation matrix, which transforms a vector in the ROV
body frame to NED frame coordinates.

2) Kinetics: Following [20] and [18], the ROV dynamics
is,

Mν̇ = −C (ν)ν −D (νr)νr − g (η) + τ +wν (2)
ν̇c = −T−1

c νc +wc, (3)

where M is the combined rigid body and added mass matrix,
C (ν)ν is the Coriolis and centripetal force, D (νr)νr is
the nonlinear and linear hydrodynamic damping, g (η) is the
restoring force, τ = [X Y Z N ]

> is the control force and
moment, and wν is process noise. All the matrices are in
R4×4, and vectors are in R4. Moreover, νr = ν − νc is the
relative velocity vector with respect to the current. The current
velocity νc can be modeled as (3), where T c is a diagonal
matrix, and wc is process noise.

B. Sensor modeling and anomaly analysis

1) Hydroacoustic Position Reference (HPR) system: The
HPR system determines the position of an underwater target.
The HPR measurement is a vector with North and East
positions 1 and follows a multivariate Gaussian distribution,

p
(
pA,k |ηk

)
= N

([
I2×2 02×2

]
ηk,ΣA,k

)
, (4)

where N denotes the Gaussian distribution function and ΣA,k

is the covariance of the measurement noise.
When the ROV dives down to deeper water, the HPR

update rate becomes nonuniform and lower than nominal. This
phenomenon is named HPR dropout and is given the symbol
∆HPR,1. In the HPR data logs, as shown in Figure 2, the
HPR update intervals were uneven and larger than 1 seconds
in general. This is much lower than the sampling time of the
control system. The HPR dropout is modeled as

p
(
pA,k |ηk

)
= N

(
[0 0]>, σ2

A,dI
)
, (5)

1The pressure gauge depth sensor gives more reliable measurements than
the HPR measurement in depth, so the depth component in the HPR
measurement was not used.
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where σA,d is assigned to a very large positive number
representing that the current measurement is noninformative.
Figure 2 also indicates that the HPR measurement frequently
suffers from outliers, which is given the symbol ∆HPR,2.

The outliers are seen as samples from

p
(
pA,k |ηk

)
= N

([
I2×2 02×2

]
ηk, σ

2
A,oI

)
, (6)

where σ2
A,oI is the covariance of the distribution of the

outliers, conceptually chosen as
∥∥σ2

A,oI
∥∥� ‖ΣA‖.

2) Doppler Velocity Log (DVL): The DVL is used to
measure the velocity of the ROV in 3D space with respect
to sea bottom. We used only the two horizontal components
in its measurement. The DVL measurement is transformed into
the ROV body frame according to

vD = RROV
DVL

(
vDVL

D + rbROV
DVL

)
, (7)

where vDVL
D is the velocity measurement in the DVL instru-

ment frame, RROV
DVL is the rotation matrix from the instrument

frame to the body frame, bROV
DVL is the lever arm between the

two frames expressed in body frame, and vD is the resulting
ROV velocity measurement in the body frame.

The DVL measurement is simply expressed as vD =
[uD vD]>. Assuming the DVL measurement noise in each
direction is independently identically normally distributed, the
resulting DVL measurement vD,k is

p (vD,k |νk ) = N
([
I2×2 02×2

]
νk,σ

2
DI
)
. (8)

The DVL dropout problem, which is given the symbol
∆DVL,1, happens when the DVL looses sea bottom tracking.
It reports a sentinel max velocity that indicates a lost velocity
measurement. The DVL dropout is

p (vD,k |νk ) = N
(
[0 0]>,σ2

D,dI
)
, (9)

where σ2
D,d is a large positive number. The DVL measurement

may suffer from a bias. For instance, an alignment error in the
instrument frame can cause a bearing and offset error of the
measured velocity. This failure is given the symbol ∆DVL,2.

