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Abstract  
 

Cancer is the leading cause of mortality in the developed world despite major advances in therapy in recent 

years. Recently cancer immune therapies have developed into promising treatments against a number of 

cancer types. One of the most promising is dendritic cell based cancer immunotherapy. One of the major 

challenges towards increasing the vaccine efficacy has been to develop maturation procedures that 

produce highly immunogenic dendritic cells that also demonstrate strong migratory skills.  

To test the migratory skills of the dendritic cells induced by the different procedures we present a versatile 

and easy to use chip integrated migration platform. Free-form constructs with three-dimensional (3D) 

microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection 

molded commercially available polymer chip for analysis of directed cell migration. Acrylate constructs 

were produced as woodpile topologies with a range of pore sizes from 5x5 µm to 15x15 µm and prefilled 

with fibrillar collagen. Dendritic cells seeded into the polymer chip in a concentration gradient of the 

chemoattractant CCL21 efficiently negotiated the microporous maze structure for pore sizes of 8x8 µm or 

larger. Cells migrating through smaller pore sizes made significantly more turns than through larger pores. 

Linear microchannels with diameters from 10 µm to 20 µm were also produced and simultaneous 

observations of dendritic cells migrating in the confined channels and in the fibrillar collagen were 

performed. Cells occluding the microchannels exhibited significantly higher migration speed than cells not 

occluding the channels and cells migrating in the fibrillar collagen.  

To more precisely mimic the mechanical and chemical properties of the tissue traversed by the dendritic 

cells we also present a poly (ethylene glycol) diacrylate (PEGDA) based strategy to fabricate soft 3D 

hydrogel scaffolds. Our experiments with the hydrogel confirm we can control the mechanical properties 

and introduce biochemical cues on the surface that are recognized by fibroblast cells. Finally we present 

initial in-chip fabrication of soft 3D constructs holding more than 80 % water.       
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Resumé  
 

Kræft er den hyppigste dødsårsag i den udviklede verden trods store fremskridt i behandlingen i de seneste 

år. Senest har forskellige kræft immunterapier udviklet sig til lovende behandlinger mod en række 

kræftformer. En af de mest lovende er dendritcelle baseret Cancer immunterapi. En af de store 

udfordringer for at øge effekten af denne vaccine har været at udvikle procedurer, der opmodner meget 

immunogene dendritceller, der samtidig udviser gode migrations evner, vigtigt for at finde vej tilbage til 

lymfe systemet. 

For at teste dendritcellernes migrationsfærdigheder afhængigt af hvilken af de forskellige procedurer der er 

blevet brugt præsenterer vi en alsidig og let tilgængelig test platform integreret i en mikrofluid chip. 

Konstruktioner med 3-dimensionel(3D) mikroporøsitet er blevet fremstillet med 2-foton polymerisering 

inde i en sprøjtestøbt kommercielt tilgængelig og lukket mikrokanal chip for at analysere guidet celle 

migration. Konstruktionerne blev udformet som woodpile geometrier med porestørrelser fra 5x5 um til 

15x15 um og udfyldt med fibrillært kollagen. Dendritceller der blev indsat i chippen, som har en 

koncentrationsgradient af kemokinet CCL21, navigere effektivt gennem den mikroporøse labyrintstruktur 

hvis porestørrelserne er 8x8 um eller større. Celler der navigerer gennem mindre porestørrelser drejer 

signifikant flere gange end gennem større porer. Lineære mikrokanaler med diametre fra 10 um til 20 um 

blev også produceret. I dem blev der foretaget simultane observationer af dendritceller der migrerer i 

trange kanaler, og i den fibrillære kollagen. Celler der fylder mikrokanalerne ud, udviser signifikant højere 

migrations hastighed end celler der ikke fylder mikrokanalerne ud og end celler der migrerer i den fibrillære 

kollagen. 

For mere præcist at efterligne de mekaniske og kemiske egenskaber af vævet som dendritcellerne migrere 

igennem i kroppen, præsenterer vi også en poly (etylenglycol) diakrylat (PEGDA) baseret strategi til at 

fabrikere bløde 3D hydrogel konstruktioner. Vores eksperimenter med hydrogel bekræfter at vi kan styre 

de mekaniske egenskaber og krydsbinde biokemiske signaler på overfladen, der bliver genkendt af 

fibroblastceller. Endelig præsenterer vi indledende forsøg med at fabrikere bløde 3D hydrogel 

konstruktioner indeholdende mere end 80 % vand, inde i mikrokanal chippen.  
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1. Introduction  
 

Cancer is the leading cause of mortality in the developed world despite major advances in therapy in recent 

years. Cancer can often be treated with surgery, but some cancer types such as malignant melanoma or 

cancer that has metastasized are no longer good candidates for surgery1. Most widely used treatments for 

inoperable cancer such as chemotherapy and radiation have severe side effects and often have little or no 

effect. Even after surgery a number of malignant cells will still be present and here the combination with 

cancer immunotherapy, a treatment that takes advantage of the patients own immune system by boosting 

the response against the tumor, has proven very promising. Many challenges have arisen in the search for 

the most optimal way to stimulate the immune system to target cancer more effectively. One of the more 

capable therapies involves the stimulation of dendritic cells (DC) with cancer markers to start the adaptive 

immune response against the tumor. One major issue for DC induced cancer immunotherapy is that the 

DCs lose some of their migrating skills when stimulated in the laboratory to be highly immunogenic, and 

thus become less capable of moving to the lymph nodes. In the lymph nodes the DCs migrate to the T-cell 

rich areas to induce the immune response. This drawback has lead to a plethora of investigations targeting 

how to maintain effective migration while the DCs are still highly immunogenic antigen presenting cells1–3. 

To evaluate these findings an easy to use and highly adaptable migration platform is needed. To approach 

this challenge we have developed an in-chip 3D cell migration scaffold and tested migration of DCs against 

a relevant migratory chemokine. In addition, we present a strategy and initial findings towards a more 

advanced and tissue mimicking 3D scaffold.          
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1.1.  Dendritic cell migration and cancer immunotherapy 
 

In the immune system the DC is the most effective antigen presenting cell. One DC is capable of activating 

numerous T-cells and B-cells, and the signal from one DC will therefore quickly spread to a much more 

effective battle against a given pathogen by activating the adaptive immune response.  DCs are found as 

immature DCs in many parts of the body, mainly in tissues near external surfaces where they are more 

likely to encounter foreign pathogens. When they encounter a foreign pathogen they undergo maturation 

to mature dendritic cells and start to upregulate the expression of new receptors such as CD86, CCR7 and 

many others. CCR7 is the main migratory receptor, crucial for recognition of chemokines CCL19 and CCL21 

that guide the DCs from the tissue via the afferent lymphatics to the lymph nodes. Here they are the main 

contributors to the effectuation of the adaptive immune response, see Error! Reference source not found.      

 

 
Figure 1 Schematic showing a simplified immune system with tumour antigen recognition and maturation of the dendritic cells, 

followed by their migration to the lymph node where they present the antigens to the T-cells. The now activated T-cells can 

respond with both effector and regulatory responses. The balance between these two T-cell responses is determined by the stimuli 

given to the dendritic cell during maturation. Therefore a huge part of building an effective cancer immunotherapy is to find the 

right stimuli during dendritic cell maturation. Figure adopted from Mellman et al.4    
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In DC based cancer immunotherapy the DCs are extracted from the blood of the patient as monocytes. 

During an up to eight day long procedure5 the monocytes are first differentiated into immature DCs and 

subsequently matured followed by specific antigen presentation, either exogenously (protein, peptide, 

lysate) or by electroporation of mRNA representing ether specific epitopes or full tumor cell mRNA3. It is 

during this crucial period that the DCs’ immunogenic and migratory skill subsets are developed. After 

antigen presentation the DCs are reintroduced in the body either intra nodally (i.n.) or intra dermally (i.d.), 

see Figure 2. The ability of the DCs to express the CCR7 receptor that recognizes the chemokines CCL19 and 

CCL21, secreted by the lymphatics, is paramount for an effective therapy. Recent developments have 

shown that the perfect maturation "cocktail" is not easy to develop, as it seems that some of the stimuli 

(PGE2) that increase migration potential hinder the immunogenic response by down regulating the very 

important immunogenic IL-12p701. Observations made by Verdijk et al.6 suggest that only a few percent of 

the i.d. injected cells reach the lymph nodes. While it would then seem natural just to inject the cells i.n., 

they found no immunogenic difference between the i.n. injected patients and the i.d. injected patients. 

One theory is that the clear migratory weakness of the DCs does not only hinder them in homing to the 

lymph nodes, but also hinders the i.n. cells in navigating inside the lymph nodes thereby lowering the 

immunogenic response and the therapy efficacy. Therefore a deeper understanding of DC migration 

mechanisms and the influence of maturation cocktails is needed to improve DC based cancer 

immunotherapy.   

 

Figure 2 Schematic showing the steps of cancer immunotherapy. Monocytes are extracted from the patient and differentiated into 

immature DCs and then maturated into mature DCs under which they are presented to the specific antigen. Then the DCs are 

reinjected into the body and must migrate back to the lymph nodes to start the immune response. The lymphatic vessels and 

lymph nodes secret the migration guiding chemokines CCL19 and CCL21 creating a gradient that the DCs follow to the lymph nodes. 

If the DCs fail to migrate to the lymph nodes the patient prognosis is poorer.    

Mature  
dendritic 
cell 

 M M
Monocytes 

Antigens 
Antigen-presenting  
dendritic cell 
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1.2.  Dendritic cell migration in 2D and 3D  
 

The knowledge of in vivo DC migration is limited primarily because it is very difficult to visualize and track 

the cells. Recently a number of groups have exploited intravital two-photon microscopy to gain new 

knowledge about the different parts of the migration pathway from tissue to lymph node7–9. On their way 

from the tissue to the lymph nodes the DCs will encounter a plethora of obstacles, substrates and tissues10, 

and studying where the injected DCs fail on their way to the lymph nodes is therefore a complicated task. 

CCL21 is secreted by the lymphatic vessels and it has been known for some time that the DCs respond and 

migrate towards the soluble chemokine gradient via the CCR7 receptor. CCL21 has been proven to also play 

a vital role as an anchoring point when the DCs enter the lymphatic vessels through preformed portals7,11. 

These portals have sizes of only a few micrometers and thus demand some squeezing and pulling for the 

large DCs to enter. For comparison , we have estimated our dendritic cells to have volume corresponding to 

a free diameter of 18 µm. Recently Weber et al.8 have also confirmed that DCs perform haptotaxis when 

migrating towards haptotactic gradients of CCL21 immobilized in the tissue, thereby adding another crucial 

role to the CCR7 receptor and to the migration mechanisms of the DCs.    

DCs are in a 3D environment almost all the time. Some parts of the endothelium linings might be 

considered by the cell as 2D, but for the vast majority of their time they will be surrounded by tissue 

components on all sides. For many years cell migration studies have been done on flat polystyrene petri 

dishes and culture flasks. These 2D studies do not resemble the environment the DCs encounter in vivo. 

Studies have shown that the interaction mode is different depending on the substrate dimensionality, cells 

simply behave differently on 3D substrates than they do on 2D surfaces12–14. This also translates to 

migration behavior, where it have been established that there are several mechanistic differences between 

2D and 3D migration15,16. Evidence suggests that migration in 3D might have more in common with the 

migration mode found on 1D substrates as demonstrated by Doyle et al. who showed striking similarities in 

the migration mechanics. Some modes even reveal that integrin attachments are not needed for DCs to 

migrate through 3D collagen matrices but are only  necessary when squeezing through narrow pores where 

contractile forces are needed to pull the nucleus through17. The nucleus is generally thought to be the 

limiting element when it comes to squeezing through narrow gaps and pores as it is less deformable and 

demands active cytoskeleton rearrangements18,19. If maturation of the DCs hinder or change any of these 

newly discovered mechanisms it might change the DCs homing potential in ways not yet understood. 
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1.3. Tissue engineering materials and 3D structured scaffolds 
 

Cells behave differently both in culture and during migration in the 3D environment in vivo than they do on 

2D substrates. When designing in vitro cell scaffolds it is therefore important to try to mimic the 3D 

environment as closely as possible to get realistic cell phenotypes or migration modes. Most widely used 

for 3D migration studies are naturally derived extracellular matrix (ECM) proteins such as collagen, as well 

as fibrinogen and matrigel that have been used to mimic the 3D environment of the ECM and simulate in 

vivo migration20. Also the polysaccharide based hydrogels, alginate, agarose and chitosan have been used 

exstensively21.These gels all possess natural biochemical signals and are not always optimal if the aim of the 

study is a specific interaction or mechanism. Therefore artificial hydrogels such as poly(ethylene glycol) 

diacrylate (PEGDA), poly(vinyl alcohol) (PVA), and poly(2-hydroxyethyl methacrylate) (PHEMA) have been 

used as "blank slates" since they have no inherent biochemical cues. They can be chemically and 

mechanically modified  to suit a specific tissue or cell type22. Especially PEGDA has been extensively used to 

pattern ECM proteins and growth factors in both 2D and 3D23,24. PEGDA has even been incorporated with 

biodegradable moieties, degradable by matrix metalloproteinases (also responsible for collagen 

degradation), allowing cells to migrate more freely as in collagen, for advanced tissue mimicking and 

angiogenesis studies23,25.     

 

These hydrogel types are random and do not permit the precise control over pore sizes and geometry 

needed to study specific migration mechanisms in 3D26. In tissue engineering this challenge has led to a 

plethora of ways to fabricate 3D scaffolds all with different advantages and drawbacks. Random scaffolds 

have been made with electrospinning and various leaching and gas techniques27. These scaffolds are fast 

and cheap to produce in large volumes for regenerative medicine, but do not employ a controlled 3D 

architecture. Inverse opal scaffolds made from colloidal-crystal templating, a technique developed for 

photonic crystals and introduced as cell scaffold by Kotov et al.28, have both pore size control 

(interconnectivity) and control over the mechanical properties via range of artificial gel materials. Inverse 

opal scaffolds maintains the possibility to fabricate large volumes, but are limited to control over pore size 

and cavity size (porosity) not allowing control over more complicated geometries29–32. To get full control 

over 3D architecture and geometry computer aided design of scaffolds have emerged. These techniques 

utilize either a 3D printing technique to add layer by layer or a laser based technique to either add layers or 

directly polymerize free form structures33. Printing techniques are cheap and can print relatively large 

volumes with many different materials including soft tissue mimicking materials, but are limited by a 

resolution of approximately 100 µm. Stereo lithography is a widely used laser based layer by layer 
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technique, where a laser polymerizes a photo crosslinkable resin one layer at a time. With stereo 

lithography almost any geometry can be made with a resolution down to 20 µm34. A number of groups 

have used stereo lithography to build 3D cell scaffolds and constructs. Often used are acrylate based 

polymers such as PEGDA where it also is easy to add biochemical tissue mimicking functionalizations35–37. 

The only technique capable of fabricating true freeform scaffolds and obtain sub cellular resolution is 2-

photon polymerization (2PP) or direct laser writing. 2PP is also developed for photonics but has, in recent 

years, found more and more use in bio medical engineering38,39 and 3D cell mechanistic studies40. 2PP can 

be used with the same materials as most of the other 3D fabrication techniques, almost any photo 

crosslinkable material. The drawback of 2PP is a slow fabrication time, a consequence of the small spot size, 

which limits the total volume of the scaffold or construct. 

All of the above mentioned technologies will need to be integrated into a macroscopic system containing 

fluidic handling structures that provides an easy to use platform for handling chemicals and solutions. 

Standard polymer fabrication techniques such as milling, hot embossing and injection molding are 

increasingly faster to produce polymer microchips on the industrial scale. Integrating the micro fabrication 

techniques with these either semi assembled or closed microfluidic systems, is a critical step towards 

achieving an effective easy to use migration platform. 2PP does as the only technology allow fabrication of 

structures inside closed microfluidic systems. This overcomes especially problems arising in the final 

bonding step where integrated micro structures easily break or the system is leaking. Therefore, in 

combination with some of the other mentioned technologies, we believe 2PP is a strong candidate for 

construction of confined in-chip migration scaffolds that can be tuned to mimic the mechanical, chemical 

and geometrical features that the DCs will encounter such as the ECM or the lymphatic vessels.      
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2. 2-Photon polymerization of cell migration constructs 
 

In this section, all fabrication experiments in the hard commercial IP-L resin and the in-chip cell migration 

experiments in the fabricated constructs will be discussed.   

 

2.1. What is 2-photon polymerization 
 

2-photon polymerization is a 3D laser lithography technique. By utilizing a photo-chemical process that 

exploits non-linear effects of high intensity femto second lasers 2PP gains free form 3D construction 

capabilities by focusing the laser spot in all 3 dimensions. The 3 dimensional focusing arises from the 2-

photon absorption phenomena where two photons of half the excitation energy excites a photo active 

molecule and starts a chemical process that cross links the resin. Effectively the 2-photon polymerization is 

constrained to a small volume pixel called a voxel that can be moved around, thereby creating free form 3D 

features. After crosslinking, the structure can be developed and the remaining resin washed away, leaving 

only the polymerized solid structure. A more thorough walkthrough of the optical and chemical principles 

can be found in the next paragraph. Since Kawata and  coworkers, presented the first 3D structures created 

by 2PP in 1997 41, the interest in 2PP and its applications has flourished. Pioneered by the photonics 

community optical crystals42,43 and later wave guides and micro lenses were among the early 

applications44,45. Also micro mechanical systems46,47 and lab on a chip (LOC) systems46,48–50 were rapidly 

being developed taking advantage of the novel ability to create arbitrary 3D structures without the need for 

support structures or scaffolding. Since the 2PP technique enabled 3D structures to be constructed  

numerous examples of animals51, well known landmarks52 and figures53 have been created to show the 

capabilities of the technology. Within the last couple of years biomedical applications have also been 

addressed, especially within the fields of tissue engineering and cell culture scaffolds that aim at mimicking 

in vivo 3D environments either in bulk38,54,55 or by studying single cell attachments and mechanics56. Two 

examples of 3D structures fabricated by 2PP can be seen in Figure 3.      
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Figure 3 SEM micrographs of 2PP fabricated structures representing the ability of the technique to create arbitrary 3D structures. 

Left a micro sized bull51 approaching the resolution limit of the technique and right a photonic crystal42. Scale bar on the left image 

is 2 µm. 

 

2.1.1. Optical and chemical principles of 2-photon polymerization 

 

2-photon polymerization is a 3D laser lithography technique where a resin is crosslinked only in the focal 

point of a laser. Compared to single photon laser lithography the 2-photon polymerization alters the spatial 

resolution from 2 dimensions to 3 dimensions. Effectively the 2PP voxel is a cigar shaped volume where the 

polymerization takes place. The 3rd dimension or spatial z resolution arises from the 2-photon absorption 

(2PA) phenomena where two photons of half the energy excite the molecule from its ground state to the 

excited state.  For this to happen, very high photon intensity is needed.  Pulsed lasers are the only light 

sources capable of delivering high enough intensity during their very short pulses (ns - fs) and are therefore 

necessary to obtain 2PA.  

For 1-photon absorption the absorption rate is linearly dependent on the photon flux. When a laser beam 

encounters a molecule the probability of the molecule absorbing the energy of a photon is linearly 

proportional to the incident photon flux or intensity, ergo a 2 W laser will excite twice as many molecules 

as a 1 W laser at any given time. This principle works for 1-photon absorption only when the incoming 

photon matches the energy needed to raise an electron from the ground state to the excited singlet state. 

When talking about 2PA the transition from ground to excited state happens if two lower energy photons 

are absorbed by one molecule at the same time. Very high intensities are needed due to the very short 

time (10-18 s)57 the molecule will be in the transient virtual state, halfway between the ground and excited 

state, see Figure 4. The photon energy needed for 2PA is not exactly half compared to 1-photon absorption, 
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but as a rule of thumb the wave length doubles for 2PA. Thus common near UV photo initiators are 

absorbing light in the wavelength range of 350-400 nm, they are good candidates for the near IR 

Ti:Sapphire lasers emitted light at 700-800 nm, though almost any photo active compound can be 

addressed by choosing an appropriate laser.  

 

 
Figure 4 Left, a Jablonski style diagram adopted from Wu et al.58 showing the activation and deactivation pathways of a photo 

initiator. Both single-photon and 2-photon absorption is shown as well as various deactivation pathways and internal conversion to 

the triplet state via cleavage creating radicals or ions that can initiate polymerization. Right, radial Gauss distribution approximating 

the laser intensity at the focus plane59. To achieve 2-photon polymerization the intensity must exceed the polymerization 

threshold. The volume of the focal point above the threshold defines the voxel. By carefully controlling the laser power sub 

diffraction limit feature sizes can be created.     