The size of this error is unknown and time-varying, and a
1st-order Markov process is used to model DVL bias,

ḃDVL = −T−1
DVLbDVL +wDVL, (10)

where bDVL ∈ R2 is the bias, TDVL is a diagonal time
constant matrix, and wDVL ∈ R2 is the driving noise. It
follows that vD is biased from the ROV velocity according
to

p (vD,k |νk, bDVL ) = N
([
I2×2 02×2

]
νk + bDVL,σ

2
DI
)
.

(11)
3) IMU and depth sensors: The ROV is also equipped with

an IMU as heading sensor and a depth sensor, such that

ψM,k =
[
0 0 0 1

]
ηk, (12)

DP,k =
[
0 0 1 0

]
ηk. (13)

C. Thruster control and thruster faults

1) Thruster control: The Minerva ROV has five thrusters,
lateral (l), vertical port (vp), vertical starboard (vs), longi-
tudinal port (p), and longitudinal starboard (s). The thruster
control, described in [18], models the achieved thrust by

τ = TKu (14)

where T ∈ R4×5 is a thrust allocation matrix that reflects
thruster position and orientation, K ∈ R5×5 is a diagonal gain
matrix, and u ∈ R5 is the thrust rotational speed command
from the controller. Since the thruster speed control is open-
loop due to lacking rotational speed sensors, an unknown error
between the commanded and actual speed of each thruster
could be present. We categorize the thruster anomalies into
the following failure modes,

1) The actual rotational speed is slightly lower than com-
manded. Such a fault is typically negligible, as it is
handled by integral action.

2) The actual speed is much lower than the commanded
value. We assign it mode ∆THR,t,1 where t ∈
{l, vp, vs,p, s} is the thruster index.

3) The actual speed is zero, e.g., due to blocking the
propeller. We name this failure mode “zero thrust” and
assign it mode ∆THR,t,2.

We augment the state space with the vector α =[
al avp avs ap as

]
∈ [0, 1]

5 to model the thrust loss,
whose entries represent the ratio between the desired thrust
and the actual thrust for the 5 thrusters. It follows for the
fault-free case that all entries of αk are 1. Inserting this into
the thruster model (14) yields,

τ = diag {α}TKu. (15)

D. Resulting ROV model

Collecting the ROV kinematics (1), kinetics (2), current (3),
the measurements (4), (8), (12) (13), and thruster control (14)
(15), we obtain the ROV model as

η̇ =R (ψ)ν (16a)
Mν̇ =−C (ν)ν −D (νr)νr − g (η) (16b)

+ diag {α}TKu+wν (16c)

ν̇c =− T−1
c νc +wc, (16d)

ḃDVL =− T−1
bDVL

bDVL +wbDVL (16e)

p (at,k) =

{
ρ(at,k−1) ,[ ∆THR,t,1 ∆THR,t,2 ]=[ 0 0 ]

U(0,1) ,[ ∆THR,t,1 ∆THR,t,2 ]=[ 1 0 ].
ρ(at,k) ,[ ∆THR,t,1 ∆THR,t,2 ]=[ 0 1 ]

(16f)

p (pA |η ) =

{
N ([I 0]η,ΣA) ,[ ∆HPR,1 ∆HPR,2 ]=[ 0 0 ]

N ([0 0]η,σ2
A,dI) ,[ ∆HPR,1 ∆HPR,2 ]=[ 1 0 ]

N ([I 0]η,σ2
A,oI) ,[ ∆HPR,1 ∆HPR,2 ]=[ 0 1 ]

(16g)

p (vD |ν ) =
{
N ([I 0]ν+bDVL,σ

2
DI) ,∆DVL,1=0

N ([0 0]η,σ2
D,dI) ,∆DVL,1=1

(16h)

where ρ(·) is the Dirac delta function.
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III. PARTICLE FILTER BASED ROV ROBUST NAVIGATION

A FDPF-based ROV robust navigation system is outlined
in this section, introducing first some elements of the theory
of fault diagnosis of switching-mode hodden Markov chain
models, and then focusing on the particular implementation
for navigation filter design, which has some novel elements.

A. A generalized model for the system with possible faults

We describe a system with possible failure modes by a
switching-mode HMM. This is a combined model of a 1st-
order Markov chain representing the mode transitions, and a
bank of HMMs representing the fault-free system model and
the models associated with different failure modes, that is,

Pr
(
∆k+1 = δj

∣∣∆k = δi
)

= pij,k (17a)
Xk+1 |(Xk = xk,uk,∆k = δk) ∼ p (xk+1 |xk,uk, δk )

= fk (xk,uk, δk) (17b)
Y k |(Xk = xk,uk,∆k = δk) ∼ p (yk |xk,uk, δk )

= hk (xk,uk, δk) . (17c)

Equation (17a) is the mode transition Markov chain to
transfer the system between system modes, where ∆ =

[∆f(1)

∆f(2) · · · ∆f(Nm)

]> is a discrete random variable
defining the system mode. The components ∆f(p) ∈ {0, 1}
(p ∈ {1, . . . , Nm}) denote whether the fault “f (p)” occurs
in the system, Equation (17b) is the process equation, and
X ∈ RNx is the state vector. Its realization is x.
u ∈ RNu is the input, p (·) is a probability density function

(PDF) on RNx , and fk (·) : RNx ×RNu ×{0, 1}Nm 7→ R+ is
the state transition mapping from the states, input, and system
mode at time k to the PDF of the states for time k+1. Equation
(17c) is called the measurement equation, where Y ∈ RNy is
a random vector representing the measurement and y is its
realization. p (·) is a PDF on RNy and hk (·) : RNx ×RNu ×
{0, 1}Nm 7→ R+ is the measurement mapping, which maps
the states, input, and system mode at current time to the PDF
of the measurement.

Define an augmented system state vector to consist of the
system state and system mode by2ξk = [δ>k x

>
k ]>. Then the

system can be written as

p
(
ξk+1 |ξk,uk

)
= Pr

(
∆k+1 = δi

∣∣∆k = δj
)
·

p (xk+1 |ξk,uk )

= pji,k · fk (ξk,uk) (18)
p (yk |ξk,uk ) = hk (ξk,uk) . (19)

B. The PF algorithm of the switching-mode HMM

Solving the FD problem in (18) and (19) includes to
estimate the system mode sequence δ. Assuming for instance
the sequence δ has already been estimated and that ∆f(p)

i is
1 for i = k− l, · · · , k, then it can be concluded that the fault

2From now on we do not distinguish a random variable from its realization.
Both of them will be denoted by lowercase letters.

1
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Fig. 3. One cycle of the PF, divided into 3 steps by chain lines. These
steps corresponding to the inherit, time update and measurement update,
respectively. In the inherit step of this figure, the particles are conceptually
ordered 1–Ns from left to right, for the purpose to show the replacement of
the particles in the time update steps.

“f (p)” happened at time k− l. The advantage of this approach
is that the state estimation problem and the FD problem are
solved at the same time within a single structure. We employ
a PF to solve this estimation problem. The proposed PF
algorithm, shown in Figure 3, is adapted from the sampling
importance resample PF (SIR-PF) in [11]. SIR-PF is employed
in this work because of its ease of implementation. However
other PF algorithms could also be employed.

In the following, x(i) and δ(i) denote the state vector and
system mode of the ith particle, w(i) is the corresponding
weight, and Ns is the number of particles.

1) Inheriting from the last cycle: The PF works in a
recursive manner. At time k it inherits the posteriori estimation
p(ξk−1|y1:k−1). The posterior density should be understood
as a combination of 2Nm scaled distributions subjected to dif-
ferent system modes. For instance, the posteriori distribution
of xk−1 in mode δm

(q)

is,

p
(
xk−1|∆k−1 = δm

(q)

,y1:k−1

)
(20)

≈

∑Ns

i=1 w
(i)
k−1 · ρ

(
xk−1 − x(i)

k−1

)
· ρ
δm

(q)
,δ

(i)
k−1∑2Nm−1

q=0 w
(i)
k−1 · ρδm(q)

,δ
(i)
k−1

,

where ρ (·) again is the Dirac delta function, ρs,t is the
Kronecker delta function, and the denominator in (20) should
be non-zero as long as there is at least one particle in this
mode.
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2) Time update: The time update process is to obtain the a
priori estimation of the states as q

(
ξk
∣∣ξ0:k−1,y1:k

)
. In the PF

context, this is done by drawing samples from an importance
density. The SIR-PF uses the most convenient distribution
p
(
ξk|ξ