2PA is a nonlinear process of the third order60. This means that the energy absorption rate responsible for 

degenerate 2PA can be described as follows: 

 

𝒅𝑾
𝒅𝒕 = 𝟖𝝅𝟐𝝎

𝒄𝟐𝒏𝟐 𝑰𝟐𝑰𝒎 𝝌(𝟑)  

where ω is the angular frequency, C the speed of light in vacuum, n the refractive index of the medium, I 

the laser intensity and [χ(3)] the imaginary part of the third order susceptibility tensor. From this equation 

the relevant nonlinear part is the quadratic dependence on the intensity. Since 2PA only happens at the 

very highest of intensities above what is called the polymerization threshold, it only occurs when the laser 

is very focused and only in the center of the focus where the intensity is highest. To achieve this very tight 

focus, microscope objectives with high numerical apertures (NA) are utilized to focus the laser, because 

with a high NA objective the depth of field becomes very shallow and thus tightens the focus in the axial z 
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direction. Combining this with the rate of absorption scaling with the square of the intensity means that the 

likelihood of 2PA tapers off very quickly with distance from the focus center. The voxel in which the 2PA 

happens is thus well defined, even in the axial z direction, which is what creates the intrinsic 3D capabilities 

of a 2PP system. The polymerization threshold comes from the competition between deactivation 

mechanisms such as quenching, internal conversion and radical termination, see Figure 4, and the active 

radicals in the polymerization reaction. Ergo there is a threshold above which a solid structure will be 

created and below which the crosslinking is insufficient and the resin stays viscous or soluble45. The 

polymerization threshold is also dependent on the ability of the initiator molecule to absorb photons via 

2PA, known as the 2-photon absorption cross section, δ. It can be found using the definition of the number 

of absorbed photons per time:     

 
𝒅𝒏𝒑
𝒅𝒕 = 𝜹𝑵𝑭𝟐, 

with N being the number of absorbing molecules per volume and F  =  I/hν the  photon  flux,  where  h and ν 

are the Planck constant and the frequency respectively. Knowing that    

 

𝒅𝑾
𝒅𝒕 = 𝒅𝒏𝒑

𝒅𝒕 ℎ𝜈 

 

we get the 2-photon absorption cross section 

 

𝜹 = 𝟏𝟔𝝅𝟑𝒉𝝂𝟐
𝒄𝟐𝒏𝟐𝑵 𝑰𝒎 𝝌(𝟑)  

δ  has  units  of  10-58 m4 s /photon also known as GM, from the German physicist Maria Göppert-Mayer who 

was the first to describe 2PA in 193161. It can be seen from the units that the cross section is a double area 

from the two separate photons needed to excite the molecule. Also noticeable is the factor of 10-58 which is 

inserted to normalize most compounds to a 2-photon cross-section between 1 GM and 103 GM. This factor 

also tells us why really high laser intensities are needed for 2PA to occur.  

When a molecule, here a radical photo initiator, is excited by 2PA a fraction of the excited molecule will 

undergo internal conversion to the triplet state and from there cleave and create radicals or ion species 

eventually starting the polymerization, see Figure 4. The fraction of photons that creates a radical is called 

the  radical  quantum  yield,  φ,  and  is  another  important  parameter  after  the  2PA  cross  section  to  yield  an  

effective 2PP initiator. The radical quantum yield should not be confused with the fluorescent quantum 

yield, η, often expressed for chromophores62 as the fraction of absorbed photons being emitted as 
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fluorescence. A high radical quantum yield is therefore dependent on a low fluorescence quantum yield 

since lower η  means  greater  chance  of  intersystem  crossing  to  the  triplet  state  and  thus  a  higher  φ63. As can 

be seen in Figure 4, a high fluorescence (path not shown) quantum yield and internal conversion quantum 

yield gives less triplet states and thus less chance of cleavage and radical formation. The radical formation 

rate, rr, thus scales with the laser intensity squared, the 2PA cross section and the radical quantum yield: 

𝒓𝒓  ~  𝛟𝜹𝑰𝟐   
A photo initiator with a high  𝜹 and  a  high  φ  (or  low  η) is desired to achieve more efficient polymerization at 

lower power and faster processing speeds.   

  

Due to the above mentioned factors, the volume being polymerized by a 2PP system is confined in 3 

dimensions and thus able to create arbitrary 3D features in any photo active material. Because the laser 

light is not absorbed below the threshold intensity 2PP can be performed in the bulk of the material, as 

compared to standard lithography techniques where the light will be absorbed along the way and restrict 

polymerization to the very surface or at least to a shallow top layer, see Figure 5.  

 

 
Figure 5 Left, when using 1-photon absorption the UV laser light is absorbed at the surface and thus only 2D structures can be 

created. When using a near IR laser for 2PP the light travels through the sample without being absorbed and allows in depth 

polymerization at the focus plane of true 3D structures58.        

Polymerization speed and degree will be governed by the chemistry used in the resin.  The following 

equations shows the photoinitiation step in a 2PA activated radical reaction:  

𝑰 + 𝟐𝒉𝝂 → 𝑰∗ → 𝑹∙ 

The photoinitiator absorbs the two photons and undergo intersystem crossing (ISC) and cleavage to 

become an activated radical that can initiate polymerization of a given monomer:   

𝑴+𝑹∙ → 𝑹𝑴∙ +𝑴   → 𝑹𝑴𝑴∙ … .→ 𝑹𝑴𝒏∙  
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In 2PP this reaction implies cross linking of the created polymer chains either between themselves or by an 

added cross linking agent to create the solid polymer that makes up the 3D structure. Radical lifetime and 

polymerization efficiency depends on a number of factors including radical termination by quenching (O2, 

other radicals), internal cyclization (combination) and chain transfer to another organic molecule in the 

resin64. These factors will depend on photoinitiator, monomer and solvent as well as reaction conditions 

(temperature, atmosphere) and are thus very different from resin to resin and this will affect the minimum 

feature size and processing parameters.  

The feature size achievable with 2PP is theoretically infinitely small since the voxel dimensions depend on 

the width and height of the laser beam being over the polymerization threshold intensity, see Figure 4. The  

voxel dimensions are however, in reality, limited by system and laser power stability and the applied photo 

chemistry and monomer composition53. The smallest achievable feature size will scale with the objective 

used to focus the laser. Calculations adopted from 2-photon microscopy can easily be used to estimate how 

the voxel size scales with different objectives and immersion media. From Webb et al65 it follows that the 

optical resolution (area in which 2PA occur) can be calculated by the following expressions (for NA>0.7):  

 

  𝒓𝒙𝒚 =
𝟎. 𝟑𝟐𝟓𝝀
√𝟐𝑵𝑨𝟎.𝟗𝟏

                                         𝒓𝒛 =
𝟎. 𝟓𝟑𝟐𝝀
√𝟐

𝟏
𝒏 − √𝒏𝟐 − 𝑵𝑨𝟐

 

 

rxy and rz are the lateral and axial resolution respectively,  𝜆  the wavelength, n refractive index of medium 

and NA the numerical aperture of the objective. When inserting parameters from our 2PP system we get 

voxel dimensions of: 𝑑 = 2𝑟 = 264  𝑛𝑚   and 𝑙 =   2𝑟 = 622  𝑛𝑚 which is already well below the 

diffraction limited resolution from a 780 nm light source (𝑟 = 0.61𝜆/𝑁𝐴)53. Important to note from these 

equations is that the voxel length in z scales with the square of the numerical aperture of the objective and  

is thus a very important parameter to achieve minimum feature sizes. The aspect ratio of the voxel 

calculated here is less than 3. In reality the axial resolution is not as good as predicted and it is more 

realistic to expect aspect ratios between 3 and 666, meaning that the voxel takes the shape of a Cuban cigar. 

The aspect ratio as well as the overall size of the voxel also scales with laser power and exposure time. 

Since the voxel is not a well defined structure but the definition of a threshold energy, right outside of the 

voxel the radical concentration will be very close to the threshold. By increasing laser power and exposure 

time the polymerized volume will grow. An increase in laser power or exposure time will affect the aspect 

ratio in different ways according to Sun et al67 and it is not completely understood how the exposure 

parameters together with radical lifetime and radical diffusion contribute to the overall shape of the 

polymerized volume. However, it can be concluded that the smallest achievable dimensions are obtained 
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with a high NA objective at near threshold laser intensity and that high laser intensities and high 2PA cross 

sections will allow shorter exposure times.           

 

2.1.2. Two-photon polymerization in Biomedical engineering 

 

2PP research has, as previously mentioned, developed rapidly from purely proof of concept to photonics 

and micromechanical systems since the first demonstration in 199741. Features have been routinely 

fabricated down to 100 nm by several groups45,68, but also features well below 100 nm have been 

presented69,70. When applying 2PP for fabrication of devices or systems for biomedical purposes high 

resolution is rarely the subject of investigation. Feature sizes of single cell dimensions of 3 µm - 50 µm are 

far more relevant. The easy computer assisted design (CAD) of 3D structures means that biomedical devices 

for a number of applications have been realized. The ability to control features in the µm range have 

spurred researchers to investigate single cell mechanics56 by constructing small web like structures with 

rods that bend depending on the force asserted on them, see Figure 6.  This includes 3D adhesion 

properties in 3D scaffolds featuring two different resin components, one component for the 3D rod scaffold 

and one component for the specific adhesion sites40. 

Tissue mimicking scaffolds of various shapes and symmetries have also been constructed with 2PP. Most 

common are structures based on either stacked cylindrical blocks54,71,72 or linear rods creating either 

woodpile55,73–76 or cross-hatched71,73,74,77,78 structures, but also more complicated scaffolds based on 

spheres79, truncahedrons80 or Schwarz P-surfaces74 have been created. Most of these scaffolds have feature 

sizes well above single cell dimensions, and those investigating cell sized features seem to conclude that 

they are less suitable for the cell culturing purposes they are intended for due to the cells being unable to 

properly spread and adhere73,75. When studying 3D cell migration Tayalia et al.55 employed smaller features 

with pore sizes in the woodpile down to 12 µm by 12 µm and conclude that even though the pores are 

about the size of a single cell, migration speed is only slightly reduced. In a later study they completely 

abandon the smallest pore size76 in favor of 25 µm to 75 µm pores. A woodpile from Tayalia et al. can be 

seen in Figure 6 with 12 µm x 25 µm pores.  
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Figure 6 Left: Web structure from Ormocomp resin, used for single cell force measurements56. Right: Woodpile structure of acrylate 

resin, used for cell migration, pore size 12 µm x 25 µm55  

The ability of the 2PP systems to polymerize a defined volume inside or on the other side of a material not 

absorbing the near IR light also means it can be used to polymerize resins inside cavities of already 

assembled microfluidic systems. Until now this feature has only been put to practical use by two research 

groups. Iosin et al. showed the first example by processing 3D protein structures used as enzymatic 

reactors inside an already bonded micro chip81. The chip consisted of a polydimethylsiloxane (PDMS) top 

part containing the channels bonded to a glass slide. This simple proof of concept configuration allowed 

them to construct 3D structures inside the pre sealed chip and ensure easy development of the exposed 

structures by exchange of fluids in the system. Amato et al. applied a 2PP system to construct a porous 

filter used to separate micro particles by writing cross-hatched structures inside a commercially available 

glass chip82. The system proved very effective in separating different sized particles, but did however show 

prolonged and cumbersome pre bake and post processing steps due to the choice of resin and the long and 

shallow channel design of the chip.  

 

2.1.3. Limitations of two-photon polymerization 

 

2PP is a serial process meaning it cannot easily be up scaled to mass production since the fabrication 

depends on a single laser beam with a very small spot size. One could apply more lasers or split the beam of 

a more powerful laser and thus decrease production time, but compared to wafer scale wet or dry etching 

known from classical micro and nano fabrication 2PP is a slow but still versatile process. The very small spot 

size and intrinsic ability to create 3D structures means that fabrication of large areas and especially volumes 

will be overly time-consuming. Since the spot size is very small fast processing speeds depend on effective 

photoinitiation and cross linking of the resin allowing shorter exposure times and thus faster writing 
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speeds. To take advantage of the shorter exposure more precise laser control has been developed. 

Recently systems utilizing galvanometric mirrors for controlling the laser spot have been presented and 

shown to increase writing speed significantly83,84. Yet no mass production or easy up scaling is within reach 

if structures much larger than 100 µm by 100 µm are wanted. Also the ability to create complex 3D 

structures has to occur with slower processing speeds due to inertia in the system either in the stage 

controlling the sample or the laser maneuvering. When accelerating and decelerating the stage in a stage 

controlled system, such as the Nanoscribe system used in this project, it becomes harder to maintain high 

resolution as the writing speed exceeds 500 µm/s - 1000 µm/s. The galvanometric scanning systems are 

better suited to retain precision at high writing speeds, but it will always be a trade off to increase 

complexity for speed. Though mass production is unlikely the 2PP process does gives some opportunities 

for lowering costs. Several groups have demonstrated that using the 2PP fabricated structures as molds will 

deem the 2PP process advantageous for more than just prototyping. Kumi et al. show how the 3D 

capabilities can be used to create micro channels with arbitrary cross section by using a 2PP structure as a 

mold48. Also more complex 3D structures with overhangs and loops can be replicated by casting soft 

materials such as PDMS85,86. Koroleva et al. have shown that also complex scaffold structures can be 

replicated87. Limitations in the complexity of replicated structures do however mean that only well suited 

designs are applicable for casting.  

2PP delivers unprecedented 3D capabilities and resolution, but is not easy to scale for production of 

thousands of samples or great areas/volumes. The vast number of photoactive materials applicable with 

2PP does however mean that the 2PP technology will find prolonged usage in research fields such as 

biomedical engineering, micromechanical systems and photonics also in the future. In combination with 

standard mass production techniques such as photolithography or casting of polymerized structures 2PP 

can also serve a purpose in specialized production facilities.         

 

2.1.4.  2PP migration constructs presented in this thesis 

 

We find that 2PP scaffolds designed for migration purposes are infrequent and that even fewer, if any, 

employ feature sizes on or below single cell dimensions. In our effort to mimic the migration environment 

in the connective tissue as well as the transmigration into the lymphatic vessels, we envision that a variety 

of pore sizes and 3D topologies of varying complexity are needed to construct a migratory screening 

platform. Therefore we bring pore sizes down to 5 µm by 5 µm in woodpile scaffolds with 2 stages of 

increasing complexity added by including barriers to force the cells to change direction in x, y and z inside 
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the scaffold. We also show a simpler channel structure with varying dimensions to investigate confined 

migration and compare these findings to the well known migration in 3D fibrillar collagen.      

 

We do this in combination with a state of the art in chip fabrication process that has the advantage of both 

fast and simple development, made possible with a commercially available chip from ibidi® (µ-Slide 

Chemotaxis3D) and the low viscosity acrylate resin IP-L 780 from Nanoscribe GmbH. The µ-Slide 

Chemotaxis3D chip is designed for 3D cell migration studies and thus features a thin bottom suited for 

microscopy as well as several inlets allowing for easy fluid exchange. By combining more complex 3D 

structures with improved in chip fabrication schemes I believe our system is a substantial step forward 

towards introducing the next generation of integrated customizable cell migration platforms. Further 

discussion of the advantages and limitations of our system will be given in the following sections.  

 

2.2. 2PP setup and in chip fabrication methods 
                  

In this section it follows how the 2PP setup works and how the different 3D constructs are prepared.   

 

Methods 

Two-photon polymerization was performed on a Nanoscribe Photonic Professional system (Nanoscribe, 

Eggenstein-Leopoldshafen, Germany). The Nanoscribe system uses a 780 nm Ti-Sapphire laser emitting 150 

fs pulses at 100 MHz with a maximum power of 100 mW (20 mW at the sample surface) and is equipped 

with a 20x, 0.5 NA air objective and a 100x, 1.4 NA oil immersion objective. The substrate is placed in a 

holder that fits into a piezoelectric x/y/z stage. Holders for various substrates were provided by Nanoscribe, 

but a custom aluminum adaptor that fits in the 4 inch wafer holder was milled to mount the ibidi chip, see 

Figure 7. Writing is done by controlling the laser in time and moving the stage with the substrate in x, y and 

z and hence moving the substrate relatively to the laser focus. All constructs accept where noted otherwise 

are fabricated from manually written code in the gwl language developed by Nanoscribe. An example of the 

code used to write a 100x100x70 µm3 in-chip woodpile construct can be found in Appendix 1.   
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Figure 7 (A) Nanoscribe Photonic Professional two-photon polymerization system with ibidi chip mounted in a custom-made 

aluminum adaptor. The adaptor fits in the 4 inch wafer holder and is controlled in x/y/z by the piezo stage. (B) Cross section of the 

ibidi chip used for in chip 2PP showing the reservoirs (65 µL) and channel (<1 µL) geometry with the channel loaded with resin 

(yellow). The thin chip bottom layer is optimized for microscopy with high NA objectives and thus ideal for high resolution 2PP 

fabrication  adopted from Olsen et al.88. 

A more detailed view of the classical experimental setup can be seen in Figure 8, where the laser is focused 

in the resin, which has been drop cast on a cover glass. It can also be seen that the voxel is located only in 

the center of the laser focus and is thus capable of polymerizing any structure or points depending on the 

stage moving the sample about. In Figure 8 is depicted an immersion objective, but an air objective has also 

been used. Initial experiments used circular Ø 30 mm x 0.17 mm glass cover slips as substrates in an open 

system. The cover slips were cleaned with acetone and 2-propanol (both Sigma-Aldrich, St. Louis, MO) 

before a drop of resin was placed on the top and the substrate was fixed in the holder with 4 drops of 

Fixogum (Marabu, Tamm, Germany). After exposure the substrates were developed in 2-propanol by 

submersion in a beaker for 20 minutes and washed with acetone before drying with compressed air.  

Structures were produced in a liquid acrylate based resin (IP-L 780, Nanoscribe). Writing speeds ranged 

from 600 µm/s to 1200 µm/s depending on the depth of writing into the resin, see below for optimized 

recipes. Larger writing depths caused loss of light intensity, and the writing speed was reduced to retain 

complete cross linking and structural rigidity. All structures were written in order from the largest to the 

smallest writing depths to minimize refraction of the laser beam from already polymerized structures. Thus, 

the first layers written are furthest away from the objective and the surface of the substrate. In open 

systems, this technique requires the initial writing of support pillars and beams in the opposite writing 

order to prevent polymerized lines of the targeted structure from floating away in the liquid resin. In the 
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fairly viscous IP-L resin the polymerized lines are only floating away when very long lines are written. 

Supports structures were not required for in-chip writing since the structure could be anchored both to the 

channel ceiling and to the channel bottom, thus securing stability during the writing process.   

 

 
Figure 8 Scheme showing the standard experimental setup in cross section for 2PP with the Nanoscribe Photonic Professional. The 

laser beam is focused by the immersion objective through the cover glass, mounted on a piezo controlled stage (not shown). Only 

in the focus of the laser beam, inside the voxel, is the intensity above the threshold value and only here will the resin polymerize. 

By moving the stage in x, y and z arbitrary 3D features can be constructed.    

 

The polymer chip (µ-Slide Chemotaxis3D, ibidi, Martinsried, Germany) was mounted on the stage via fixation 

with Fixogum to a custom made aluminum adaptor (see Figure 7A). A drop of resin was placed on one 

channel inlet for the channel to fill by capillary forces. All inlets were left open during fabrication. Residual 

resin on the inlet was removed with tissue. Identical writing parameters were used for the chip and the 

cover glass substrates. To account for the custom aluminum adaptor and the resulting new positions of the 

defined writing area of the ibidi chip (compared to the standard holders) the sample holder configuration 

file in the Nanoscribe system folder had to be rewritten. By manually moving the stage to the center of the 

three channels on the ibidi chip using the 20x air objective we defined three new center positions in which 

the stage would center. The ibidi holder could then be chosen as any other holder and the system could be 

programmed to change between the three channels on the chip as if it were 3 different substrates. An 

initial manual measurement of the channel height was performed via the autofocus system to determine 

the required structure height to fill the channel. After the auto focus system had established the z position 

of the channel bottom the top was found by manually focusing on the top and applying the  ”find interface”  

command to precisely determine the z position. The height as observed by the Nanoscribe system could 

then be calculated and the required structure height be chosen.  
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Development was done by filling the reservoirs with 2-propanol wait 10 minutes and emptying half of the 

volume through the channel inlets and the rest through the reservoir inlets. The process was repeated 

three times. After development, the reservoirs and channels were sterilized by flushing with ethanol in a 

flow bench, and left to dry for 24 hours. 

In some instances the chip reservoirs and 3D scaffolds or channels constructs were surface coated with Poly 

(ethylene glycol) diacrylate (PEGDA) to increase surface hydrophilicity and ensure complete filling of the 

channel structures with collagen and avoid bubble formation. The procedure is inspired by earlier work in 

our group89. The chip was wetted with ethanol by filling each reservoir with 65 µl 70/30 % ethanol/water 

and emptied again. Subsequently 10 mg (10 µmol) PEGDA mw 1 k Da and 0.5 mg (2 µmol) 4-‐benzoyl  

benzylamine  hydrochloride  (CAS  24095-‐40-‐7),  abbreviated  BzA, was dissolved in 1 ml PBS (all from Sigma 

Aldrich), before 65 µl of the solution was added to each of the two reservoirs in the chip. To aid wetting the 

photo active solution must be added before the remaining ethanol inside the channel has evaporated and 

dried out in the 3D structure. All inlets were plugged and the chip was exposed to UV light 15 minutes (32.4 

J/cm2) using a custom built photo reactor with a broad illumination maximum from 330–380 nm (Philips 

Cleo S-R fluorescent tubes). After exposure the chip was rinsed three times with water. Ultimately the chip 

was sterilized by flushing with ethanol in a flow bench, and left to dry for 24 hours. 