(i)
k−1,uk

)
as the importance density. We determine the

new system state by drawing samples from

p
(
ξk|ξ

(i)
k−1,uk

)
= p

(
xk
∣∣[x(i)

k−1, δ
(i)
k−1]>,uk

)
· Pr

(
δk|δ(i)

k−1

)
. (21)

At the end of the time update process, the new positions ξ(i)
k

of the particles are obtained.
3) Measurement update: At this step the weights of

the particles are updated according to the observation yk.
Given the current observation yk and the importance density
p
(
ξk|ξ

(i)
k−1

)
, this yields

w
(i)
k ∝ w

(i)
k−1 · p

(
yk|ξ

(i)
k ,uk

)
, (22)

where p
(
yk|ξ

(i)
k ,uk

)
is defined by (19).

4) Resampling: To counteract the degeneracy problem,
resampling is applied following [21].

C. Fault diagnosis using a particle filter

It is concluded that the system is in mode δm
(q)

when ∆k =

δm
(q)

, termed the significant mode, has the largest marginal
probability mass. This is given by

max
i

Pr
(
∆k = δm

(i)

|y1:k

)
= q, i ∈

{
0, . . . , 2Nm − 1

}
,

where the probability mass is obtained by marginalizing the
distribution p (ξk|y1:k), according to

Pr
(
∆k = δm

(q)

|y1:k

)
≈
∑Ns

i=1
w

(j)
k ρ

δm
(q)
,δ

(i)
k

. (23)

When the significant mode is other than fault-free, a fault is
detected. The particular failure is determined by the estimated
system mode, meaning that the fault is isolated, and its size
is obtained from the PF state estimate.

An alternative method is motivated by the CUSUM algo-
rithm [1]. The time cumulation of the marginal masses of the
modes are used as indicators, and the detection of faults is
done by assessing the behavior of these indicators. This is
applied to diagnose the thruster fault in Section IV-F.

D. ROV robust navigation system

The heave DOF can be controlled and observed separately
from other DOFs, since they are not coupled [20]. In addition,
the corresponding sensor are reliable, so they are not included
in our robust navigation design. Consequently, the failure
modes regarding the two vertical thrusters are not considered
in this design for simplicity.

Since the failure modes are induced by different mecha-
nisms, it is reasonable to assume that their occurrence are
independent from each other. Hence, the mode transition
Markov chain can also be designed independently for each
equipment and then assembled. Table II shows the mode
transition probabilities for the HPR failure modes, using

Pr
(
[ ∆HPR,1

k+1 ∆HPR,2
k+1 ]> = δ(n)

∣∣[ ∆HPR,1
k ∆HPR,2

k ]> = δ(m)
)

TABLE II
THE MARKOV CHAIN FOR THE TRANSITION OF MODES ∆HPR,1 AND

∆HPR,2 .

δ(m)

∆HPR,1 0 1 0

pδ(m)δ(n) ∆HPR,2 0 0 1

∆HPR,1 ∆HPR,2 - - - -
0 0 - 0.75 0.75 0.75

δ(n) 1 0 - N/A N/A N/A

0 1 - 0.25 0.25 0.25

TABLE III
THE MARKOV CHAIN FOR THE TRANSITION OF MODES ∆THR,t,1 AND

∆THR,t,2 , t ∈ {l, p, s}.

δ(m)

∆THR,t,1 0 1 0

pδ(m)δ(n) ∆THR,t,2 0 0 1

∆THR,t,1 ∆THR,t,2 - - - -
0 0 - 0.4 0.4 0.4

δ(n) 1 0 - 0.4 0.4 0.4

0 1 - 0.2 0.2 0.2

= pδ(m)δ(n) . (24)

The transition probabilities for
[
∆HPR,1 ∆HPR,2

]
= [1 0] is

not considered in this Markov chain since the system adopts
the HPR dropout mode whenever the HPR measurement is not
available in the last sampling interval.

The DVL dropout is handled as the HPR dropout, that is,
the DVL measurement adopts (9) whenever its measurement
is not available. The DVL bias, on the other hand, has been
modeled as an additional state of the system. Hence, there is
no probabilistic mode switching for the DVL.