 

Scanning electron microscopy (SEM) micrographs were obtained with a FEI Quanta 200 ESEM FEG 

microscope (FEI, Hillsboro, Oregon) at DTU CEN. This allowed us to use the Environmental SEM (ESEM) 

mode to image insulating materials such as polymers without a metal deposition step. 

Confocal micrograph stacks were acquired with a Zeiss LSM 5 microscope (Carl Zeiss, Oberkochen, 

Germany) with either a 63x, 1.4 NA (numerical aperture) oil immersion objective or a 40x, 1.2 NA water 

immersion objective, using excitation light at 488 nm and collecting emitted light from 515-550 nm. The 

recorded stacks were processed into 3D reconstructions using ImageJ90.  

 

2.2.1. Structure design and optimization of writing parameters                          

 

Before the start of this project, it was envisioned that the Schwarz P-surface was the ultimate scaffold unit 

cell. This is a minimal surface geometry with interconnections in all 3 directions and would allow migration 

on  both  the  “inside”  and  the  “outside”  of  the  scaffold  surface  if  a  hollow  design  cold  be  realized,  see  Figure 

9. The complexity of the structure and thus the required writing time with our stage controlled system did 

however turn our attention towards the simpler woodpile structure comprised of stacked linear rods, see 

Figure 9. The woodpile structure allows for easy tuning of pore sizes and the p-surface for migration in all 
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three dimensions, and will thus probe the cells ability to make decisions whether to change direction in x/y 

or z. The much simpler woodpile structure allows for higher average writing speeds due to long linear 

stretches, where the maximum writing speed can be sustained longer relative to slower speeds when 

writing tight corners or stopping and starting. Based on the above arguments it was decided to go forward 

with woodpile structures as one of the goals was to construct scaffolds spanning several hundred 

micrometers.        

   

 

Figure 9 CAD drawings of 2 different scaffold geometries. Left: A scaffold structure based on the symmetric Schwarz P-surface unit 

cells of 15 µm x 15 µm x 15 µm, pore diameter is thus 7.5 µm. Right: A woodpile structure based on 100 µm x 10 µm x 4 µm beams 

with a 14 µm pitch, pores here are thus 10 µm x 10 µm, as used in this project. 

 

This project was the first to rely primarily on 2PP for the main fabrication tasks. Therefore the first task was 

to establish the best suited writing parameters for writing the woodpile scaffolds as fast as possible. 

Writing speed and line distance in both x/y and z is essential in reducing overall fabrication time. Also dwell 

time, the amount of time the system waits between each line segment being written, proved to be an 

important factor to speed up the process. Next writing sequence and laser power to match the various 

writing speeds also ended up as key to the overall process.  

Our system is equipped with a 20x, 0.5 NA air objective and a 100x, 1.4 NA oil immersion objective. Both 

objectives where initially investigated for optimized writing speeds of the woodpile scaffolds, but the 

elongated voxel of the 20x objective meant a loss in z resolution that was not tolerable for our application. 

Therefore only the 100x objective is described here. It now follows how the key parameters were 

investigated and how the final woodpile recipe came to be.  
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Update rate/writing speed: The update rate is the frequency in which the stage moves from point to point. 

Together with the point distance it defines the writing speed as follows: Speed = update rate x point 

distance. The point distance was kept constant during all experiments at the standard value of 200 nm 

since all experiments were performed under continuous mode where the stage does not stop between 

internal points and the laser is always on. Thus the update rate defined the writing speed. A maximum 

update rate of 6000 (1200 µm/s) was found to be most effective though higher speeds could be achieved, 

but then considerably thinner lines were observed leading to unstable structures. Later in the process a 

significant loss in laser power was observed when polymerizing deep inside the resin. This resulted in a 

need to gradually decrease the update rate to 3000 (600 µm/s) when writing structures up to 70 µm inside 

the resin.   

Line distance x/y: The distance between individual lines when writing polylines. The maximum line distance 

depends on the voxel width, dxy. The Nanoscribe software language, “gwl”, includes a polyline and a 

meander command which together extend a single line between two points to a number of parallel lines 

with a defined distance between them, the line distance. This is very effective when many parallel lines are 

needed to construct a beam. By increasing the line distance the overall number of lines can be reduced. A 

maximum line distance of 250 µm was found while maintaining structural rigidity.    

Z distance, layer distance: The distance between individual layers of the structure. The achievable z 

distance depends on the voxel length, l, and on how much overlap between layers is needed for a stable 

structure. A maximum layer distance of 1.3 µm could be achieved without noteworthy loss of stability. To 

ensure that the individual beams were anchored to the underlying beams an overlap of 1 layer (1.3 µm), 

half a layer from the top beam and half from the bottom beam was found to be sufficient, see Figure 10.   
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Figure 10 CAD drawing of woodpile beams showing the overlap caused by the voxel length, beams measuring 4x10 µm (dark gray 

or red) are shown as an example. The voxel length of 1.3 µm and the thickness of the resulting bottom and top layers are shown as 

well as the 16 individual lines (250 nm lateral separation) making up the width of the beams. The axial length of the voxel (1.3 µm) 

increases the height of the beams from 10 µm on the CAD drawing by 0.65 µm at both ends (light gray or light red) extending the 

beam height by a total of 1.3 µm, this extension gives rise to a 1 layer overlap of 1.3 µm, even though the CAD drawing as shown in 

Figure 9 shows no overlap.    

 

Dwell time: The length of time the system pauses, with the laser off, from a line segment is stopped until 

the next is started. Even though the woodpile structure consists of many very long lines the standard dwell 

time of 200 ms meant that half the time the system was waiting instead of writing. It was impossible to 

observe this with the naked eye but a reduction of the dwell time to 10 ms cut the process time in half. It is 

important to remember to apply the meander command when reducing dwell time otherwise the stage will 

not have time to go back to the start of the next line before the laser is started again. This short dwell time 

can only be used when distances between line ends are short (less than ≈5 µm).   

Laser power: The laser power was quickly adjusted to the maximum power that would not cause bubble 

formation or damage to the structures. A laser power of 80 % was used throughout this work and was 

found to be optimal for writing in the IP-L resin used here. If smaller features or other chemistries are 

desired lower power and also slower writing speeds may be necessary, see section 3.4 on 3D structuring of 

hydrogels.      
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Writing sequence: The writing sequence is not a parameter per se but it proved important. Two things 

influenced the writing sequence: 1) the already polymerized resin refracted the laser light due to a changed 

index of refraction upon polymerization and thus decreased the effective laser power when writing 

structures deep inside the resin, a kind of shadow effect (Figure 12 D). As a consequence all structures 

higher than 20 µm had to be written from the top down. 2) Combined with the very long single lines in the 

woodpile and the viscous resin, meant that the line just polymerized floated away before the subsequent 

line was polymerized next to the first. To overcome this issue support pillars and beams written from the 

bottom up had to be incorporated when free standing structures were fabricated on cover glass, see Figure 

11 for the writing sequence. Inside the channel of the ibidi chip the top layer was anchored to the ceiling of 

the channel and thus no support was needed.   

 

 
Figure 11 CAD drawing of the writing sequence for woodpile constructs with support structures when writing free standing 

structures on cover glass. (A) Lower support frame consists of first 4 pillars 5x5x30 µm (red) and then 4 beams 4x10x100 µm 

(orange). (B) Upper support frame is added identical to the lower one (pillars first then beams). (C) The first layer of the woodpile 

beams has been added (white) written from the top. They are spanning the support beams to avoid the individual lines floating 

away. (D) Remaining woodpile beams have been added and the construct is finished.    

 

To determine these parameters test structures in the shape of small “tables” were designed to test 

whether the parameters would result in stable structures. The table has 2 legs each H x W x L = 4 µm x 10 

µm x 4 µm and the table top consist of a single written layer approximately 1.3 µm in thickness, see Figure 

12 A. The table top was written with lines perpendicular to the span in order to test the cohesive strength 

between the individual lines. When a standard line distance of 200 nm are used the single lines can just be 

distinguished and no apparent weak points can be observed (Figure 12 B), but when speed and line 

distance is increased to 300 nm the cohesiveness of the table top decreases and a near failure can be seen 

in Figure 12 C. The table seems to have collapsed which is attributed to the weakened table top. It was 

found that reducing the line distance to 250 nm was just enough to maintain structural integrity and 

therefore chosen as the optimal writing condition. The individual lines are visible and the surface roughness 

is thus increased. If a smoother surface is essential a line distance of 100 nm or below can be 

recommended, at the cost of a longer fabrication time. The optimized parameters were used to construct 
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the first woodpiles, see Figure 12 D, where the shadow effect can be observed as the inner beams in the 

third layer of the woodpile have collapsed due to very poor polymerization. This observation led to the top 

down writing sequence explained above. Otherwise the woodpile confirmed that a z distance of 1.3 µm and 

a line distance of 250 nm gave satisfactory structural stability.  

 

 
Figure 12 (A) CAD drawing showing the table structure used to optimize parameters, the table has 2 legs each 4 µm x 10 µm x 4 µm 

spaced 12 µm apart and connected by a single layer approximately 1.3 µm in thickness. (B – D) SEM micrographs of 2PP 

polymerized structures viewed at 30 degree tilt angle. (B) Table in good condition constructed with the following parameters: Line 

distance 200 nm, Z distance 0.9 µm, writing speed 600 µm/s. (C) Table showing poor structural integrity. The layer spanning the 

two legs is clearly on the verge of breaking apart due to an enlarged line distance of 300 nm together with a Z distance of 1.3 µm 

and a writing speed of 1200 µm/s. (D) Woodpile structure where the third layer in the woodpile is not properly polymerized due to 

the shadow effect of the underlying layers. The woodpile was written with the optimized parameters: writing speed 1200 µm/s, 

line distance of 250 nm and a z distance of 1.3 µm. It is clear from D that the bottom 2 layers are sufficiently polymerized, thus the 

shadow effect is only a problem when woodpiles exceed 20 µm in height. Scale bars are 5 µm in B and C 10 µm in D.         

 

The optimized recipe that was used to write both woodpile and channel structures can be seen in the 

scheme below. With these parameters the writing time of a 6 layer, 100 µm x 100 µm x 60 µm woodpile, as 

depicted in Figure 9, was reduced to 45 minutes. There are no considerable changes in the writing time 

when the design is adjusted to pore sizes of 5 µm, 8 µm 10 µm and 15 µm.  
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Optimized writing parameters Value 

Update rate (@ structure height) 3000 (60+ µm), 4000 (60-40 µm), 5000 (40-20 µm) and 6000 (20-0 µm) 

Line distance x/y 250 nm 

Z distance, layer distance 1.3 µm 

Dwell time 10 ms 

Laser power 80 % (16 mw @ sample) 

Writing sequence Top down (apart from single channel design) 

 

Following the initial optimization experiments, evaluation and visualization of the fabricated structures was 

done only with confocal microscopy. Confocal microscopy allowed for detailed 3D reconstructions with the 

possibility to visualize the internal pore structure of the woodpiles, something that, as can be seen in Figure 

12 D, can be difficult to distinguish in a SEM image. IP-L is highly auto fluorescent and was easy to image 

with fluorescein-like settings. Figure 13 shows is a confocal 3D reconstruction of the woodpile above seen 

from above with a 50x, 0.8 NA air objective.  

 

 
Figure 13 Confocal 3D reconstruction of the same 2PP fabricated woodpile structure displayed in Figure 12. Confocal images of the 

IP-L structures proved an excellent way to evaluate and visualize them. The shadow effect causing the third layer to collapse is 

clearly seen. Scale bar is 10 µm.     

 

To further improve the visualization of the internal pore structure we opted to use oil and water immersion 

objectives as can be seen in Figure 14. Matching the refractive index of the polymer structure with 

immersion oil lowered the refraction enough to acquire perfect 3D visualization. It was necessary to invert 

the writing direction from bottom up to top down, and hence it was also necessary to introduce support 
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pillars and beams to immobilize the individual lines when writing the top layers first. The necessary support 

structures can be seen as a CAD drawing in Figure 11 and a confocal 3D reconstruction in Figure 14 (A). A 

cut out of the center of the woodpile for better visualization of the internal pore structure is shown in 

Figure 14 B. An excellent reproduction of the CAD drawings is presented, thus demonstrating our ability to 

construct 3D woodpile scaffolds on cover glass substrates.           

 

 
Figure 14 Confocal fluorescence microscopy of a freestanding autoflourescent woodpile structure on a cover glass with pore sizes 

of 8 x 8 µm in the x, y and z directions. (A) 3D reconstruction of the woodpile construct, confirming a porous 3D structure. Support 

pillars and beams were added at the corners and around the edges of the structure (pillars marked by white arrows). (B) 

Reconstruction of the center volume outlined in A. 

 

2.2.2. Cytotoxicity test of polymerized IP-L resin 

 

Cytotoxicity of polymerized IP-L 780 resin was evaluated using a dendritic cell (DC) metabolism assay to 

ensure no adverse effects originated from the resin. Cytotoxic comparison was made against Tissue Culture 

grade polystyrene (TCPS) as a non-toxic reference and against PEGDA photopolymerized with the initiator 

Irgacure 2959, a system that is often used in biomedical applications and in tissue engineering in general 

and proven to be one of the least cytotoxic78,91.   

 

Methods 

Experiments were performed in a 96 well TCPS microtiter plate (Nunclon grade, Nunc, Roskilde, Denmark). 

50 µL IP-L 780 was dispensed into a well and photopolymerized with a dose of 180 mJ/cm2 at 365 mW in a 

MA4 mask aligner (Suss Microtec). 50 µL of 1 kDa PEGDA (Laysan Bio, Arab, AL) with 0.1% w/v IrgaCure 

2959 (2-Hydroxy-4ʹ′-(2-hydroxyethoxy)-2-methylpropiophenone, CAS  106797-53-9, Sigma-Aldrich) was 

dispensed into a second well and photopolymerized with 8.6 J/cm2 using the mask aligner. The latter high 

http://www.sigmaaldrich.com/catalog/search?term=106797-53-9&interface=CAS%20No.&lang=en&region=DK&focus=product
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exposure dose was required due to the presence of ambient oxygen acting as a radical quencher. A third 

untreated well was used as the non-toxic TCPS reference. Samples were prepared in triplicate on each 

plate.  

All wells were washed three times with MilliQ grade water (Merck Millipore, Billerica, MA) and left with 

MilliQ water for a further 72 hours at room temperature. Culture medium consisted of IMDM with 1% 

penicillin / streptomycin (P/S) and 10 % Fetal Bovine Serum (FBS) from Invitrogen (Life Technologies, 

Paisley, UK). The wells were filled with culture medium for 15 minutes and emptied, prior to seeding 5000 – 

10000 DCs in 100 µl culture medium in each well and incubation for 24 hours. The number of cells used in 

each experiment was constant but varied with the number of cells in the provided vials from Herlev 

Hospital between experiments, since the assay measures the relative metabolism an individual cell count 

was not performed. 10 µl AlamarBlue (Life Technologies) was added to each well and incubation was 

continued for 2 hours. After incubation 100 µl supernatant was transferred to a new microtiter plate, and 

the developed color was measured in a Victor3 plate reader (Perkin Elmer, Waltham, MA).  

 

 
Figure 15 Metabolic activity of dendritic cells cultured on different materials. Tests are performed with an AlamarBlue assay and 

the graph shows the activity relative to the metabolic activity on TCPS. Values are the average of two independent experiments 

shown with marks. The values for the TCPS are normalized for each experiment. 

 

The TCPS well bottom was chosen as reference material for the DC metabolic activity on the two 

photopolymerized materials. Figure 15 shows that photopolymerized IP-L 780 induces some reduction in 

DC metabolism compared to TCPS, but a smaller reduction than observed on the commonly used 

PEGDA/Irgacure 2959 system. These results were obtained on 1.5 mm thick material layers coating the 

entire well bottom. Considering the extremely small volumes of photopolymerized material in the in-chip 

constructs as well as an efficient washing process we do not anticipate significant cytotoxic effects. Cell 

functional assays supported this assumption by showing indistinguishable migration behavior of DCs loaded 

in channels with or without a fabricated IP-L construct. 
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2.2.3. 2PP migration scaffolds inside a commercially available polymer chip 

 
Because the near IR laser will not be absorbed by common polymer materials, 2PP allows for 

polymerization of liquid resins inside already assembled and bonded microfluidic channels. Here we use a 

polyethylene based chip from ibidi called µ-Slide Chemotaxis3D. It is purpose built for 3D migration 

chemotaxis studies in collagen and includes two 65 µl reservoirs divided by a 1 mm wide and only 70 µm 

high channel in which the migration is observed. In the photograph in Figure 16 the channel is highlighted 

with a black dashed line and the reservoirs with a white dashed line. Each single reservoir and the channel 

have two inlets giving six in all and allowing for fast and easy liquid exchange. A schematic of the chip in 

profile and the mounting position in the Nanoscribe 2PP system can be seen in Figure 7, page 17.    

 

 
Figure 16  Photograph of the ibidi µ-Slide Chemotaxis3D chip (76 mm x 25 mm) used as platform for two-photon polymerization of 

cell-sized 3D microstructures in the center channel (black dashed lines) between chemoattractant-containing and –free reservoirs 

(white dashed areas), adopted from Olsen et al.88. 

 

Most microfluidic chips designed for in-chip high resolution optical microscopy can be used as substrates 

for in-chip 2PP fabrication. The thin bottom layer and the two reservoirs situated next to the channel in the 

ibidi chip is a particularly favorable design, see Figure 16. The two reservoirs with a total volume of 130 µl 

in close proximity to a  total  channel  volume  of  ≈1  µl facilitate fast diffusion based development due to a 

very short diffusion distance of only 0.5 mm. Development times are further reduced by pressure-driven 

and thermal convection effects during the filling and emptying of the reservoirs. The closed microchannel 

system uses very small volumes (few µl) of costly resins and optional biomolecular additives compared to 

open systems. For chemotaxis analysis, the closed chip system is reported by ibidi to sustain a controlled 

linear concentration gradient in solution for up to 48h with a better control of the observed gradient than 

in previously reported open systems written by 2PP55,76. The chemoattractant concentration gradient is 

established in the middle channel section with dimensions of W x L x H = 1 mm x 2 mm x 70 µm. Writing a 
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woodpile structure of this size is obviously not possible given the writing parameters discussed above, as it 

would mean a total fabrication time of several days for one channel. We therefore chose to reduce the 

writing time by fabricating a construct of smaller outer dimensions positioned in the middle of the channel. 

The easy fluid exchange in this chip combined with the use of a liquid resin meant that loading and 

development is achieved within minutes. The only previously reported similar procedure includes pre-

exposure soft baking steps and cumbersome development in long closed channel systems where loading 

and development thus tally to hours and days82 instead of minutes.  

 

2.2.4. Gradient stability in ibidi chip and inside woodpile construct   

 

To establish whether the gradient formed inside the channel in the ibidi chip was actually stable for longer 

periods of time we did a time lapse experiment showing the gradient formation and stability. We used a 

chip with a collagen filled channel and loaded 0.1 mg/ml rhodamine-marked Streptavidin (Sigma Aldrich) in 

Phosphate buffered saline (PBS) (Sigma Aldrich) in one reservoir and pure PBS in the other reservoir. We 

then monitored the fluorescence intensity with the same Zeiss LSM 5 confocal microscope as used for 3D 

reconstructions of the 2PP constructs, with a 5x, 0.3 NA objective. This objective is able to image the entire 

channel width as can be seen in Figure 17, and is thus perfect for observing the cross channel gradient.  

 

 
Figure 17 Confocal micrograph (5X, 0.3 NA) of a collagen filled ibidi channel 2 hours after addition of 0.1 mg/ml rhodamin marked 

streptavidin in PBS in the left reservoir and PBS in the sink reservoir. The yellow rectangle shows the area used for analyzing the 

concentration variation across the channel. It can be observed that a gradient has formed from left to right. The height of the 

reservoirs (400 µm) compared to the shallow channel (70 µm) increases the observed intensity causing the overexposure of the 

detector in the source reservoir and the slight increase in intensity just after the edge of the drain reservoir. Scale bar is 200 µm.     
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As Figure 18 shows, the gradient in the ibidi channel was stable for at least 42 hours after loading of 0.1 

mg/ml streptavidin. The gradient slope was also stable up to 42 hours, though the overall concentration 

seemed to increase a little.  This could be an artifact from the image acquisition, since it was not trivial to 

maintain the exact same focus and acquisition conditions when reloading and focusing on the sample 

multiple times. Our data supports a long term stable gradient in the ibidi channel in agreement with the 48 

hours stability claimed by ibidi92.       

 

 
Figure 18 Graph showing excellent stability of a streptavidin gradient in a collagen (1.61 mg/ml) filled ibidi channel for up to 42 

hours. The source image for the profile at 2 hours is shown In Figure 17. The intensity has been scaled for visual purposes. The 

intensities decrease in the far right after the slight increase at the channel/drain interface to a level comparable to the lowest 

channel level, indicating a very low concentration of streptavidin in the right side of the channel, even after 42 hours. Dashed 

vertical lines indicate approximate channel boundaries. 

 

After having established that the gradient inside the ibidi channel was stable over long times it was 

calculated if the introduction of a woodpile scaffold would drastically affect the gradient formation and if 

the gradient was timely formed inside the construct. The diffusivity of a compound A in a medium B can be 

written as DAB. The diffusibility, Q, in a porous medium is then the ratio of the effective diffusivity, Deff, of 

compound A through the porous medium to DAB
93. van Brakel and Heertjes expressed the diffusibility as:  

 

𝑸 = 𝛆𝛅
𝛕𝟐       

 
where  ε  is  the  porosity,  δ  the  constrictivity,  and  τ  the  tortuosity94.  The  tortuosity  τ  is  close to unity in the 

woodpile design since the straight channels of the construct are parallel to the gradient direction being 

created inside the construct. The porosity is 0.71 for a perfect woodpile structure with 10 µm x10 µm pores 
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separated by bars of cross-sectional dimensions 10 µm x 4 µm. The introduction of a 1.3 µm vertical 

overlap between overlying bars to optimize the mechanical stability reduces the porosity slightly to a value 

no smaller than 0.68. The constrictivity cannot be calculated directly. However, van Brakel and Heertjes 

estimated that the constrictivity does not depend on the particular shape of the porous structure, but only 

on the ratio β between the maximum and minimum cross-sectional dimension of the porous path through 

the construct. For our woodpile design β≈2  corresponding  to  a  constrictivity  of  approximately  0.994. 

Inserting these values into the expression for the diffusibiilty  yields: 

 

𝑸 = 𝟎. 𝟔𝟖 ⋅ 𝟎. 𝟗
𝟏𝟐 = 𝟎. 𝟔𝟏 

 
The results show that the effective diffusion constant is reduced by <50% inside the construct compared to 

outside with a corresponding small delay in establishing a chemoattractant concentration gradient within 

the construct. However, the lateral extent of the construct is only up to 20% (200 µm) of the entire channel 

extent (1 mm) in the direction of the concentration gradient. This implies that the delay in gradient 

formation inside the construct will be insignificant in comparison to the establishment of the channel-wide 

concentration gradient and the total duration of the migration experiments being between 24 and 48 

hours. 

 

2.3. In chip 2PP cell migration constructs 
 

In this section the different in-chip migration constructs fabricated with the IP-L resin are presented.  

 

2.3.1. Woodpile scaffolds 

Pore dimensions of 5x5 µm, 8x8 µm, 10x10 µm and 15x15 µm were fabricated, see Figure 19, to ensure a 

range of pore sizes spanning from below a single cell dimension to above. Dendritic cells have been 

reported to have cross sections in the range of 7-8 µm in a 3D environment95, however we observed 

elongated and clearly squeezed cells in channels with a cross section of 10x10 µm, which would indicate 

that the cells used here are even larger.  Since it was impossible within a reasonable timeframe to fill the 

channel with one big woodpile the minimum construct dimensions were given by three requirements: 

(a) A substantial number of cells should traverse the porous construct instead of migrating around the 

construct (minimum length); (b) No cells should be able to sense both ends of the construct with their 
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dendrites simultaneously (minimum width); (c) Cells should not be able to migrate above or below the 

construct (full channel height).  

By positioning three or four 100 µm x 100 µm woodpiles next to each other, see Figure 19, we gained 

length substantial enough to guide many cells through the scaffolds instead of around. After a few 

experiments it was found that the DCs did not migrate through the 5 µm pores in substantial numbers to 

allow statistical analysis, which is why some of the experiments were done without the 5 µm pore woodpile 

scaffold. The biological relevance of migration analysis constructs with widths on the 100 µm length scale is 

supported by a recent publication showing oriented motion of murine dendritic cells only within the 

nearest 100 µm of chemokine-secreting lymphatic vessels96.  

 

 
   

 Figure 19 CAD drawing of the four different woodpile scaffolds used for in chip migration studies. All four constructs have 

approximate dimensions of L x W x H = 100 µm x 100 µm x 70 µm in height. By adjusting the number of layers the height was fitted 

to the measured channel height to ensure no cells squeeze below or above the construct. The red line indicates 70 µm and shows 

that all 4 constructs will fill the entire channel.    

 

The number of layers in the woodpiles was adjusted individually to fill the channel from top to bottom to 

ensure that no cells could migrate above or below the construct. A variation in channel height between 55 

µm and 75 µm was observed between ibidi chip batch numbers and at different positions on the chip, 

wherefore no constant construct height could be established. To further challenge the navigating skills of 

the cells and make them actively decide to enter the 3D scaffold we designed the bottom layer 

perpendicular to the chemokine concentration gradient in order to avoid cell migrating in a 2D like 

environment at the bottom of the channel.   

Complete development of in-channel woodpile constructs was verified by standard fluorescence 

microscopy and confocal 3D reconstructions. To allow for standard fluorescence microscopy a CO2 laser (FH 

Flyer, Synrad, Mukilteo, WA) was used for sectioning a chip next to the woodpile construct to provide 

optical access. Figure 20 shows fluorescence micrographs of an in-channel woodpile construct in front and 

70 µm 

                15x15 µm2             10x10 µm2           8x8 µm2                               5x5 µm2 
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bottom view and a confocal 3D reconstruction all confirming the presence of a continuous porous structure 

from channel top to bottom in all woodpile constructs. 

 

 
Figure 20 Fluorescence micrographs (A and B) of a woodpile construct in an ibidi channel shown in (A) top view and (B) side view 

after cell analysis and regeneration with collagenase. Each construct consists of three 100 x 100 x 70 µm3 volumes with 5x5 µm2, 

8x8 µm2, and 10x10 µm2 pore sizes respectively. A reflection in the channel bottom is seen in the front view image. A and B are 

adopted from Olsen et al.88. (C) A confocal 3D reconstruction of in-channel woodpile constructs with pore sizes of 15x15 µm2, 

10x10 µm2 and 8x8 µm2 respectively. A clear internal pore structure is observed, confirming that in-channel constructs are 

comparable to constructs fabricated on cover glass substrates. These constructs have been used repeatedly for migration 

experiments and subsequently undergone collagenase regeneration without observable damage. 

 

The basic woodpile topology described above permits direct cell migration from the front to the back of the 

construct with no need for turning. If a cell wants to turn it will, due to the woodpile geometry, need to 

change its vertical level in advance in order to reach a channel in the perpendicular orientation. By 

introducing barriers blocking the straight path through the constructs by one additional photopolymerized 

barrier per channel at alternating positions in neighboring channels, we force all migrating cells to perform 

at 3D spiral turn at least twice.  When the cell encounters a barrier as it follows the increasing chemokine 

concentration it will need to change level, then move sideways and then finally change level again before it 

can continue its forward movement. The alternating barrier positions assure this spiral turns are needed 

twice to traverse the construct. The barriers measure 2 µm in thickness and overlap the inside wall of the 

woodpile beam with 2 µm on each side to ensure stability.  The top and the bottom of the barrier both 

have the 1.3 µm overlap with the perpendicular beams, identical to the layer overlap in the woodpile 

construct, see Figure 10. Figure 21 A shows a CAD drawing of the woodpiles with barriers in perspective 

and in side view. The basic woodpile structure is shown in gray, while the additional barriers present in all 

C 

 
 20 µm 15x15 µm     10x10 µm    8x8 µm 
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three layers are highlighted in dark green. The side view shows the barrier-free passage ways for cells in the 

three layers with sideway channels. The outer dimensions of the construct are increased to L x W x H = 400 

µm x 200 µm x 70 µm to provide longer and more detailed analysis of the migration path of the individual 

cells and force a higher number of cells through the scaffold.  

 

 
Figure 21 Higher complexity 3D cell migration construct. (A) Schematic of the construct highlighting in green the additional barriers 

introduced to obstruct cell migration straight through the construct (from front to back). Insert: Construct in side view showing the 

free passage ways in the perpendicular direction. (B) Confocal fluorescence micrograph of the construct fabricated by 2PP, focusing 

on the lower three layers. Left: Orthogonal slice through the barriers (along dashed line in x/y projection) showing blockage of 

every second front-to-back channel in the x/z projection. Right: Slice through the basic woodpile showing all channels being open at 

these locations. From Olsen et al.88. 

 

We selected the 10x10 µm pore size for the higher complexity construct and also fabricated enlarged 

standard woodpile constructs to compare migration behavior when the cells are forced to move 200 µm 

and change direction in both lateral and vertical dimensions. Figure 21 B shows a confocal fluorescence 

micrograph of one of the layers containing extra barriers in the final in-chip produced construct. Cross-

sectional views (x/z) through the layer (x/y) show either the added barriers blocking every second channel 

or open channels depending on the y position of the cross-section, confirming that the cells need to do 2 

spiral turns to traverse the construct. 
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2.3.2. Mix and match 

 

Ideally, all cells should be forced to migrate through the construct. We tried to achieve this by a “mix-and-

match”  combination  of  2PP fabrication of the 3D micro structured construct followed by conventional 2D 

patterned exposure through a shadow mask in a mask aligner to polymerize bulk barriers leading up to the 

construct. IP-L, as already discussed, changes its refractive index upon polymerization and is thus easy to 

visualize directly after polymerization, thereby allowing us to align the barrier structures precisely to the 

already polymerized woodpile scaffolds and only develop the construct at the end. 

   

Methods 

In brief, the in-chip construct was exposed as already described but without development of the structure, 

i.e. unexposed IP-L 780 resin remained in the chip channel. The bulk barriers were designed as open areas 

in a standard photolithography chrome-on-glass shadow mask. The resin-loaded chip was mounted in a 

Suss MA4 mask aligner (Süss Microtec, Garching, Germany) where the bulk barrier outlines on the shadow 

mask were aligned to the visible polymerized construct in the resin. The bulk barrier areas were exposed to 

a dose of 300 mJ/cm2 at 365 nm, followed by simultaneous development of both construct and bulk 

barriers according to the procedure previously described.  

 

The bulk barriers effectively blocked the remaining channel volume next to the construct and would force 

the cells to migrate through the construct, see Figure 22. Unfortunately, the cells showed very limited or 

unusual migration behavior that was interpreted as being caused by released cytotoxic compounds from 

the bulk barriers. It is believed that the large bulk polymerized IP-L barriers meant that either 

unpolymerized monomers or still active photo initiators might continously be released from the bulk. Since 

the development procedure was not optimized for removing umpolymerized reagents from the bulk 

polymerized volumes it led to a cytotoxic effect not previously observed with the 2PP constructs alone.  We 

chose not to  explore the use of bulk barriers further since the cell analysis could be performed with 

statistical significance on the fraction of cells migrating through the construct in the absence of bulk 

barriers.   
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Figure 22 Fluorescence micrograph of 2PP woodpile construct with pore sizes of 5x5 µm2, 10x10 µm2 and 15x15 µm2 inside the ibidi 

channel with bulk barriers blocking the remaining channel and inlets. The cells were thus forced to enter the construct from the 

right in order to migrate from one reservoir to the other adopted from Olsen et al.88. 

 

2.3.3. Channel constructs 

 

To further investigate cell migratory behavior it was decided to design linear channel constructs. Cells have 

been shown to change morphology and migration mechanism when confined in 2 dimensions97,98. We 

believe that a major advantage of our system is the ability to observe migration simultaneously in a random 

3D collagen matrix and inside a micro fabricated construct. In the following, the fabrication of channel 

structures of various kinds is presented. Initially it was envisioned that we could determine the height in 

which the individual cells migrated through the constructs by designing simple multilayer channel 

constructs as shown in Figure 23 with barriers completely blocking specific entrances, and thus deduct 

which height they entered the construct from and which channel they migrated through. Refraction from 

the separation layers limited the visibility through the construct and made it impossible to track the cells. 

Therefore only the single channel design shown in Figure 23 was used for migration studies.  

 

ReservoirReservoir

Barrier

Barrier

2PP construct
15x15 µm
10x10 µm
5x5 µm
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Figure 23 CAD drawings of 3D channel construct designs. Left: Multilayer channels design that proved not fit for use due to 

refraction from the separating layers (red) limiting the visibility through the construct and thus rendering tracking of the cells inside 

the construct impossible. Right: Single channel design with 10x10 µm channels of length 400 µm closed by a lid (red) and a wall 

permitting the cells going over the construct.  

 

Single channel construct designs with channel dimensions of 10x10 µm, 15x15 µm and 20x20 µm were 

fabricated. Also lengths of both 200 µm and 400 µm were made. A wall at the beginning of the channels 

was incorporated to prevent the cells from just migrating over the channels. It consisted of two rods 10x4 

µm in cross section and 200 µm wide (yellow) placed 10 µm apart with a horizontal separation layer (red) of 

1.3 µm thickness to stabilize the wall every 10 µm in height. For the 10 µm and 15 µm channels a horizontal 

lid (red) of only one written layer (1.3 µm thickness) was stable enough to span the rods and close the 

channels. When the channel width was increased to 20 µm a lid of three written layers (3.9 µm) was 

needed to maintain a stable structure. The critical moment where a collapse is most likely is assumed to be 

upon evaporation of the last remaining fluids in the channels after development. A substantial surface 

tension induced stress is believed to be the cause of the observed collapse of the 20 µm spans when only 

one layer was used. When fabricating structures larger than 300 µm by 300 µm it is necessary to stitch 

together structures due to the limited range of the piezo stage of the Nanoscribe equipment. Therefore an 

intersection can be observed in Figure 24 where the two halves of the channels are stitched together with 

the help of the less precise motorized stage. The construct depicted in Figure 24 has the exact dimensions 

of the single channel CAD design shown in Figure 23.              
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Figure 24 Confocal 3D reconstruction of a single channel construct with channels measuring 10x10x400 µm. Only approximately 

220 µm of the construct length can be seen due to the limited viewfield of the objective. The separation layers positioned every 10 

µm can be observed in the wall, which is also only shown in part. Scale bar is 20 µm.   

 

2.3.4. 2PP based on 3D CAD files  

 

In the course of this project it was also evaluated how the Nanoscribe system and the included software 

package, especially the Nanoslicer, performed when given the task to write true arbitrary 3D shapes from 

stl-format 3D files. The Nanoslicer works as the name suggests by slicing the 3D geometry at a defined 

interval, similar to other 3D printing software. It outputs a solid file where the whole interior of the 

geometry is completely cross linked, a contour file where only the contour lines are cross linked and a 

combined file where both are featured.  Several adjustments had to be made to the recipe optimized for 

woodpile and channel constructs in order to allow for higher complexity writing tasks. The writing speed 

was reduced to 200 µm/s, the laser power reduced to 70 %, and the layer distance reduced to 0.5 µm for 

enhanced resolution. The three objects shown below in Figure 25 were written from the bottom up to 

ensure adhesion to the substrate and clearly illustrate the true capabilities of the 2PP technique. The Lego 

brick and the x-wing fighter in Figure 25 A and B respectively were written from the combined file, meaning 

both the contour and the center of the constructs are polymerized, still one layer at a time. The diamond 

lattice in Figure 25 C is written only from the contour file, which results in the hollow structures as seen in 

the top of the construct. By only writing the contours of an object, one can significantly reduce the required 

writing time. Even though only the contour was written of the diamond lattice the complexity of the 

geometry would give writing times two to three times longer compared to a similar sized woodpile 

construct. We did consider only writing the contours of the woodpile constructs, but the mechanical 

stability of the structures would have been compromised. 
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Figure 25 Confocal 3D reconstructions of 2PP fabricated 3D figures. (A) A standard (2 by 8) Lego brick measuring (LxWxH) 32 x 16 x 

12 µm. (B) X-wing fighter measuring (LxWxH) 46 x 40 x 14µm. (C) Diamond lattice construct measuring (LxWxH) 64 x 64 x 42 µm, 

with a 10 µm pore size. Scale bars:(A) 5µm, (B) and (C) 10 µm.  

 

2.4. In chip migration studies  
 

The migration studies presented in the following are done almost exclusively by Gertrud Malene Hjortø. 

The cells used are mature dendritic cells provided by Morten Hansen and Özcan Met at Herlev University 

Hospital. Briefly the dendritic cells result from extraction of monocytes from blood of healthy donors, 

followed by differentiation and maturation to mature dendritic cells.  The techniques involved in extraction 

and maturation as detailed in earlier work  will not be discussed here1,2,4,99,100. Cell handling protocols as 

performed at Herlev University Hospital and by Gertrud Malene Hjortø can be found in Olsen et al.88 and in 

Appendix 1.  

 

2.4.1. Migration through Woodpiles constructs  

 

Mature dendritic cells suspended in collagen were seeded in the sink reservoir and 60 ng/ml of the 

chemoattractant CCL21 was filled in the source reservoir of the ibidi chip. The collagen gel acts as a natural 

biological environment mimicking the in vivo extracellular matrix and aiding migration via adhesion sites 

and physical support. A stable gradient is formed across the whole channel width and inside the woodpile 

constructs as discussed above. Mature dendritic cells express the receptor CCR7 that recognizes CCL21, 

which in vivo is secreted by the lymphatic vessels and as such acts as a primary homing signal and is vital in 

the adaptive immune response. Here we analyze the DCs ability to transmigrate through collagen filled 
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woodpile constructs with varying pore sizes in order to assess the effect of confinements and pore sizes in 3 

dimensions. This will attempt to mimic the squeezing and navigation necessary when the DCs are homing 

to the lymph nodes through the different environments encountered in vivo. Woodpile constructs with 

pore sizes of only 5 µm saw very few transmigrating cells and is not included in the results, due to a lack of 

statistical relevance.             

 

 
Figure 26 Phase  contrast  microscopy  snapshots  (bottom  view)  showing  two  dendritic  cells  (labeled  “1”  and  “2”)  migrating  inside  a  

15 x 15 µm pore size woodpile construct. Both cells probe neighboring channels in (B) and (C), before deciding on a channel to 

migrate through in (D). Direct link to movies: http://web-files.ait.dtu.dk/maol/Woodpile_movies.zip. The cell outlines have been 

highlighted in green by use of image processing in ImageJ90. 

 

Time-lapse analysis was used to determine the number of turns the cells performed during the 

transmigration of the woodpile constructs. In Figure 26 two cells are seen migrating through a 15 µm 

woodpile construct, first a decision has to be made to which pore to go through. When a channel is chosen 

transmigration begins and in this case no turns are observed. The gradient is established along the channels 

and will thus not in itself encourage the cells to change channels. It is therefore only the physical 

confinement of the cells and the sheer option to make the turn that will influence the number of turns 

made. The number of turns made by the individual cells were counted and compared in Figure 27 and 

Figure 28. First the number of cells going straight through the construct was compared to the number of 

cells making one or more turns, Figure 27. A turn is counted as a 90 degree turn in the x/y plane, due to a 

lack of depth perception inside the scaffolds the inevitable turn made to change position in z is not 
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counted. Significantly more cells are making no turns in the woodpiles with 15 µm pores compared to 8 µm 

pores.             

 

 
Figure 27 Comparison of the fraction of cells moving straight through a woodpile construct to cells taking one or more turns, as a 

function of the construct pore size. Significantly more cells turn as they migrate through 8x8 µm pore constructs than through 

15x15 µm pore constructs (p=0.033). No significant difference is observed between the 10 µm and the 8 µm constructs but the 

trend is clear, the smaller pores induce more turns.  Error  bars  show  the  standard  error  of  the  mean  (n≥7). 

 

The pore size definitely has an effect on the likelihood that a turn is made by the cell when traversing the 

constructs. If one looks a little more closely at the number of turns performed by the cells in the different 

constructs, it becomes clear that the smaller and more confined constructs increase the tendency for the 

cells to seek out new and possibly less constrained routes to traverse the construct. In Figure 28 the 

number of turns is detailed for the three different pore sizes and although no statistical significance is seen, 

there is a clear trend showing more turns from cells in the 10 µm and 8 µm constructs. Whether the 

tendency to induce more turns is also seen when comparing the 8 µm and the 10 µm pore constructs is 

difficult to tell. No statistical significance was found, but if the number of cells observed were increased it is 

possible that the trend would be clearer still. Tighter physical confinement and smaller pore sizes seem to 

induce more turns and could possibly be a measure of migration ability.           
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Figure 28  Detailed cell migration analysis as a function of construct pore size. There is a clear trend towards more cells making at 

least one turn in the smaller pore constructs. It is less clear if the 8x8 µm pores induce more cell turns than the 10x10 µm pores.  

Error  bars  show  the  standard  error  of  the  mean  (n  ≥  7). 

 

In the standard woodpile constructs the cells can traverse the constructs without making any turns. We 

therefore opted to introduce barriers in the woodpiles to force the cells to make at least two turns, see 

Figure 21. The length of the constructs was also changed from 100 µm to 200 µm to create a longer 

pathway for the cells in the construct. The introduction of barriers and the extended width of the 

constructs were added to better mimic the less ordered in vivo extracellular environment where barriers 

are abundant and no straight unhindered paths are very likely. In Figure 29 the standard woodpile 

construct with a 10 µm pore size is compared to the construct with barriers to see the effect on the number 

of turns made by the cells. First it can be observed that no cells traversed the constructs with barriers 

without turning at least twice as deemed necessary by the two barriers they have to circumvent. Next it 

was found that while as many as 30 % of the cells do not turn in the standard woodpile the fraction of cells 

that spread over more turns increased compared to the 100 µm constructs and a number of cells were 

observed doing more than 6 turns, something not observed in the 100 µm long woodpiles. As expected this 

indicates that the longer distance traversed increase the likelihood of a cell deciding to do a turn even 

though it is perpendicular to the gradient slope. It could appear as if the fraction of cells going straight 

through the construct in the standard woodpile is added to the fractions doing 1-2 and 3-4 turns in the 

woodpile with barriers, signifying that the cells that would tend to go straight through if they could also 

opted to do a minimum of turns in the woodpile with barriers. By introducing this more complicated 3D 

woodpile maze it is shown that DCs can navigate through increasingly complex 3D structures. The migration 

ability of the DCs could be measured by letting them navigate through constructs of increasing complexity.                             
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Figure 29 Fraction of DCs making specific numbers of turns inside an in-chip woodpile construct with 10x10 µm pores without (top) 

or  with (bottom) additional barriers. The fraction of cells making a specific number of turns seems to be more spread out in the 

standard woodpile construct when the length is increased from 100 µm, in Figure 28, to 200 µm here (top). Note that cells by 

design of the construct must make at least two turns to pass the barriers. Error bars show the standard error of the mean (n=3). 