The mode transition probabilities for the thruster modes are
given in Table III, using

Pr
(
[ ∆THR,1

k+1 ∆THR,2
k+1 ]> = δ(n)

∣∣[ ∆THR,1
k ∆THR,2

k ]> = δ(m)
)

= pδ(m)δ(n) . (25)

We then construct the system mode vector ∆ =
[ ∆HPR,1 ∆HPR,2 ∆DVL,1 ∆THR,1 ∆THR,2 ]>. The mode transition
Markov chain subjects to the combination of (24) and (25) is

Pr
(
∆k+1 = δj

∣∣∆k+1 = δi
)

= pij . (26)

The total switching-mode HMM for the ROV is obtained by
combining (26) and the ROV model (16).

There are 3 modes for the HPR, 3 modes for the DVL, and
we consider the 3 modes for the 3 thrusters in the horizontal
plane, resulting in 3× 3× 33 = 243 modes for the PF.

IV. FULL-SCALE TEST CAMPAIGN

The full-scale test was performed on October 17-18, 2012,
in the Trondheimsfjord, Norway. The test was focused on
the performance of the proposed FDPF-based navigation filter
in a real environment, real sensor measurements, and its
cooperation with the ROV control system. Besides the FDPF-
based navigation filter, a Kalman-based navigation filter [18]
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PF based 
observer

Controller
Guidance

system

setpoint

ˆ ˆ,

,d d

,A D

Thruster faults
u

Sensor
faults

Fig. 4. Block diagram of the control system. Note that functionality has
been implemented to trigger the thruster and sensors failure modes to make
the failure testing more predictable and practical.

TABLE IV
PARTICLE FILTER PARAMETERS IN THE EXPERIMENT

Parameter Value
notation unit
wv [m/s] ∼ N (0, 0.002I)

T c [s] 0.01I

wc [m/s] ∼ N (0, 0.01I)

T bDVL
[s] 0.01I

wbDVL
[m/s] ∼ N (0, 0.01I)

σD

[
m2/s2

]
(0.02)2

ΣA

[
m2

]
(0.2I)2

ΣA,o

[
m2

]
(3I)2

TABLE V
NOTATIONS IN THE EXPERIMENTAL RESULTS FIGURES

Notation Meaning
N, E North and East position.
u, v Surge and sway velocity.

subscript �e FDPF estimate.
subscript �d Desired position/velocity from the guidance system.
subscript �o Measurement without triggered failure modes.

subscript �off Estimation from the sector heading KF in open-loop .
1σ̄ 1σ upper bound of the FDPF estimate.
1σ 1σ lower bound of the FDPF estimate.

was running in parallel and open-loop for comparison. Func-
tionality has been implemented to manually set the relevant
thruster and sensor failure modes according to Figure 4 and:

• HPR outliers: A random number taken from a 2-
dimensional multivariate normal distribution with zero
mean and tunable variance is added to the current HPR
measurement.

• HPR dropout is triggered by blocking the measurement.
• DVL dropout is triggered by blocking the measurement.
• DVL bias: A tunable constant bias is added to the DVL

measurement.
• Loss of thrust: The thruster failure modes are activated

by setting the gain αk.

In the test trial 200 particles were used in the PF. The
mode transition Markov chain probabilities are shown in Table
II and Table III. Other parameters were set according to
Table IV. Figures 5 to 9 show results from the ROV sea
trial. The annotation refers to Table V. In the design, system
noise is exaggerated to attenuate effects of uncertainties in
hydrodynamic parameters that constitute the C(ν) and D(νr)
terms in the kinetics. This is common practice when designing
observers for marine systems. Uncertainties are also attenuated
by the measurement update in the PF.

TABLE VI
HPR OUTLIERS DETECTION

dropout time before the outlier [s]
0.9 1.8 2.7 3.6 4.5 7.2 9.0

0.4 X3 X X X X X X
0.6 © X X X X X X
1.0 © © X X X X X

outliers 1.6 © © © X X X X
size [m] 2.4 © © © © X X X

2.8 © © © © © X X
3.6 © © © © © © X
4.0 © © © © © © ©

A. Basic navigation

The results of using the FDPF for state estimation of the
ROV are shown in Figure 5a. In this test the ROV was
controlled to move along a triangular path with heading along
the path. It is seen that the HPR measurement suffers from
outliers and low update rate. The state estimate by the FDPF
is generally good, and this verifies its success as a state
observer exposed to a nonuniform measurement update rate
and measurement outliers. The state estimation performance
of the PF was close to the Kalman filter, but a small high-
frequency oscillation was observed due to tuning.