 

2.4.2. Migration through microchannels 

 

Migration through microchannels of varying length and cross section are performed according to the same 

protocol as the woodpile studies above. The channel constructs, Figure 24, are written in the middle of the 

bottom of the microchannel in the ibidi chip. We expect the gradient to be established inside as well as 

outside the microchannels. As demonstrated by others101 the gradient observed by cells inside 

microchannels might be similar to what is observed in Boyden chambers where a steep concentration 

gradient is observed from the back to the front of the cells when the cell is reaching through the pores in 

the membrane with their long dendrites. If the cell is occluding the channel and thus hindering the gradient 

formation when migrating inside the channel a steep gradient will be formed from the front to the back of 

the cell. Here we analyze the influence of the channel cross section and the channel length on migration 

speed and also compare the in-channel migration to cells migrating outside the channels in the 

unstructured collagen. This gives a very good comparison between migration inside and outside the 

channels, because migration studies of the cells in the collagen matrix are performed simultaneously with 

the migration studies of the cell inside the channels. As a result it gives an unprecedented foundation to 

compare the two situations under near identical conditions.  
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Figure 30 Comparison of migration time through 400 µm long microchannels with cross sections of 20 µm, 15 µm and 10 µm, and 

through 400 µm collagen. Significantly longer migration time (approx. 30 %) is observed for cells migrating through the 20 µm 

channels compared to both the 15 µm and the 10 µm channels (P<0.05). There is no observed difference in migration time 

between 15 µm channels and 10 µm channels. The time it take the cells to traverse 400 µm along the gradient axis is roughly 

doubled when done outside the microchannels in the unstructured collagen matrix compared to inside the microchannels. Error 

bars show the standard error of the mean (n=3). 

We observe a significantly shorter migration time through the 15 µm and 10 µm channels than through the 

20 µm channels, Figure 30. There is no measurable difference in migration time between the 15 µm 

channels and the 10 µm channels which could indicate that an occlusion is formed by the cells in the 

narrow channels but not, or only partly, in the wider 20 µm channels, see Figure 31.  

 
Figure 31 Phase microscopy snapshots showing dendritic cells migrating through the channel constructs with cross sections of (A) 

10 µm, (B) 15 µm and (C) 20 µm. Cells inside the channels are highlighted with white arrows. In the 10 µm channel (A) it is clear that 

the right cell is elongated (50 µm) and occludes the channel. The cells in the 15 µm channels (B) are substantially shorter but still 

seem to occlude the channel. In the 20 µm (C) channels it is difficult to distinguish the cells in the channels from those on top of the 

construct indicating that they are less confined and probably do not occlude the channel completely. The cell outlines have been 

highlighted in green by use of image processing in ImageJ90. 

   400 µm migration  
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The migration time in the collagen matrix parallel to the gradient axis is more than double compared to 

inside the channels. Migration in all channel constructs outperformed the free roaming migration in the 

collagen matrix that showed a much longer migration time to traverse the 400 µm next to the channels. 

Migration speed in the collagen matrix was as low as 2.6 µm/min towards the CCL21 source, compared to 

4.6 µm/min, 5.9 µm/min and 6.0 µm/min for the three channel constructs. Comparable in vivo and in vitro 

observations have been made and also conclude that dendritic cells migrate faster confined in 

microchannels than they do outside in the collagen matrix either in vitro or in vivo in the extracellular 

matrix17,96,102. The more complicated the matrix is and, consequently, the number of decisions that have to 

be made by the cell could be some of the main factors that explain the huge difference in migration speeds. 

The increased gradient slope as perceived by the cell inside the channel is most likely also a factor. To 

evaluate whether these effects of the perceived gradient slope were dependent on the channel length, we 

tested the migration time of the 400 µm channels against 200 µm channels, Figure 32.  

 

 

 
Figure 32 Migration time needed for the cells to traverse the 200 µm and 400 µm long channels with a cross section of 10x10 µm. 

Migration speed is slightly, but significantly (P=0.04), higher for the 400 µm channels at 6.2 µm/s vs. 5.4 µm/s for the 200 µm 

channels. Error bars show the standard error of the mean (n=4, 200 µm and n=5, 400 µm).     

 

We compared the migration time in the 10 x 10 µm wide channels and found that the migration speed was 

slightly higher in the longer channels, namely 6.2 µm/min compared to 5.4 µm/s in the shorter channels. 

This difference is not much but if the occlusion theory is correct it would indicate that the longer channels 

favored faster migration because the occlusion is in effect in a longer channel leading to a greater 

concentration difference between the beginning and the end of the channel. This would again lead to an 

   Migration through 10x10 µm channels 
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increased gradient slope that will affect the migration relatively more in the longer channels. The decrease 

in migration speed observed from the 400 µm channels to the 200 µm channels is very low compared to 

the gap between the different cross sections in Figure 30 where the speed is reduced to 4.6 µm/min in the 

large, 20 µm channels.  This indicates that the steepness of the increased gradient slope is an important 

factor in determining the migration speed.                

 

2.5. Chip regeneration compensates for higher fabrication costs 
 

As part of the cell handling and migration protocols used we developed a method for regeneration of the 

polymer in-chip migration constructs, see Appendix 1. Thanks to the easy liquid exchange and sink/source 

design of the ibidi chip system we were able to introduce a collagenase treatment that thoroughly dissolves 

the collagen gel and rinses the chip of collagen and cell residues and prepares the construct for repeated 

experiments. The effect of the collagenase treatment is observed in Figure 20 where there is no sign of 

collagen left on the constructs after multiple experiments. The hard IP-L resin creates a tough structure 

where the pores are still intact and the structural integrity of the construct is not compromised by the 

repeated treatments. The collagenase regeneration not only drastically reduces the cost of multiple 

experiments for this system but also for many others that utilize collagen in confined spaces. The only 

requirement is easy liquid exchange in the system. 

 

2.6. Discussion  
 

2.6.1. In chip 2PP fabrication of woodpiles and channel constructs  

 

2-photon polymerization is still a new technology and progress is being made to improve the fabrication 

speed and the accuracy of the systems83,84. Here we opted to only use a 100x, 1.4 NA oil objective because 

it created a voxel of dimensions smaller than the demanded feature size. We briefly tested a 20x, 0.5 NA air 

objective, but chose not to go forward with the optimization due to a much larger axial length of the voxel 

and what seemed to be a requirement for lower writing speed to achieve full polymerization. If the voxel 

dimensions are calculated as previously described, the voxel will be 2.7 times wider and an astonishing 7 

times longer than for the 1.4 NA objective. Thus the need for longer exposure times are explained by the 

loss in light intensity by the less tight focus. It was not properly investigated whether the extended voxel 

from the 0.5 NA objective was as well defined in height as was the case for the 1.4 NA objective. One could 
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imagine that if the polymerization threshold of the 0.5 NA objective was as sharp as the 1.4 NA objective 

then the introduction of a more powerful light source could vastly increase the volumetric writing speed, 

while still maintaining the overall confinement of the written lines and allowing for the creation of high 

resolution geometries. This means that even when low NA objectives are used the precision of the stage 

will still allow shallow channels or pores to be created if the voxel is well defined. To avoid many sequential 

lines an objective with a NA providing only the needed resolution is recommended in order to achieve the 

optimal writing speed. Such a strategy has been adopted by Ovsianikov et al.54,78 to produce cylinder based 

scaffolds of PEGDA with a 20x, 0.4 NA objective. In retrospect an objective with an intermediate NA of ~1 

would most likely have increased the writing speed of the constructs presented here without compromising 

the level of detail in 3D.            

 

In this project the scope has not been to develop new technologies, but to apply current technologies in 

new and smarter ways. 2PP is not suitable for large volume scaffolds for grafting in regenerative medicine 

or building new organs from the bottom up. It definitely has the precision and resolution needed for tissue 

engineering, but for the time being writing speeds are too slow for many of the applications that require 

large volume or large numbers, thus rendering the cost of a single experiment or product too high. We 

have tried to utilize the benefits of the 2PP technique by polymerizing cell migration constructs of 

increasing complexity inside a microfluidic channel in an all polymer commercial chip. To the best of our 

knowledge there are only two other examples exploiting the 2PP techniques ability to polymerize 

constructs inside a closed microfluidic system81,82. Our system improves a number of issues demonstrated 

by other 2PP fabricated migration constructs55,76 as well as issues already demonstrated in other in-channel 

fabrication schemes82. In-chip benefits of our migration system entail better control of- and longer lasting 

chemical gradients. These are paramount for reproducible and physiological relevant chemotaxis analysis, 

lower needed volumes of potentially expensive chemicals and easy cleaning and regeneration of the 

system. Our system also benefits from much faster loading and development times than previously 

described systems thanks to easy fluid exchange and the use of a low viscosity resin with no need for a pre-

exposure baking step. We do not however address complex scaffold structures such as Schwarz p-surface 

or more in vivo like random fibrillar constructs, which might resemble the extracellular matrix more. The 

more complex or random structures would greatly extend the writing time and it is believed that the 

complexity of the connective tissue, with both loose and dense zones103 as well as complex gradients of 

both chemical and mechanical nature103 is impossible to mimic in its full extent. Therefore one must choose 

which tissue or characteristic of cell motility to address by the in vitro system. The fabrication of woodpile 

as well as channel constructs represents a choice of geometry that is based on what simple constructs can 
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approximate a given in vivo condition. By introducing these geometries into a premade microfluidic system 

it is demonstrated that 2PP fabrication of 3D cell migration constructs might be one of the best alternatives 

for 3D cell migration studies in terms of flexibility and ease of use.   

 

2.6.2. Migration through woodpiles 

 

Most noticeably we saw almost no dendritic cells traverse the 5 µm woodpile constructs. Most of the cells 

opted to go around the constructs thus moving perpendicular to the gradient to avoid squeezing through 

the narrow confinements. It has previously been shown that dendritic cells can traverse 5 µm pores in 

Transwell chambers99,104  and Faure-André et al. show migration through 4 µm micro channels102. It is 

believed that the decision to go around the construct is influenced by the easier modulated collagen 

matrix, but if there is no other way the dendritic cells are capable of squeezing through smaller pores.     

The main topological difference between the Transwell system and the woodpiles is the much smaller 

thickness (width) of the 10 µm thick Transwell membrane that allows DC dendrites of lengths up to 70 µm, 

see Figure 26, to explore the highest and lowest chemokine concentrations simultaneously - effectively 

presenting a very steep concentration gradient. Comparably, our 100 µm wide constructs with a definable 

gradient slope resemble the in vivo microenvironment of the DCs more closely96 and does not present the 

cells with a sudden increase in chemokine concentration through the next pore. This will make the decision 

to go around or seek other routes more plausible before deciding to squeeze through a small pore requiring 

cytoskeletal rearrangements and most likely nuclei deformation18,19.   In general the DCs continue their 

migration path after entering the construct and do not seem to have a problem detecting the 

concentration gradient within the construct. We observed multiple possible pathways being probed by 

both the DCs in Figure 26 C. DCs show very long straight dendrites (up to 30 µm) being extended into the 

construct channels prior to deciding on a channel for transmigration. Up to 70 µm long dendrites are 

observed in the time-lapse movies (the source movie to the snapshots in Figure 26 can be seen on this 

direct link: http://web-files.ait.dtu.dk/maol/WoodpileMovie_15um_pores_2min_per_frame.avi). We also 

observed DCs going both back and forth inside the constructs before finally deciding to move in the 

direction of the gradient. This would indicate that the DCs can easily sense the gradient in the adjacent 

channels and thus also in the neighboring layers in the construct while having the opportunity to go both 

left and right as well as up and down. This differentiates the 3D structured migration constructs presented 

here from channel structures and membranes, which do not allow the cell to detect the gradient from a 

true 3D environment. The presence of additional barriers in the woodpile constructs prevents straight 

extension of probing dendrites, and may thus result in less persistent cell motion either as a result of 
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differences in signal processing or due to the need for repeated cytoskeletal rearrangements.  We observed 

DCs using quite some time to decide which way to go when they encountered a barrier, this decision 

process can be clearly observed in the time-lapse movies (direct link: 

http://web-files.ait.dtu.dk/maol/WoodpileMovie_10um_pores_w.barriers_2min_per_frame.avi.). By 

introducing constructs of varying complexity it will most likely be possible to assess the specific migratory 

properties of a cell population relevant to a specific tissue or migratory pathway in vivo. The 2PP technique 

has proven suitable for the fabrication of 3D constructs that are applicable to mimic the less organized in 

vivo extracellular microenvironment. The synthetic in-chip fabricated 3D constructs presented here ideally 

capture the best of both analytical approaches by providing accurate structural definition and allowing for 

arbitrary variation in 3D connectivity, with or without the added fibrillar collagen ultrastructure. Straight 

channel constructs of 10x10 µm2 to 20x20 µm2 cross-section resulted in DC migration speeds of 4-6 

µm/min, however, the effective migration speed was significantly reduced upon the introduction of 

branching or barriers in the channel systems due to repeated directional decision processes by the cell 

when encountering an obstacle to its direction of motion, be it parallel (woodpile wall at the construct 

entrance) or perpendicular (barrier). This is in agreement with in vivo migration studies showing slower 

migration speeds of approx. 2 µm/min of dendritic cells migrating towards lymph nodes96. 

 

2.6.3. Confined migration through channel constructs 

 

By increasing the channel cross section from 15 µm to 20 µm we observed a substantially lower migration 

speed 5.9 µm/min vs. 4.6 µm/min. At least two phenomena will affect the migration speed when increasing 

the channel cross section. Firstly, by increasing the size of the channel the cells will not feel the same 

confinement97 and behave more as if they were not in a channel at all. Secondly, as mentioned above, if the 

cells do occlude the channel a very steep gradient will quickly form between the front leading edge of the 

cell and the trailing end giving the cell the impression of a steeper gradient. These two phenomena could 

very well come into effect at the very moment when the cells no longer fill the channel cross section. At 

that moment the steeper gradient will no longer be formed and the cell will be less likely to change 

migration behavior when entering the channel because it does not feel confined enough to do so. In that 

case the migratory behavior of the cell will resemble more the cell migrating in the free collagen matrix. We 

calculated the volume of a dendritic cell to correspond to a sphere of diameter 18 µm on average, by 

measuring the average length of three cells in a 10 µm channel and multiplying with the channel cross-

section. This size supports the assumption that the step from 15 µm to 20 µm in cross section could be 

around the threshold where the cells change from a confined to an unconfined migration mode. This would 
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also explain why the migration speed did not change between the channels with a 10 µm cross section and 

a 15 µm cross section. Snapshots from migration movies in Figure 31 support this theory by showing that 

the dendritic cells are clearly confined in the 10 µm channels, most likely confined in the 15 µm channels 

and less confined in the 20 µm channels. In fact it is very difficult to distinguish the cell morphology inside a 

20 µm channel from those in the free collagen matrix, this is not the case for DCs migrating inside the 10 

µm and 15 µm channels (direct link to movies:  

 

http://web-files.ait.dtu.dk/maol/ChannelMovie_10um_2min_per_frame.avi 

http://web-files.ait.dtu.dk/maol/ChannelMovie_15um_2min_per_frame.avi 

http://web-files.ait.dtu.dk/maol/ChannelMovie_20um_2min_per_frame.avi).      

 

We observed dendritic cell confined migration speeds of 6 µm/min in straight microchannels filled with 

fibrillar collagen in accordance with former work using protein coated but unfilled channels102. At the same 

time, we measured the migration speed of the cells not entering the channels but migrating alongside them 

in the random collagen matrix. With this setup the same batch of cells can be compared under identical 

conditions, and an unprecedented comparison can thus be made between confined and unconfined 

migration speeds. We found that free roaming cells traversed the 400 µm with an average speed parallel to 

the gradient of 2.4 µm/min or under half the speed of the completely confined cells in the 10 µm and 15 

µm channels. The free roaming cells migrating in the collagen matrix also had the opportunity to go left and 

right and up and down thereby increasing the length of their overall migration path thus slowing down the 

traversing speed. The speed of the cells in the 20 µm channels falls in between the confined and the free 

migrating cells and could be called semi confined migration. Similar observations have been done before by 

Tong et al.98 who also observed the division of migration speeds into steps depending on the degree of 

confinement. This indicate that only when the degree of confinement changes will the speed change. Thus, 

the speed will not necessarily changed but when the dimensions are changes only if the dimension change 

also changes the degree of confinement. As a result the migration speed in the 10 µm and the 15 µm 

channels was identical. Tong et al. observed the inverse relationship between confinement and speed 

compared to our experiments, but they did not use collagen filled channels and did not use dendritic cells, 

so the morphological change is therefore not comparable. The migration speed in the shorter 200 µm 

channels was slightly slower at 5.4 µm/min compared to 6.2 µm/min in the longer channels. The reason for 

this is believed to be the steepness of the gradient created inside the occluded channel. When the cell 

enters the channel the gradient step is quickly created and the chemokine concentration behind and in 

front of the cell equilibrates now with the concentration at the start and at the end of the channel 
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respectively. The concentration difference between the beginning and the end of a channel in a linear 

gradient will be doubled when doubling the length of the channel. The steepness of the gradient across the 

cell is thereby heavily influenced by the channel length and thus favors a higher migration speed in the 

longer channel.         
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3. Soft biomimetic hydrogel as cell migration platform 
 

3.1. Poly (ethylene glycol) diacrylate as biomimetic hydrogel 
 

A hydrogel is a "gel in which the swelling agent is water" as defined by IUPAC105. The connective extra-

cellular matrix consists primarily of collagen, a protein based hydrogel. It is natural to look for artificial 

alternatives among soft hydrophilic networks that have similar properties, but are more easily tailored to a 

specific need. For this Poly (ethylene glycol) diacrylate (PEGDA) is a great candidate. As mentioned in the 

introduction, PEGDA is a widely used material in tissue engineering. The poly (ethylene glycol) PEG chains 

are generally known for their hydrophilicity and their protein repellent properties. Moreover it was recently 

shown that a PEG coating can also hinder adsorption of non-protein drugs and small molecules to various 

polymer surfaces106. The PEGDA macromers (Figure 33) normally used have a molecular weights ranging 

from around 500 g/mol to 20.000 g/mol. With these molecular weights the number of PEG monomer units 

vary from only a few to several hundreds.  

 

 

Figure 33 PEGDA macromer unit and the gel radical polymerization mechanism. The acrylate ends with the vinyl group attached to 

the ester is the reactive moiety. n denotes the number of PEG units in the chain. It is the ether in the chain that accounts for the 

hydrophilic properties of PEG. After initiation the polymerization will propagate along the kinetic chain and add more and more 

macromers to the network until it terminates, see Figure 34. 

 

The very short (<700 g/mol) macromers are fluid at room temperature and are thus easier to work with and 

mix with various photoinitiator compounds. But the short chain networks do not hold as much water as the 

longer chain networks due to the shorter distance between the cross links in the gel, see Figure 34 A.  

Radical photoinitiation is the most widely used method to crosslink the gels. 
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Figure 34 (A) Polymerization and cross linking of PEGDA hydrogels. The light gray chains are called the kinetic chains and are the 

backbone of the network. The double lines are the vinyl groups with the PEG chains in between and the dots are free radicals. 

Because PEGDA is a divalent macromer the acrylate in the opposite end can link two kinetic chains together with a cross link, when 

the cross linking density is high enough the solution reaches the gel point. (B) If functional moieties are added to monoacrylate PEG 

macromers they can be incorporated into the gel, RGD and GF are short for the tri-peptide Arg-Gly-Asp and a Growth Factor 

respectively, to create a biochemically tailored gel. The figure is adapted from Bryant el al.107    

 

In a hydrogel it is the chemical potential that drives water in between the chains and the elastic retractive 

forces of the network that push the water out. The equilibrium is called the equilibrium degree of swelling 

and is defined either as the mass equilibrium degree of swelling (q) or the volumetric equilibrium degree of 

swelling (Q)107:          

𝐪 = 𝐌𝐬
𝐌𝐝

,        𝑸 = 𝐕𝐬
𝐕𝐝

= 𝟏 + 𝛒𝐩
𝛒𝐬

(𝐪 − 𝟏)   

with Ms and Md being the mass of the swollen and the dry gel, Vs and Vd being the volume of the swollen 

and dry gel, and ρp and ρs being the density of the polymer and the solvent respectively. The equilibrium 

degree of swelling is interesting, since it relates to the mechanical properties of the gels and hence is very 

important when designing biomimetic gels for a specific tissue or cell response35,108–110. q is especially easy 

to measure by weighing the polymerized dry and swollen samples. PEGDA hydrogels have been shown to 

A 

 

 

 

 

 

 

B  
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span a range of elastic moduli ranging from that of soft tissue ~1 kPa111 to that of soft cartilage ~ 1 MPa108. 