B. Outliers

Outliers mislead the state estimation, for instance the esti-
mation of the offline observer in Figure 5b jumps after some
outliers. Therefore, they have to be detected. The principle of
detecting outliers embedded in the PF is just as the following
hypothesis testing. Define

{
H0,k : HPR measurement at time k is fault free;

H1,k : HPR measurement at time k is an outlier.

It can be derived

Pr
(
H0,k|pA,k, η̂k

)
Pr
(
H1,k|pA,k, η̂k

) =
Pr
(
pA,k|H0,k, η̂k

)
Pr (H0,k)

Pr
(
pA,k|H1,k, η̂k

)
Pr (H1,k)

, (27)

where η̂k is the prior estimation, Pr (H0,k) and Pr (H1,k) are
the transition probabilities defined in the Markov chain, and
Pr
(
pA,k|H0,k, η̂k

)
and Pr

(
pA,k|H1,k, η̂k

)
are determined

by the measurement relation (16g). In the PF the same process
is implicitly done by the importance sampling (21) and the
measurement update (22). This hypothesis testing is influenced
by the variance of the prior estimation. Table VI shows the
detectability of an outlier based on the size of the outlier
and the dropout time before the outlier measurement is made.
Naturally it is more difficult to detect an outlier the longer the
dropout time is, and outliers with large amplitude are more
easily detected.

To test outlier detection, outliers of known amplitudes were
injected during an position-keeping test. The statistics of the
outlier detection is presented in Figure 5c, which coincides
compares with Table VI.

3“X” means a outlier is determined to be fault-free, and “©” means a
outlier is determined to be outlier.
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Fig. 5. (a) Measurements and state estimation when the ROV was moving along a triangular path. (b) Measurements and state estimation using HPR even
during dropout. (c) State estimation after detection and removal of outliers.
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Fig. 6. (a) Measurements and state estimation subject to HPR dropouts. (b) Measurements and state estimation subject to DVL dropout. (c) Measurements
and state estimation subject to DVL bias.

C. HPR dropout

Figure 6a shows the performance of the FDPF when the
HPR drops out for about 30sec while the ROV was moving
straight in an Eastern direction. As discussed earlier, the HPR
dropout does not have to be diagnosed since it is handled
within the nonuniform sampling interval mechanism, even for
such a long interval, all the while the FDPF outputs a steady
stream of position estimates. In state-of-the-art observers this
is typically achieved by entering a “dead-reckoning” mode
[22], such that the position is estimated open-loop based on
the thrust force and, possibly, velocity measurement. However,
such an observer may fail to estimate the ROV position
correctly when then HPR drops out for too long time, as seen
in the large deviation between the ROV position and the offline
filter estimation in Figure 6a. When the position measurement
drops out here, the variance of the estimation cannot be

reduced by new position information and the uncertainty of
the estimation grows due to system noise. This is observed
by the increasing distance between the upper and lower 1σ
bounds. The estimated position during the dropout is shown
to be close to the original fault-free measurement, and this
confirms the good “dead-reckoning” capability of the FDPF.

D. DVL dropout

When the DVL drops out, the state estimation is based on
the thrust force command and the HPR measurement. The
performance of the FDPF is for this case presented in Figure
6b, showing that the estimated velocity is satisfactorily close
to the original fault-free measured velocity during the DVL
dropout. Similar to the HPR dropout case, the variance of
the velocity estimation increases during the DVL dropout.
However, this increase only lasts for about 3 seconds until
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TABLE VII
ANALYSIS OF THRUSTER FAULT DETECTION RESULT

Thruster mode Percentage of estimated mode
∆THR,0 ∆THR,1 ∆THR,2

∆THR,0 90.1% 5.5% 4.4%

∆THR,1 not enough samples

∆THR,2 77.2% 11.2% 11.6%
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Fig. 7. Probabilities of detection PD and false alarm PF versus value of
threshold. The difference PD − PF is an indicator for the tradeoff between
PD and PF

it settles at a stationary value. This can be explained by the
Bayesian properties of the PF: The particles with estimated
velocity that are significantly different from the actual velocity
will not be supported by the observations since these will also
yield a large difference between the estimated position and the
measured position. This is an information back propagation
feature of PFs.