These numbers also correlate well with the mechanical properties of collagen gels used in migration studies 

as an extracellular matrix component that has been shown to have elastic moduli between 1 kPa and 25 

kPa depending on concentration112. PEGDA is therefore a very good alternative for building soft 3D shaped 

migration scaffolds.  

Several factors will influence the equilibrium degree of swelling and the mechanical properties of the 

PEGDA gel: 

1. If the macromer length increases the gel will tend to swell more and become softer, on the other hand 

shorter macromers will give harder and more brittle gels.  

2. The polymer volume fraction (V2,r) in the relaxed preparation state will change the cross linking density 

and thus the swelling and the mechanical properties. Higher V2,r will lead to stiffer gels. 

3. Total fluence (J/cm2) and concentration of photo initiator will also have an effect on the mechanical 

properties of the gel. If limited by kinetics a short exposure or low photo initiator concentration will give a 

softer gel, due to incomplete crosslinking.    

Depending on the photo initiator and macromer concentration a saturation point will be reached where 

extended exposure time will have no effect because all the crosslinkable moieties have reacted.   

   

PEGDA  hydrogels  are  also  used  in  tissue  engineering  because  they  function  as  a  “blank  slate”  for  designing  

specific scaffolds for regenerative medicine22. The term blank slate means that the scaffold is free of any 

biochemical clue or signal that natural derived hydrogels, such as collagen or matrigel, have build in by 

nature. The idea is then to add only the biochemical stimuli needed for the study. The remaining unreacted 

acrylates in the hydrogel matrix will still be reactive and can be used to add biochemical functionalities 

either in 2D patterns on the surface24 or in 3D patterns in the bulk113,114, see also Figure 34 B. Macromers 

with the tri-peptide (Arg-Gly-Asp/RGD) have successfully been added to the preparation solution and 

incorporated to facilitate integrin mediated cell adhesion115. A typical way of linking a functional moiety to 

the PEG chains is to use a N-Hydroxysuccinimide (NHS) coupling reaction that couples any primary amine 

with a NHS functionalized molecule, see Figure 35, but also click chemistry116,117 has proven very useful for 

functional patterning of PEG hydrogels . By coupling to a primary amine proteins and any peptide that 

include lysine can easily be coupled to an Acrylate-PEG-NHS macromer and then be linked to the gel either 

in bulk or in patterns with photo lithography.    

With these methods it is possible to tailor both the PEGDA hydrogels mechanical and biochemical 

properties to a given purpose.                          
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Figure 35 NHS coupling reaction often used to incorporate bio molecules into PEGDA hydrogels. The NHS moiety reacts under 

slightly basic conditions with primary amines. The primary amine in lysine is a very good candidate and most proteins and peptides 

with lysine will therefore easily couple with a NHS functionalized molecule.       

   

3.2. Photo initiation with Irgacure 2959 and Irgacure 369 
 

In this work two commercial UV photoinitiators have been used for cross linking the PEGDA hydrogel: 

Irgacure 369 (I369), and Irgacure 2959 (I2959). The photoinitiated radical formation of the two initiators 

can be seen in Figure 36. 

 

    

 
Figure 36 Schemes showing the photoinitiator Irgacure 2959 (TOP) and Irgacure 369 (BOTTOM) undergoing cleavage and radical 

formation after photon absorption, adopted from Masson et al.118 and Ovsianikov et al.59 respectively. 

 

After absorption the molecule cleaves into two, creating two radicals that will initiate the polymerization of 

the acrylate end groups and crosslink the resin into a hydrogel. Irgacure 369 was the photoinitiator 

preferred for 2PP of the 3D PEGDA structures because of the superior 2PA119 cross section and the better 

overlap of the excitation spectrum with the 780 nm laser in our 2PP setup. Irgacure 2959 was initially used 
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for polymerization of PEGDA slaps for evaluating biochemical functionalization with stained proteins and 

RGDS peptides as well as for evaluating the cytotoxicity of the Irgacure 369. Irgacure 2959 is known to be 

one of the least cytotoxic radical photoinitiators91 and is widely used for cell encapsulations in tissue 

engineering35,120. It therefore served as a benchmark for the biocompatibility test of the Irgacure 369 that 

previously had shown signs of higher cytotoxicity72.      

Cytotoxicity of polymerized hydrogels was evaluated using the same metabolism assay (AlamarBlue) as 

presented in Section 2.2.2 with both DCs and NIH-3T3 cells to ensure no adverse effects originated from the 

resin with Irgacure 369. Cytotoxic comparison was made against Tissue Culture grade polystyrene (TCPS) as 

a non-toxic reference and against PEGDA photopolymerized with Irgacure 2959, a system that is often used 

in biomedical applications and in tissue engineering in general and proven one of the least cytotoxic78,91. 

The initiator concentration was increased to 3 % wt to simulate the concentration needed for 2PP 

fabrication of hydrogel constructs. 350 Da PEG was used as solvent for the hydrogel with Irgacure 369 as 

initiator, because Irgacure 369 is not water soluble. 

 

Methods 

Experiments were performed in a 96 well TCPS microtiter plate (Nunclon grade, Nunc, Roskilde, Denmark). 

50 µl 20 % wt 1000 Da PEGDA (Sigma Aldrich) in MilliQ (Merck Millipore, Billerica, MA)  water with 3 % wt 

Irgacure 2959 or in 350 Da PEG (Sigma Aldrich) with 3 wt % Irgacure 369 was dispensed into a well and 

photopolymerized with a dose of 8.6 J/cm2 at 365 mW in a MA4 mask aligner (Suss Microtec). High 

exposure doses were required due to the presence of ambient oxygen acting as a radical quencher. A third 

untreated well was used as the non-toxic TCPS reference. Samples were prepared in triplicate on each 

plate. All wells were washed three times with MilliQ grade water and left with MilliQ water for a further 72 

hours at room temperature. Culture medium consisted of IMDM for the DCs or DMEM for the 3T3 cells, 

both with 1% penicillin / streptomycin (P/S) and 10 % Fetal Bovine Serum (FBS) from Invitrogen (Life 

Technologies, Paisley, UK). The wells were filled with culture medium for 15 minutes and emptied, prior to 

seeding 5000 – 10000 cells in 100 µl culture medium in each well and incubation for 24 hours. The number 

of cells used in each experiment was constant but varied with the number of cells (DC) in the provided vials 

from Herlev Hospital between experiments, since the assay measures the relative metabolism an individual 

cell count was not performed. 10 µl AlamarBlue (Life Technologies) was added to each well and incubation 

was continued for 2 hours. After incubation 100 µl supernatant was transferred to a new microtiter plate, 

and the developed color was measured in a Victor3 plate reader (Perkin Elmer, Waltham, MA).  
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Figure 37 Metabolic activity of dendritic cells and 3T3 cells cultured on different materials. Lower metabolic activity is observed 

here than when performed previously (Figure 15) due to the increased photo initiator concentration. At 3 % wt concentration 

almost no difference between PEGDA hydrogels with the two initiators I2959 and I369 is observed. Tests are performed with an 

AlamarBlue assay and the graph shows the activity relative to the metabolic activity on TCPS. Values are the average of three 

independent experiments. Error bars show the standard error of the mean. 

 

The TCPS well bottom was chosen as reference material for the cell metabolic activity on the PEGDA 

hydrogels with the two different initiators. Figure 37 shows that photopolymerized hydrogels induce some 

reduction in cell metabolism compared to TCPS, but no significant difference between the two initiators is 

found. These results were obtained on 1.5 mm thick material layers coating the entire well bottom. 

Considering the extremely small volumes of photopolymerized material in 2PP constructs as well as an 

efficient washing process if incorporated into the ibidi chip we do not anticipate significant cytotoxic 

effects. I369 is poorly soluble in water so the washing steps using MilliQ water presented above are not 

optimal. In the ibidi chip washing steps with isopropanol and ethanol can be introduced to increase the 

washing efficiency.     

 

3.3.  Chemical and physical tuning of PEGDA properties  
 

Before starting to construct 3D scaffolds we tested the techniques used to alter the mechanical and 

chemical properties of the PEGDA gels. Control of surface adhesion sites and general biochemical 

patterning was investigated. Control of swelling and thus mechanical stiffness was examined as well as the 

post polymerization water uptake degree to decrease swelling post polymerization and aid 3D construction. 
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3.3.1.  Swelling studies of PEGDA hydrogels and control of the mechanical properties     

 

Swelling of a hydrogel is governed by the balance between the retractive forces in the network and the 

chemical potential driving the water into the network. From the change in chemical potential when mixing 

a polymer with a solvent one can express the polymer–solvent  interaction  parameter  χ. For  PEG  in  water  χ  

is 0.426121.  χ is small for PEG in water due to the very hydrophilic ether groups in the PEG chains. By 

changing the average molecular weight of the macromers we here show how q can be controlled. 

 

Methods 

Poly (ethylene glycol) diacrylate (PEGDA) with average molecular weights of either 1 kDa from Sigma 

Aldrich or 5 kDa from Creative PEGWorks, Winston Salem, NC, was mixed with MilliQ grade water in a 1 ml 

Eppendorf tube (Eppendorf AG, 22339 Hamburg, Germany) to make a solution with 2 parts PEGDA and 7 

parts water.  Subsequently 1 part 1 % Irgacure 2959 in acetone (both Sigma Aldrich) was added to yield a 20 

wt % PEGDA, 0.1 wt % Irgacure 2959 formulation. A mixed (1kDA/5kDA) formulation with 10 wt % 1 kDa 

PEGDA and 10 wt % 5 kDa PEGDA was also prepared. The formulations were then briefly mixed on a vortex 

shaker and ultrasonicated for 10 minutes to avoid bubbles. The PEGDA formulations were polymerized by 

adding 65 µl formulation to a 65 µl Gene Frame (Thermo Scientific, Waltham, Massachusetts) situated in a 

60 mm petri dish and sealed with the plastic lid. The formulations were then exposed to a dose of 8.6 J/cm2 

at 365 nm in a MA4 mask aligner (Suss Microtec). After exposure the Gene Frame was removed and 6 ml 

MilliQ water was poured over the polymerized hydrogel slap for hydration in the petri dish over night at 

room temperature. The following day the excessive water was carefully dried off the hydrogel slap with a 

tissue and the slap was weighed on a scale. The slap was then left to dry in an desiccator for 48 hours and 

weighed again. From the swollen and the dry weight the equilibrium degree of swelling, q was determined.    

http://en.wikipedia.org/wiki/Waltham,_Massachusetts
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Figure 38 Equilibrium degree of swelling as a function of PEGDA macromer molar weight (1 kDa; 50/50 1kDa/5 kDa; 5 kDa). Error 

bars are 5 % confidence intervals, n=5.     

 

The PEGDA mass equilibrium degree of swelling, q, is clearly tunable by changing the macromer weight. We 

observed a change from 5.9 to 12.6 when the macromer molar weight increased from 1 kDa to 5 kDa, and 

when the two formulations are mixed a q value of 10.1 (in between the two pure macromers) is found. 

From these numbers one can calculate the elastic modulus from the average molecular weight between 

cross links, Mc,
122 with the equation derived by Peppas and Merrill: 

 

    
 

Here Mn is the number average molecular weight of the macromers, �̅� the specific volume of the polymer, 

V1 the molar volume of the solvent, and v2,s and v2,r the polymer volume fraction in the relaxed and the 

swollen state, respectively (v2,s=1/Q). From that one can calculate the shear modulus of a perfect hydrogel 

network123: 

 

    
 

where  ρ  is  the  polymer  density, R the gas constant, T the absolute temperature and ̅
̅  the front factor or 

the ratio between the end to end distance of a real network versus the end to end distance of an isolated 
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chain, which is often approximated to 1. From 𝐸 = 2𝐺(1 − 𝜈) and the above equations it is clear that a 

reduced expression for the elastic modulus, E, can be derived: 

 

 

                                        𝐸 = −2𝜌𝑅𝑇(1 − 𝜈)𝐶                  𝑤𝑖𝑡ℎ    𝐶 =        

 

 

Mn, the molecular weight of the macromer is not a variable in the latter formula, thus the elastic properties 

of rubbery gels are independent of the macromer molecular weight and can be estimated from the 

observed equilibrium degree of swelling alone. Experimental findings in the literature also suggest that the 

modulus only depends on q and is independent of Mn
108.  

By inserting the values for q from Figure 38 in the equations above we find the theoretical elastic moduli to 

be: 

   

Macromer Mn and q 1 kDa PEGDA, q= 5.9 1 kDa/5 kDa PEGDA, q=10.1 5 kDa PEGDA, q=12.7 

Calculated elastic modulus 71 kPa 19 kPa 11 kPa 

  

These numbers indicate that we are in the range of the mechanical properties of soft tissue. The observed 

values for the elastic moduli of tissue differ often by an order of magnitude, and sometimes by two orders 

of magnitude dependent on the method used to determine them111. With the mechanical observations 

done from the studies of PEGDA hydrogels in literature it is clear that the calculated values presented here 

are lower than what is reported elsewhere for comparable degree of swelling35,110,124,125.       

If considering the amount of force individual cells have been observed to exert on their substrate upon 

migration or contraction to be between 50 nN and 400 nN for cardio myocytes and fibroblasts33,56 it is 

relevant to calculate what deflections such forces would imply to the presented 10x4 µm beams of 10 µm 

length. If the beams are considered to have an elastic modulus of 10 kPa and either being free hanging or 

fixed at the ends, the deflection from a cell exerting 100 nN of force on the center of the beam is either 0.6 

µm or 0.15 µm respectively126. DCs have been observed to exert much less force on PDMS micro pillars127 

so it is fair to assume that the stiffness of beams are sufficient not to be distorted by the DCs. 

These considerations on the mechanical properties are purely based on thermodynamics and are only 

meant as a guideline. The amount of imperfections in a real world gel network and approximations done 

suggest that rheological measurements have to be done on the individual systems to establish the actual 

mechanical properties. We have shown that by altering the molecular weight of the macromers we can 
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control q and thus control the mechanical properties within the range of the values observed for soft 

tissue. 

 

3.3.2. Biochemical modification of PEGDA hydrogels    

 

To address our ability to control biochemical cues on the surface of the PEGDA hydrogels,  we used photo 

lithography to test how we could attach the fluorescein labelled protein streptavidin to an Acrylate-PEG-

NHS macromer and subsequently attach it to the surface of an already crosslinked hydrogel. By printing 300 

µm stripes with a standard inkjet printer on a transparency sheet a quick shadow mask was created for the 

purpose.     

 

Methods 

First the NHS coupling reaction was performed by mixing 100 µl of 1mg/ml Streptavidin-Alexa488 (Sigma 

Aldrich) in PBS with 100 µl 20 wt % Acr-PEG-NHS, Mn 3400 g/mol from Creative PEGWorks in PBS and 

leaving it over night at room temperature. A molar ratio of PEG:Streptavidin of 300:1, was chosen to ensure 

that as many streptavidin molecules as possible were modified with at least one Acr-PEG-NHS.  The 

following day 22 µl 2.5 wt % Irgacure 2959 in acetone was added to achieve 0.25 wt % photoinitiator in the 

formulation. 

A gel slap was prepared from 5 kDa PEGDA as described above, but instead of immersing the polymerized 

slap in water it was briefly flushed with MilliQ water and 20 µl of the streptavidin-NHS-PEG-Acr solution 

was added on top of the slap, and covered by the printed mask which was laid directly on top. It was 

important to turn the printed side upwards as most printer ink is somewhat water soluble. The slap was 

then exposed to a dose of 1 J/cm2 in the mask aligner. After exposure the transparency mask was removed 

and the hydrogel slap was flushed three times with MiliQ water.  

The coupling reaction was verified with a MALDI-TOF mass spectrometer (Bruker, Billerica, Massachusetts), 

and the subsequent photo lithography was verified with an Axio Observer fluorescence microscope (Carl 

Zeiss, Oberkochen, Germany). 
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Figure 39 Scan of mass spectrum obtained after the coupling of a 3400 g/mol Acr-PEG-NHS with 53000 g/mol StreptavidinAlexa488. 

The 3400 g/mol Acr-PEG-NHS shows up at 5000 but is really only 3700, it is not displayed correctly here because the linear detector 

used does not handle small molecules very well. At 13500 the streptavidin-Alexa488 conjugate shows up with 0, 1 or 2 Alexa488 

conjugated to the streptavidin. The conjugated Acr-PEG-NHS-Streptavidin product can be seen at around 17500. These data show 

around 50 % of the streptavidin molecules are coupled to a PEG macromer. The more smeared out signal of the product comes 

from the polydispersity of the PEG molecular weights, see Figure 41.  

 

It can be seen in Figure 39 above that the MALDI-TOF data suggests that 50 % of the Streptavidin did couple 

to a NHS-PEG-Acr macromer. It is not the a very high yield, but as the unbound streptavidin will not 

passively adsorb to the gel due to the protein repellent properties of PEG this is not believed to be a 

problem. 

To test if the remaining acrylates in the gel were stable over longer time, the hydrogel slap samples was 

stored in 6 ml PBS at 5 degree Celsius for 72 hours and the photo patterning process was repeated. After 72 

hours all the hydrogel slaps were dried with a napkin and 20 µl of the photo active Acr-PEG-Streptavidin 

formulation was added and photo lithography was performed as before, but this time with the mask turned 

90 degrees. The resulting patterns of both the first exposure and the second exposure after 72 hours can be 

seen in Figure 40. It is clear from the uneven edges of the resulting patterns that the DPI of the standard 

inkjet printer was a limiting factor in achieving the best resolution. The edges of the patterns are relatively 

sharp meaning the lithography is not the limiting factor here, but the resolution of the shadow mask is. 

Since 300 DPI equals to a "dot" size of 1 inch/300 = 85 µm this is to be expected. Even after 72 hours it 

seems that there are still free unreacted acrylates left in the network, as a clear pattern emerges 

perpendicular to the line created 72 hours earlier, Figure 40 B.     
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Figure 40 Fluorescence micrographs showing conjugation of Streptavidin-PEG-Acr to already polymerized PEGDA slaps. Lines 

created with an inkjet printed transparency shadow mask on a PEGDA slap, just after polymerization (Left) and subsequent 

patterning (horizontal line)  after 72 hours of storage in PBS (Right).   

 

To increase cell adhesion to the non-adhesive PEGDA hydrogels we decided to follow the same procedure 

as above with the protein SteptavidinAlex488 conjugation to a NHS-PEG-Acr macromer, but now with the 

small peptide KGGGGGGRGDS (889 Da). The lysine end is meant for coupling to the NHS moiety on the 

macromer while the RGD end will mediate integrin adhesion.  

 

Methods 

Coupling of the peptide to the Acr-PEG-NHS macromer was performed, as described earlier, by adding 100 

µl 6.67 mg/ml peptide in PBS to the 100 µl 20 mg/ml Acr-PEG-NHS solution. This yields a 1:1 molar ratio of 

the peptide:macromer. Photo coupling with transparency shadow mask was also achieved as before. After 

patterning with the RGD peptide the slaps were moved to the cell lab and placed in a 6 well plate, where 

105 NIH-3T3 fibroblast cells were seeded in DMEM medium with 10 % FBS and 1 % penicillin/streptomycin, 

all from Invitrogen, Life Technologies, Paisley, UK. They were then left to adhere overnight in an incubator, 

37 °C, 5 % CO2.             

    

Coupling of the RGD peptide to the Acr-PEG-NHS macromer was verified by MALDI-TOF, see Figure 41. 

More than 50 % of the macromer is conjugated to the peptide shown by the shift in mass equivalent to the 

mass of the peptide of 889 Da, from approximately 3700 Da to 4600 Da. The number average molecular 

weight of the Acr-PEG-NHS was supposed to be 3400 Da, which does not fit very well with our findings, but 

for this purpose it is not relevant whether the average weight of the macromer is 3400 Da or 3700 Da.       
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Figure 41 Scan of mass spectrum obtained after the coupling of a 3700 mw Acr-PEG-NHS with 889 mw RGD peptide. A clear shift of 

approximately 889 da is observed for more than 50 % of the PEG macromers confirming the successful creation of the RGD-PEG-Acr 

product.  

 

Validation of the photo patterning of RGD peptide adhesion sites to the surface of the PEGDA slaps was 

done by microscopy investigation of the incubated slaps with 3T3 cells. Due to problems with the 

acquisition of the images only one image of adhering 3T3 cells was produced. It is evident from Figure 42 

that a line of approximately 200 µm in width is created with confluent cells and the fact that no adherent 

cells are observed outside of this area confirms that no cells adhere to an untreated PEGDA hydrogel. Cell 

clusters are formed because the issues with acquisition meant the cells were a prolonged time at ambient 

temperature causing them to let go of the substrate and cluster. Right after the samples were removed 

from the incubator fine lines of cells adhering only to the photo patterned areas were observed, but 

unfortunately only the one image in Figure 42 was produced to document the experiment. Various 

problems with the coupling reaction and down time of the characterization equipment meant that the 

results were never reproduced. The results show that the hydrogels presented here can be modified to 

promote cell adhesion, but more evidence of reproducibility by this procedure is needed if further 

investigations are to be made.   
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Figure 42 Bright field micrograph of a line with adherent 3T3 cells on a RGD photo patterned PEGDA hydrogel slap.  

 

3.4. 3D structuring of hydrogels  
 

In this section an attempt to find the best PEGDA formulation for 3D hydrogel fabrication will be discussed, 

including finding the optimal photoinitiator and optimizing the post polymerization swelling for minimal 

structural distortion. Finally, the early in-chip 2PP fabrication of 3D hydrogel constructs will be shown.  

 

3.4.1. Optimizing the PEGDA formulation for 2PP 

 

To achieve an optimal 2PP formulation two things are important: processability and structural rigidity.  

Processability means how effective the photo initiator is and what writing parameters are applicable. 

Structural rigidity includes whether the construct geometries are distorted due to swelling and whether the 

constructs are stable enough to handle the liquid exchange and washing procedures. An optimal photo 

initiator will need to be water soluble, because the polymer volume fraction in the preparation state has to 

be as close as possible to the polymer volume fraction in the swollen state to avoid post polymerization 

swelling and resulting distortion of any 3D geometry. The I369 is not water soluble but it is one of the most 

frequently used commercially available photointiators for 2PP33,45. It has even been used to produce 2PP 

scaffolds for tissue engineering from PEGDA40,72, but only without water present in the preparation state. 

As most very effective 2PP initiators  consist  of  large  conjugated  π-systems that feature a donor-acceptor-

donor or acceptor-donor-acceptor geometry63,128,129, they are very seldom water soluble. One group has 
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presented the use of a specially designed water soluble 2PP photoinitiator130 to construct 3D hydrogel 

scaffolds with PEGDA and another group has presented a strategy to use hydrophobic initiators by solvating 

them in the surfactant Pluronic F127131. However, since we did not have access to an effective water 

soluble 2PP photoinitiator we exchanged water with a short liquid PEG 350 g/mol as the solvent and used 3 

% wt I369 as the photoinitiator. Huang et al.132 demonstrate that the polymer solvent interaction 

parameter  χ  of  the  solvent  in  the  preparation  state  shows  only  a  very  weak  influence  on  the  resulting  

degree of swelling. This result suggest that we can exchange water as the solvent with PEG without 

increasing the post polymerization swelling.  

 

The 3D constructs should be minimally distorted after development and introduction of water to the 

system. The post polymerization water uptake degree (wu) defined as 

 

𝒘𝒖 =
𝒗𝟐,𝒔
𝒗𝟐,𝒓

 

 

was determined to see which polymer volume fraction in the preparation state (𝑣 , ) would come closest to 

the polymer volume fraction of the swollen state (𝑣 , ). From Gnanou et al.109 and the swelling data 

presented in Figure 38, PEGDA slaps with relevant polymer volume fractions in the preparation state were 

determined and tested as previously described. The polymer volume fraction was varied from 0.08 to 0.2 

and the resulting water uptake degree can be seen in Figure 43Error! Reference source not found.. A 

minimum additional water uptake of 30 % vol was observed at a polymer volume fraction of 0.16. Hence it 

was decided to use 16 % wt 1k PEGDA in the hydrogel formulation for 3D structuring with 2PP instead of 

the 20 % wt used previously. By decreasing the polymer volume fraction during polymerization the water 

uptake was reduced from 60 % vol to 30 % vol welling will still occur, but with this optimized formulation a 

minimum of post process swelling is expected.      
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Figure 43 Equilibrium degree of swelling and water uptake degree as a function of polymer volume fraction in the preparation 

state. The water uptake degree has its minimum at a polymer volume fraction of 0.16.  Values are average of triplicates.  

 

3.4.2.  In-chip 2PP structuring of 3D hydrogel constructs 

 

As presented in the previous section 2PP of hydrogel constructs was performed on the Nanoscribe Photonic 

Professional. PEGDA hydrogels do not adhere very well to surfaces such as the polyethylene based ibidi 

chip we used for in-chip 2PP of cell migration constructs. As already discussed we have recently developed 

a procedure for attaching PEG to polymer surfaces in our lab. Above we presented an adjusted procedure 

to conjugate PEGDA macromers to the surface of the IP-L constructs and the ibidi chip interior, here we 

utilize that same procedure to increase adhesion of 2PP PEGDA constructs to the ibidi chip surface (see 

section 2.2.3 for methods). It was believed that adhesion of 2PP fabricated PEGDA constructs would be 

increased due to the attached PEGDA macromers still presenting free acrylate groups that would conjugate 

the polymerized hydrogel to the chip surface. We tested this hypothesis by cutting out small sections of the 

chip bottom (5 x 5 mm) with a CO2 laser (FH Flyer, Synrad, Mukilteo, WA) and analysing the atomic 

composition by X-ray photoelectron spectroscopy (XPS). The analysis was performed on a K-Alpha 

spectrometer (Thermo Fisher Scientific, UK) using a 400 µm wide monochromatized AlKα X-ray spot with 

collection of the emitted photoelectrons at a pass energy of 200 eV. The data was fitted using the 

instruments Avantage software package. We analyzed the inside surface composition of the ibidi chip both 

before and after PEGDA coating.          
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Figure 44 XPS survey showing the atomic composition of the inside of the ibidi chip with or without PEGDA surface coating. The 

oxygen content is clearly increased after surface coating with PEGDA indicating a successful coating procedure. The values are 

average values of two measurements. 

 

The coating process increased the oxygen content on the inside of the ibidi chip from 12 % to 21 % (Figure 

44). The increased oxygen content on the surface after PEGDA coating is consistent with the high oxygen 

content in PEG affecting the surface atom composition. The relatively high oxygen content on the 

untreated surface and the small amount of nitrogen is due to the treatment performed by ibidi: The chips 

are treated by ibidi with a physical treatment (ibiTreat133) to create a hydrophilic surface similar to culture 

flasks and Petri dishes for cell culture. We also tested the outer surface of the ibidi chip and, as expected, 

found polyethylene had 100 % carbon content. After surface coating with PEGDA the 2PP fabricated PEGDA 

constructs showed excellent adhesion to the surface of the chip.  

The resin used for 2PP of PEGDA constructs contained 16 % wt 1 kDa PEGDA and 3 % wt Irgacure 369 

dissolved in PEG (350 Da) and 1 mM 6-aminofluorescein for visualization, all from Sigma Aldrich. 70/30  

ethanol/water was used as a developer for the finished constructs.  

To realize woodpile constructs similar to those produced in IP-L we had to make adjustments for the less 

effective 2PP photoinitiator and slower cross linking in our PEGDA resin. Similar methods as presented 

above for the 2PP of the IP-L constructs were used with the PEGDA resin. 3D confocal reconstructions were 

created as described above from confocal stacks acquired with a Zeiss LSM 5 and processed with imageJ90 

software.  
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The woodpile constructs were reduced in size to a 50 x 50 µm2 footprint to compensate for the slower 

writing speed. The writing parameters were changed as follows to increase structural rigidity as much as 

possible: 

Update rate/writing speed:  The update rate was slowed down to 600 giving a writing speed of 120 

µm/min to achieve optimal polymerization. This increased the overall writing time to one hour for a 50 x 50 

x 70 µm3 woodpile construct. 

Laser power: The laser power was adjusted to 70 % because the slower writing speed increased bubble 

formation and damage at higher power settings. 

Line distance: By reducing the line distance to 150 nm the overlap of the individual lines were increased to 

improve structural rigidity.  

Layer distance/ z distance: The z distance was reduced to 1 µm to increase the overlap between individual 

layers.   

      

 
Figure 45 Confocal micrograph showing the bottom layer of a woodpile construct with 10x4 µm beams immersed in two different 

solvents, water and isopropanol. Swelling in water distorts the beams and causes them to bend. Bending in isopropanol is almost 

negligible. Scale bars are 10 µm.    

 

The woodpile constructs with 10x4 µm2 beams showed clear signs of solvent dependent swelling. Figure 45 

shows confocal micrographs of the bottom layer of a 3 layer woodpile with a 50x50 µm2 footprint 

immersed in water or in isopropanol. Immersion in water results in substantial bending due to swelling, 

while only slight bending is observed in ispopropanol. Water is a better solvent for PEG than isopropanol 

due to the higher dipole moment. Woodpile constructs with beams measuring 6 µm, 8 µm and 10 µm in 

width, the last being square in cross-section, were fabricated to evaluate the effect on the swelling induced 

bending. 

  Water                                                           Isopropanol 
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Figure 46 Confocal 3D reconstructions (A-C) and z projection (D) of 2PP fabricated hydrogel woodpile constructs. Wider beams 

decrease swelling distortion on PEGDA woodpile constructs. A polymerized blob is seen in both (A) and (B) hovering over the 

constructs, and is believed to be remnants of the last three layers that were not polymerized properly. In (C) no extra blob is 

observed because only three layers were written, but it was a general tendency that no more than three layers could be made. (D) 

shows a z-projection of the three image stacks to illustrate the increased structural stability gained from the widened beams. Scale 

bars are 10 µm.     

 

Figure 46 displays that increasing the  cross-section of the beams to 10x10 µm2 made them more stable 

than beams of 4x10 µm2, 6x10 µm2 or 8x10 µm2. The change in beam width also meant that the porosity of 

the fabricated structures were changed, thereby increasing the volume that needed to be polymerized and 

thus further increasing the writing time. The writing time of a 50x50x70 µm3 (to fill the ibidi channel) 

increased to two hours. Figure 46 (A) and (B) show that remnants of the higher layers (4-6) were forming an 

aggregate of partly polymerized hydrogel hovering above the three bottom layers without any stable 

contact to the rest of the woodpile. No aggregation is observed in (C) since only three layers of the 10x10 

µm2 beam woodpile were written to illustrate the higher beam rigidity. In the z projections in (D) it is clearly 

seen that, as expected, increasing the width of the beams increased the structural rigidity of the construct.     

 

Several other writing configurations were tried to increase structural rigidity and decrease the swelling 

effect. Increasing the overlap between the woodpile layers from the 1.3 µm overlap inherent from the 

voxel height to an overlap of 3.3 µm by increasing the beam height to 12 µm, did not improve stability. 

Finally it was believed that some of the bending happening during polymerization could be avoided if the 

whole woodpile was build one layer at a time, thereby stabilizing the already polymerized beams better 

during construction. This change of writing sequence did not yield better results either. It was not possible 

to construct woodpiles more than three layers in height (30 µm) and the writing speed of the woodpiles, 

 A             6x10 µm                 B        8x10 µm                       C            10x10 µm               D 
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with the only stable 10x10 µm2 beams, was so slow that it became clear that 3D shaping of soft hydrogels 

with this formulation and experimental setup was not optimal.  

 

3.5. Discussion 
 

3.5.1. Tuning PEGDA hydrogel properties 

 

Bulk PEGDA hydrogels with mechanical properties in the range relevant for tissue engineering especially for 

soft tissue have been shown, and control of swelling behavior and thus of the mechanical properties has 

also been demonstrated. Conjugating of a RGD peptide sequence and the protein Streptavidin-Alexa488 to 

PEG macromers via a NHS coupling reaction is presented. The coupling reactions were confirmed with both 

mass spectrometry and with functional assays, but the coupling yield was in both cases far from 100 % . 

Purification of the coupling products was not performed, mainly because the PEGDA hydrogel platform is 

protein repellant and therefore inhibits non-specific adsorption to the surface or in the network. This 

material property allows for easy washing procedures and also allows for easy confirmation of covalently 

linked products as demonstrated with the green fluorescent Alexa488 streptavidin conjugate that is clearly 

seen forming stripes on the hydrogel surface. It could be argued that the remaining unreacted macromers 

would take up some of the available reactive spots in the network and leave too few for the functionalized 

macromers. However, the concentration of polymer chains in the network is far beyond what would be 

needed for RGD motifs to mediate cell adhesion134 so the RGD concentration of 50 % pure product is more 

than sufficient. By introducing more advanced lithography processes such as gray scale masks and 2PP 

systems, gradients and 3D patterns can be realized. By utilizing the ibidi chip microfluidic system, gradients 

inside PEGDA hydrogels could be created as presented with collagen in section 2 of this thesis. Surface 

gradients would even be obtainable on 3D hydrogel constructs (optimization of fabrication procedure 

needed) inside the microchannel creating new possibilities for studying cellular phenomena dependent on 

mechanical, chemical or geometrical properties of the scaffold. One application of such a system would be 

to build on the IP-L based system presented above. The DCs could be tested against conjugated chemokine 

gradients for guiding haptotactic migration to more accurately mimic the presented in vivo homing 

scenario8,135.      
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3.5.2. Fabricating in chip 3D hydrogel constructs 

 

The in-chip setup that proved successful for testing DC migratory behavior, can also be used with a PEGDA 

based resin for making soft 3D in-chip constructs. By modifying the surface of the ibidi chip with PEGDA and 

thereby increasing adhesion of 2PP fabricated hydrogel constructs we successfully created soft 3D 

constructs inside the ibidi chip. The stability and structural rigidity of the fabricated constructs are not very 

good and constructs covering the entire height of the channel (70 µm) were not achieved. Woodpile 

constructs higher than 30 µm did not polymerize sufficiently to sustain the development step. Furthermore 

the constructs did show considerable post polymerization swelling that compromised the structural 

geometry making the fabricated constructs unusable for migration experiments. Increasing the beam cross 

section to 10x10 µm2 enhanced the stability and reduced the distortion from the swelling to a minimum. To 

achieve these hydrogel constructs the writing parameters had to be adjusted compared to the optimized 

parameters used for the writing of IP-L woodpile constructs. Most noteworthy was the reduction in writing 

speed from up to 1200 µm/s to only 120 µm/s together with the increased width of the beams which 

meant that the overall fabrication time was increased between 10 and 20 times. These adjustments to the 

fabrication parameters are not acceptable, and combined with the still palpable stability issues with the 

constructs it must be concluded that, this formulation is not suited for 3D 2PP with our system. 

The unsuccessful fabrication process may have several causes. All previously published work on 2PP of 

PEGDA with Irgacure369 have used 100 % PEGDA i.e. without added solvent, at the cost of much stiffer 

resulting hydrogels. The lower macromer concentration in our resin will drastically decrease the 

polymerization rate which can be assumed to be linearly dependent on the acrylate concentration64. To the 

best of our knowledge only two successful attempts has been made to polymerize 3D PEGDA constructs 

with water present in the resin. Both used slightly shorter PEGDA macromers and utilized either a custom 

synthesized hydrophilic photoinitiator130 or a surfactant to dissolve the photoinitiator131. We tried the latter 

option with Irgacure 369, but with little success.  

With a more effective 2PP photo initiation system it is believed that 3D PEGDA constructs can be tailored to 

many applications, and the in-chip setup allows for gradient formation which are found very important in 

mimicking the in vivo cell environment136. Combining the material flexibility in both chemical and 

mechanical terms with the in-chip manufacturing methods presented in this thesis with an effective water 

soluble 2-photon photoinitiator should enable us to construct 3D cell migration scaffolds with tunable 

mechanical stiffness and chemokine gradients for immune cell migration studies. 
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4. Conclusion 
 

In this thesis two approaches to build 3D migration constructs are presented, one using the commercial 

resin IP-L for hard topology constructs and one using a custom soft PEGDA hydrogel resin that should allow 

full mechanical and chemical control over the construct. Both approaches utilize in-chip two-photon 

polymerization that combines the best of two chip fabrication approaches:  

(1) Fast low-definition 2D macroscopic scale production of microchannel chip compatible with conventional 

optical analysis and standardized connectors interfacing to the surroundings; (2) Slower high-definition 3D 

fabrication of small volume application-specific components. By fabricating the constructs in-chip the need 

for subsequent chip bonding processes is avoided. These often require extensive optimization to avoid 

leakage and may easily damage fragile micro- or nanostructures present at the chip surfaces to be bonded.  

 

When using the commercial hard IP-L resin we show accurate control of both the pore size and the 

topology experienced by the migrating cells in a material that does not appear to affect their migratory 

behavior. By adjusting the pore size in the woodpile constructs the DCs are prone to change behavior and 

are possibly doing full 3D spiral turns when navigating the constructs. We also present confined migration 

through microchannels in a controlled gradient. When the DCs migrate through microchannels of varying 

diameters the DCs show a clear jump in migration speed when they completely occlude the channel. This is 

most likely a combination of a changed migration mode and a steeper chemokine gradient created over the 

cells in the occluded channels. The migration speed of the DCs is simultaneously measured inside confined 

microchannels and in the surrounding collagen matrix giving an unprecedented comparison of confined 

migration and migration through a collagen matrix under identical conditions in the same chamber.    

 

Using the custom PEGDA resin the fabricated constructs are successfully integrated in the ibidi chip. The 

constructs are not well defined and show considerable post swelling leading to distorted constructs unable 

to fill the entire channel in the ibidi chip not suitable for migratory analysis. Bulk modifications of the 

mechanical and chemical properties of the hydrogel are presented. Control over equilibrium degree of 

swelling yielding mechanical properties similar to a range of tissues is demonstrated. Repeated photo 

patterning of biomolecules are shown and a suitable response by 3T3 cells is also shown once. Though the 

work on 3D fabrication as well as biochemical modification of the hydrogels need further optimization, it is 

believed that 3D hydrogel constructs can be realized with a more effective photo initiator, such as the one 

utilized by Torgersen et al.130. The hydrogel constructs will contribute to the existing migration scaffolds by 

introducing a soft 3D shaped hydrous construct biochemically customizable to a specific need.      



74 
 

The source/sink design of the ibidi chip gives complete control of the concentration and thus the steepness 

of the chemokine gradient. Combining the above aspects with easy visualization and cell tracking through 

the thin bottom adds up to a very versatile and easy to use migration analysis system. The collagenase 

regeneration procedure strongly reduces the cost per experiment of the IP-L produced constructs and thus 

compensates for the higher expense of 2PP fabrication.   

 

Applications of a migration screening platform for dendritic cells are wanted at hospitals and clinics working 

with cancer immunotherapy. DC migration is a vital part of the immune system and in cancer vaccines in 

particular a huge effort is being made towards achieving the perfect DC maturation cocktail. In the effort 

towards finding the most effective cocktail that simultaneously produces effective immunogenic DCs and 

DCs with a high migration potential a reliable migration screening platform is vital. The immunogenicity of 

the DCs is very much dependent on their ability to navigate to the lymph nodes and inside the lymph 

nodes. The Boyden chambers used now, where the cells navigate through a 10 µm thin membrane, offer 

poor resemblance with the in-vivo environment.  

Our presented system offers a customizable environment that can be tailored to mimic a specific situation 

in-vivo. A relevant example is the entrance into the lymphatic vessels that occur via small preformed pores 

in the vessel. Such geometry will be easy to reproduce with the 2PP system by incorporating vessel shaped 

and pore filled channels into known scaffold geometry. Thereby the DCs will encounter a situation in-vitro -

very similar to what they will in-vivo, increasing the possibility for the investigators to isolate a specific cell 

response to a given treatment.          

We foresee that our in-chip designed reusable migration constructs can be employed both for optimizing 

cell processing conditions to maximize in vivo chemotaxis of DCs and for validating the migratory potential 

of each  patient’s  cells  in  immunotherapy. 
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5. Outlook 
 

Further development of the presented migration platform is needed to better mimic the in-vivo 

environment which the DCs encounter when migrating towards the lymph nodes. Hard migration 

constructs can be fabricated with the commercial IP-L resin in almost any geometric shape. Combined with 

the gradient formed by the ibidi chip and the easy fluid exchange it will offer a unique control over the 

environment experienced by the cells as well as easy handling in the clinic. To develop the IP-L based 

constructs it is worth determining if the acrylate based resin maintains unreacted acrylate moieties that can 

be used for surface modification with biomolecules. The PEGDA hydrogels have proven suitable for 

modification of the acrylate moieties remaining after polymerization and it will most likely be the same for 

the IP-L resin. Modification of the hard IP-L scaffolds with gradients of biomolecules such as RGD peptides 

or chemokine motifs would vastly increase the versatility of the system and enhance the resemblance with 

the in-vivo environment. A suitable spacer is needed when anchoring the biomolecules and the Acr-PEG-

NHS chemistry presented in this thesis and, utilized widely, it would be a good starting point to test the 

opportunities for post polymerization surface modification of the IP-L resin. Employing this strategy would 

also allow the cells to traverse the scaffolds without collagen present because adhesion motifs can be 

attached to the surface of the scaffold. This would mean that the migration ability of the DCs could be 

tested with and without adhesion motifs on the surface to further investigate the integrin dependency of 

3D migration in a more controlled environment, as initialized by Lämmermann et al.17.      

Optimizing the 3D processing of the PEGDA constructs is essential to obtain results applicable to migration 

studies. By introducing a more effective water soluble 2PP photo initiator, such as the one presented by 

Torgersen et al.130, the processability of the PEGDA resin would be much improved. A better photo initiator 

will increase the crosslinking density and by doing so the swelling of the fabricated constructs can be 

reduced enough to obtain 3D structures suitable for migration purposes. The soft water containing 

constructs would add a mechanical dimension to the tissue mimicking property space of the migration 

platform and could build on experiences learned from the more mature IP-L platform.  