E. DVL bias

In the sea trial, a DVL bias was injected in the ROV surge
direction while the ROV was in position-keeping operation.
The bias was first increased slowly in steps before decreased
back to 0. The corresponding experimental responses are
shown in Figure 6c. The bias estimate is close to the value of
the manually triggered fault, especially if taking the variances
of the DVL measurement noise and the system noise into
account. This indicates that the DVL bias is well diagnosed
by the algorithm.

F. Insufficient thrust and zero thrust

The reduced thrust failure mode was tested by decreasing
the thrust from the two surge-directed thrusters, as shown in
the third graph in Fig. 9a, in such a way as to avoid spin of the
ROV. The KF estimates rapidly diverged from the true state
when the fault was triggered. In contrast, the FDPF provides
good state estimates during presence of these failures.

When the thrust failure is present, the FDPF shows more
frequent confirmation of zero thrust and insufficient thrust
modes than in fault-free conditions. Table VII shows the
thruster mode and estimated thruster mode during the period
in Figure 9a, where the thruster modes are referring to the two
thrusters in the surge direction.

Thus, we obtain the probabilities Pr{δ̂k = ∆THR,i|δk =
∆THR,j}, (i, j ∈ {0, 1, 2}). Defining two statistics Di

k =∑k
j=k−n ρ(δ̂j ,∆

THR,i) (i = 1, 2) as the time cumulations
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Fig. 8. Measurements and state estimate when injecting thruster faults.

of the estimated system modes, where n is a moving window
length, we can calculate the probabilities of detection P{Di

k >
h|{δk−n, · · · , δk}}, where h is a threshold to be decided by
examining the false-alarm-rate and time-to-detection. As an
example, Figure 7 shows the probability of detection and false
alarm against the threshold when the window size is 100
(which is 15sec). This suggests to use the thresholds 12 for
∆THR,1 and 10 for ∆THR,2 to restrain the false alarms. To
this end, the fourth graph in Figure 9a shows the D1

k, D2
k

with moving window size 100, and the threshold. The statistic
D1
k exceeds the corresponding threshold in 16sec after the

fault happens. Figure 8 shows the result when applying this
method and thresholds to another set of experiments, where a
thruster fault was injected. The result validates the proposed
diagnosis method where the two statistics helps to make the
fault detection robust to model uncertainty.

G. Multiple failure modes

Two combinations of simultaneous failures were tested. Fig.
9b shows the state estimation for a DVL drop-out during a
HPR dropout. At the end of the 30sec HPR dropout, the po-
sition estimate has deviated about 1m from the measurement,
while the velocity estimate is intact.

The other multiple failure mode test was assessing the
system response to HPR outliers during a DVL dropout period,
and the results are shown in Figure 9c. When HPR outliers
occur during a DVL dropout, the variance of the position
estimate becomes large, and this makes detection of outliers
increasingly difficult.

The position and velocity estimation is again good. In this
case one should also notice that the variance of the velocity
estimation did not increase as much as in the previous multiple
failure case (but more than the fault-free case) since the
information from the HPR is back propagated to the velocity
estimation through the system model.
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Fig. 9. (a) Measurements and state estimate when thruster faults are injected. (b) Measurements and state estimate subject to HPR dropout and DVL dropout.
(c) Measurements and state estimate subjected to HPR outliers and DVL dropout.

V. CONCLUSION

In this paper, we have proposed a PF-based algorithm for
fault diagnosis (FDPF) built on a switching-mode hidden
Markov model. The algorithm was applied to robustify the
navigation of an ROV, where the navigation sensors and
thrusters are vulnerable and fault diagnosis is essential. The
design was tested in a full-scale ROV sea trial, for which the
design process and the test responses have been presented and
discussed in detail. The experimental results confirm that the
performance of the fault diagnosis was generally good and
that the proposed algorithm provided robust and efficient state
estimation for the ROV under different combinations of failure
modes, signal artifacts and disturbances.
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