Recently 2PP systems with increased writing speed have been developed83,84 and all technical progress that 

will lower cost and fabrication time of the individual scaffolds is a huge benefit for the relatively slow and 

expensive 2PP process. If soft hydrogel 2PP constructs shall evolve into a widely used fast prototyping 

technology it is necessary to combine the newly presented systems with further improvement of water 

containing resin processability. At the moment the technology is slow and expensive, but there are many 

opportunities for developing new and improved migration systems.          
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Appendix 1 

 

Cell lab protocols 
 

Here follows the protocols involving cell handling for extraction, maturation and migration studies from 

Olsen et al.88. 

 

Generation of monocyte-derived dendritic cells 

 

CellGro DC serum-free medium, GM-CSF, IL-4, IL-1β,  TNF-α  and  IL-6 were all obtained from CellGenix 

(Freiburg, Germany). PGE2 was obtained from Sigma-Aldrich.  Iscoves  modified  Dulbecco’s  medium  (IMDM),  

and human AB-Serum was acquired from Lonza (Basal, Switzerland), penicillin / streptomycin (P/S) and 

Fetal Bovine Serum (FBS) from Invitrogen (Life Technologies, Paisley, UK). NaHCO3 solution (7.5%), 10x MEM 

solution, and collagenase (Clostridium Histolyticum, cell culture tested) were from Sigma-Aldrich, PureCol 

(collagen I) solution from Advanced Biomatrix (San Diego, CA) and CCL21 from R&D Systems (Minneapolis, 

MN). Leukapheresis was done on healthy blood donors after informed consent followed by separation 

using elutriation (Terumo BCT, Lakewood, CO) and subsequent freezing of monocytes (80-90% pure as 

determined by flow cytometry on CD14). Thawed monocytes with a viability >99% were cultured for five 

days  in  culture  plates  (Ø  21  cm)  at  5·∙105 cells/ml in CellGro DC medium supplemented with 1000 U/ml GM-

CSF and 250 U/ml IL-4 to produce immature DCs. Maturation of DCs was induced for two days by adding 

1000 U/ml TNF-α,  1000  U/ml  IL-1β,  1000  U/mL  IL-6, and 1 µg/ml PGE2. Harvest of DCs was performed by 

aspiration followed by cold incubation of the remaining cells in PBS with EDTA (5 mM) and subsequent 

scraping of cells followed by freezing of DCs in aliquots (90% human serum and 10 % DMSO). 

 

 Collagen gel and DC loading in chips with constructs 

Mature DCs were thawed and transferred to pre-warmed IMDM, 10% FBS, 1% P/S. The DCs were 

centrifuged at 220g for 5 minutes. Medium with DMSO was removed and the cells were left to acclimatize 

for 30 minutes at room temperature in fresh medium. The cells were centrifuged and re-suspended at 

4×106 cells/ml. A collagen mixture with cells was prepared according to the ibidi manual. Briefly, 10 µl of 

NaHCO3 (7.5%) was mixed with 20 µl of 10 x MEM solution. After addition and mixing with 150 µl of 

PureCol solution, 90 µl of DC suspension was added and the mixture was applied to the chip for 
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polymerization at 37°C for 30 minutes (either 6 µl inside the ibidi channel or 60 µl in the sink reservoir). 

After collagen polymerization, the sink and source reservoirs were filled with medium alone and medium 

with added CCL21 (60 nM), respectively. In the cases where the cells were loaded in the sink reservoir, only 

the source reservoir was filled upon collagen polymerization. The final collagen concentration was 1.67 

mg/ml. 

 

Time-lapse microscopy of DC migration 

We monitored DC migration using a custom made time lapse setup based on an inverted phase contrast 

microscope (Zeiss Axiovert 100, Oberkochen, Germany) with a 20x phase contrast objective. The plugged 

chip with loaded DCs was mounted on a computer controlled translation stage, holding a temperature 

controlled (37°C) humidified incubation chamber supplied with 5% CO2 in air. This setup allowed tracking 

for several days. Analysis of cell migration in the X, Y and Z direction is in principle possible. However, the 

optical contrast was insufficient for allowing analysis in the Z direction, since the DCs during migration are 

often very long and slender with dendrite lengths of 100-300 µm and only a few µm in width and 

consequently a very small cell body. DC migration was tracked for approximately 48 hours. This is the time-

span during which the gradient established inside the chip is reported to be stable.  

Slight positional variations in the stage position during time-lapse recordings were corrected by use of the 

TurboStack plugin for ImageJ. The faint outlines of the DC dendrites within the microporous constructs 

were subsequently enhanced by subtracting the average (static) image of the construct from all images in 

the time-lapse sequence, and adding the subtracted images into the green channel of the recorded phase 

contrast images. Thus, the non-static cells will appear with a green tint in the final image sequences. 

Movies are provided of both the unprocessed and image processed time lapse sequences. 

 

Collagenase treatment of construct 

After experimentation, the IPL woodpile structures were collagenase treated for removal of collagen and 

cells: collagenase solution (0.5 mg/ml in PBS) was added to the reservoirs and the channel inlets of the 

chip. The chip was incubated for 1 hour at 37°C, the collagenase solution was withdrawn from the 

reservoirs, and the chip reservoirs were washed with water and then ethanol. Before reuse, the chip 

reservoirs were washed once more in sterile water, and the reservoirs and structures were completely 

emptied by applying suction to the channel after plugging the reservoir inlets. 
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Example of 2PP recipe (100x100x70 µm in-chip woodpile construct) 
 

%Main job file 100x100x70 µm, 10x10 µm           1 

in-chip Woodpile 2 

 3 

%Header: 4 

TiltCorrectionOff 5 

Operationmode 1 6 

Linestartmode 1 7 

timestampOn 8 

ConnectPointsOn 9 

DwellTime 10 10 

PowerScaling 1 11 

Laserpower 80 12 

Pointdistance 200 13 

DefocusFactor 1.0 14 

TiltCorrectionOn 15 

Polylinemode 1 16 

PerfectShapeOn 17 

measuretilt 3 18 

FindInterfaceAt 0.5 19 

 20 

%The woodpile has 7 beam layers: 21 

xoffset 0 22 

yoffset 0 23 

zoffset 60 24 

Updaterate 3000 25 

Include 100xlines10.gwl 26 

xoffset 0 27 

yoffset 0 28 

zoffset 50 29 

Updaterate 3000 30 

Include 100ylines10.gwl 31 

write 32 

xoffset 0 33 

yoffset 0 34 

zoffset 40 35 

Updaterate 4000 36 

Include 100xlines10.gwl 37 

xoffset 0 38 

yoffset 0 39 

zoffset 30 40 

Updaterate 4000 41 

Include 100ylines10.gwl 42 

Xoffset 0 43 

yoffset 0 44 

zoffset 20 45 

Updaterate 5000 46 

Include 100xlines10.gwl 47 

xoffset 0 48 

yoffset 0 49 

zoffset 10 50 

Updaterate 5000 51 

Include 100ylines10.gwl 52 

Xoffset 0 53 

yoffset 0 54 

zoffset 0 55 

Updaterate 6000 56 

Include 100xlines10.gwl57 
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%100xlines10.gwl 1 

%One beam layer consists of 8 beams in x: 2 

addxoffset 0 3 

addyoffset 2 4 

addzoffset 0 5 

Include 100x4line.gwl 6 

addxoffset 0 7 

addyoffset 14 8 

addzoffset 0 9 

Include 100x4line.gwl 10 

addxoffset 0 11 

addyoffset 14 12 

addzoffset 0 13 

Include 100x4line.gwl 14 

addxoffset 0 15 

addyoffset 14 16 

addzoffset 0 17 

Include 100x4line.gwl 18 

addxoffset 0 19 

addyoffset 14 20 

addzoffset 0 21 

Include 100x4line.gwl 22 

addxoffset 0 23 

addyoffset 14 24 

addzoffset 0 25 

Include 100x4line.gwl 26 

addxoffset 0 27 

addyoffset 14 28 

addzoffset 0 29 

Include 100x4line.gwl 30 

addxoffset 0 31 

addyoffset 14 32 

addzoffset 0 33 

Include 100x4line.gwl34 
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%100ylines10.gwl 1 

%One beam layer consists of 8 beams in y: 2 

addxoffset 6 3 

addyoffset 0 4 

addzoffset 0 5 

Include 4x100line.gwl 6 

addxoffset 14 7 

addyoffset 0 8 

addzoffset 0 9 

Include 4x100line.gwl 10 

addxoffset 14 11 

addyoffset 0 12 

addzoffset 0 13 

Include 4x100line.gwl 14 

addxoffset 14 15 

addyoffset 0 16 

addzoffset 0 17 

Include 4x100line.gwl 18 

addxoffset 14 19 

addyoffset 0 20 

addzoffset 0 21 

Include 4x100line.gwl 22 

addxoffset 14 23 

addyoffset 0 24 

addzoffset 0 25 

Include 4x100line.gwl 26 

addxoffset 14 27 

addyoffset 0 28 

addzoffset 0 29 

Include 4x100line.gwl 30 

addxoffset 14 31 

addyoffset 0 32 

addzoffset 0 33 

Include 4x100line.gwl34 
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%100xline.gwl 1 

%One beam consists of 9 layers each of 16 lines 2 

Linedistance 250 3 

Linenumber 16 4 

0 0 10 5 

105 0 10 6 

write 7 

0 0 9.1 8 

105 0 9.1 9 

write 10 

0 0 7.8 11 

105 0 7.8 12 

write 13 

0 0 6.5 14 

105 0 6.5 15 

write 16 

0 0 5.2 17 

105 0 5.2 18 

write 19 

0 0 3.9 20 

105 0 3.9 21 

write 22 

0 0 2.6 23 

105 0 2.6 24 

write 25 

0 0 1.3 26 

105 0 1.3 27 

write 28 

0 0 0 29 

105 0 0 30 

write 31 

 32 

  33 
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%4x100line.gwl 1 

%One beam consists of 9 layers each of 16 lines 2 

Linedistance 250 3 

Linenumber 16 4 

0 0 10 5 

0 105 10 6 

write 7 

0 0 9.1 8 

0 105 9.1 9 

write 10 

0 0 7.8 11 

0 105 7.8 12 

write 13 

0 0 6.5 14 

0 105 6.5 15 

write 16 

 0 0 5.2 17 

0 105 5.2 18 

write 19 

0 0 3.9 20 

0 105 3.9 21 

write 22 

0 0 2.6 23 

0 105 2.6 24 

write 25 

0 0 1.3 26 

0 105 1.3 27 

write 28 

0 0 1 29 

0 105 0 30 

write 31 

 32 
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In-chip fabrication of free-form 3D constructs for directed cell 
migration analysis 
Mark Holm Olsen,a Gertrud Malene Hjortø,a Morten Hansen,b Özcan Met,b Inge Marie Svane,b and 
Niels B. Larsena 

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 
DOI: 10.1039/b000000x 

Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization 
inside the closed microchannel of an injection molded commercially available polymer chip for analysis of 
directed cell migration. Acrylate constructs were produced as woodpile topologies with a range of pore sizes from 
5x5 µm to 15x15 µm and prefilled with fibrillar collagen. Dendritic cells seeded into the polymer chip in a 
concentration gradient of the chemoattractant CCL21 efficiently negotiated the microporous maze structure for 
pore sizes of 8x8 µm or larger. Cells migrating through smaller pore sizes made significantly more turns than 
through larger pores. The introduction of additional defined barriers in the microporous structure resulted in 
dendritic cells making more turns, while still being able to follow the chemoattractant concentration gradient.

Introduction 

Mammalian cell migration studies have traditionally been 
performed on planar culture substrates of glass or plastics, a 
two-dimensional (2D) environment not very similar to the 3D 
extracellular matrix environment of the animal body. 
Numerous publications in the past decades have reported how 
cell adhesion and migration mechanisms differ in 3D versus 
2D microenvironments.1-3 The strong dependence on 3D 
confinement is particularly notable for fast moving immune 
cells as recently demonstrated for neutrophils and T blasts in 
vitro 4 and for dendritic cells in vivo.5 Migration analysis 
studies in 3D have extensively used self-assembling 
extracellular matrix components,6 in particular fibrillar 
collagen, to form  random microporous constructs typically 
located within macroscopic lateral confinements to permit the 
establishment of a defined concentration gradient directing 
the cell migration.7 Approaches to improve the structural 
homogeneity have included templating of migration 
constructs on 3D close-packed microbead arrays to engineer 
more uniform sizes of cavities and connecting pores.8, 9 
Widely used Transwell assays (modified Boyden chambers)10 
capture some of the 3D characteristics by confining cell 
movement to an unbranched short tunnel of well-defined 
width and of typical length much shorter than the extended 
length of the cells being investigated. Thus, Transwell assays 
are useful improvements over the purely 2D motion on planar 
substrates, but with obvious analytical shortcomings. First, 
they cannot mimic the 3D connectivity of real tissue 
microenvironments in a defined way. Second, individual cells 
will not experience complete 3D confinement at any time 
point due to the short tunnel length. Third, cell migration 
only proceed perpendicular to the porous culture surface 
which does not allow for studying variations in the migration 
process, but only an endpoint analysis of the number of 
migrated cells. Recent reports have overcome some of the 
Transwell assay shortcomings by using poly(dimethyl 
siloxane) (PDMS) based soft lithography to produce 
microchannel arrays of varying dimensions for analysis of 

immune cell or cancer cell migration.11-15 These studies have 
provided important insight on the intracellular mechanisms 
governing confined migration. However, easily accessible 
soft lithography methods are experimentally restricted to 
single or few layer topologies that cannot mimic the complex 
in vivo environments. We demonstrate how to overcome 
these limitations in cell migration analysis using two-photon 
polymerization to write the targeted 3D environments of 
arbitrary complexity with micrometer scale resolution. The 
resulting structures are made available for cell biologists in a 
ready-to-use and cost efficient format by fabricating the cell 
migration constructs inside a commercially available closed 
microfluidic chip designed for cell migration analysis. 
 The ideal construct for migration analysis should (a) result 
in cell migration behavior that functionally resembles the in 
vivo behavior as closely as possible, (b) be highly 
reproducible to enable reliable interpretation of the cell 
responses, and (c) support the presence of a stable 
concentration gradient of signaling molecules across the 
construct to perform directed cell migration (chemotaxis) 
studies. The natural microenvironment is a highly complex 
combination of topological, chemical, and mechanical cues 
that is unlikely to be mimicked exactly in a laboratory setting. 
As a functional approximation, in vitro microenvironments 
may be designed with varying degrees of microstructural 
complexity to explore cellular navigation abilities, possibly 
after the addition of natural extracellular components to 
provide biochemical and ultrastructural signaling. Designs 
inducing the most in vivo like migration can then be selected 
for larger scale fabrication to be used in cell preparation 
optimization or cell migration validation. Both applications 
are of relevance to cell-based immunotherapy by dendritic 
cells as we target here. Thus, constructs must be fabricated 
using a method capable of reproducible writing of 3D 
structures with a resolution of sub-cellular dimensions, 
preferably in combination with extracellular matrix 
components. The method should also be of sufficiently low 
cost per analysis to be used as a routine tool in cell biological 
work that typically calls for large number of experiments to 
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achieve adequate statistical significance. The final constructs 
should permit optical visualization of the migrating cells to 
analyze their individual detailed migration pathways within a 
stable concentration gradient maintained for hours to days. 
 Cell migration through connective tissue is of key interest 
in several biological areas including immune responses and 
cancer invasion. The main load bearing part of the 
extracellular matrix in connective tissue is fibrillar collagen, 
constituting >90% of the extracellular matrix protein and 
forming a protein hydrogel with abundant fibrils and fibers of 
sub-micrometer to micrometers diameters.16 Consequently, 
most 3D migration studies have used collagen based systems. 
Recent reports comparing the in vivo topology of connective 
tissue in mice to in vitro models showed heterogeneous in 
vivo environments of microporous pathways (from 1-20 µm 
in diameter) between dense regions inaccessible to fast 
migrating immune cells, a heterogeneity only poorly 
reproduced by in vitro models.5, 17 Addtionally, fiber and 
fibril diameters and spacings in in vitro collagen matrices 
vary a lot within each sample and between samples. Such 
topological variation prohibits reliable interpretation of 
possibly significant cell-to-cell differences in migratory 
properties. 

 The microstructural shortcomings of natural self-
assembled polymers have in recent years been overcome by 
introducing non-linear optical methods for direct 3D writing. 
Two-photon processes can induce spatially localized 
chemical reactions in 3D with sub-micrometer accuracy, 
either for locally forming or breaking chemical bonds in 
synthetic or natural polymers. Several groups have employed 
two-photon microscopy for locally photodegrading cell-
loaded collagen gels or cross-linked poly(ethylene glycol) 
(PEG) gels to produce defined channel networks for cell 
migration.18, 19 This elegant solution has the disadvantage of 
requiring preloading of the cells in the collagen or PEG 
hydrogel, and thus local access to advanced two-photon 
microscopy systems. In addition, the loading of cells into the 
hydrogel material until two-photon induced release may 
affect their phenotype and their viability. 
 Two-photon polymerization (2PP) uses a two-photon 
microscope to locally polymerize the material into arbitrary 
3D shapes with sub-micrometer resolution.20-22 Such 
constructs are structurally stable and may be produced at 
dedicated fabrication facilities independently of their final 
biological use.23 Recent reports have shown that 2PP can 
produce cellular sized constructs of low structural complexity 
for studying directed cell migration in an open custom built 
microchamber system.24, 25 Broader use of the technology 
may be anticipated from increasing the structural complexity, 
decreasing the minimum feature size, and integrating the 
constructs in a closed standard chip design.  

 
Fig. 1 (A) Two-photon polymerization system with chip mounted in a 

custom-made aluminum adaptor. (B) Cross section of the chip 
showing the reservoirs (65 µL) and channel (<1 µL) geometry with 

the channel loaded with resin (yellow). The thin chip bottom layer is 
optimized for microscopy with high NA objectives and thus ideal for 

high resolution 2PP fabrication. 

 Very recently, the extraordinary ability of 2PP to 
polymerize and structure 3D objects within a closed 
microchannel system was reported for use as in-chip filters or 
as in-chip enzymatic reactors.26, 27 Here, we demonstrate the 
fabrication of reproducible 3D structures with cell sized pores 
by 2PP inside the closed channel of a commercially available 
disposable polymer microfluidic chip (Fig. 1) designed for 
chemotaxis analysis in non-structured hydrogel materials. 
The   generated   “woodpile”   structures   are   employed   to  
investigate the migration behavior of mature human dendritic 
cells (DCs) towards a chemoattractant (CCL21) in complex 
microtopologies of varying defined dimensions. The use of a 
chip system with integrated reservoir structures next to the 
targeted microchannel (Fig. 2) has added 2PP benefits of easy 
and fast pre-exposure loading and post-exposure structure 
development of the low viscosity acrylate resin. Loading and 
development is achieved in minutes instead of hours to days 
as previously reported for procedures including pre-exposure 
soft baking steps and cumbersome development in long 
closed channel systems.26 Writing times of hours limit 
production volume. However, the in-chip system can be re-
used for the biological analysis after a simple and short 
enzymatic (collagenase) treatment which compensates for the 
higher price of the serial 2PP fabrication technique. The 
dedicated chip design supports a stable chemoattractant 
concentration gradient for up to 48 h,28 and the thin chip 
bottom layer is optimized for high magnification microscopy 
of the migrating cells.         
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Fig. 2 Photograph of the ibidi µ-Slide Chemotaxis3D chip (76 mm x 

25 mm) used as platform for two-photon polymerization of cell-
sized 3D microstructures in the center channel (black dashed lines) 
between chemoattractant-containing and –free reservoirs (white 

dashed areas). 

Materials and Methods 
In-chip fabrication of cell migration constructs 

Two-photon polymerization was performed on a Nanoscribe 
Photonic Professional system (Nanoscribe, Eggenstein-
Leopoldshafen, Germany). The Nanoscribe system uses a 780 
nm Ti-Sapphire laser emitting 150 fs pulses at 100 MHz with 
a maximum power of 100 mW (20 mW at the sample 
surface) and is equipped with a 100x, 1.4 NA oil immersion 
objective. The substrate is placed in a holder that fits into a 
piezoelectric x/y/z stage. Writing is done by controlling the 
laser in time and moving the stage in x,y and z. Structures 
were produced in a liquid acrylate based resin (IP-L 780, 
Nanoscribe). Writing speeds ranged from 400 µm/s to 1200 
µm/s depending on the depth of writing into the resin: Larger 
writing depths caused loss of light intensity, and the writing 
speed was reduced to retain complete cross linking and 
structural rigidity. All structures were written in order from 
the largest to smallest writing depths to minimize intense 
scattering of the laser beam from already polymerized 
structures. Thus, the first layers written are furthest away 
from the objective and the surface of the substrate. In open 
systems, this technique requires the initial writing of support 
pillars and beams in the opposite writing order to prevent 
polymerized lines of the targeted structure from floating 
away in the liquid resin. Supports were not required for in-
chip writing since the initial structure could be anchored to 
the channel ceiling.  
 Initial experiments used circular Ø 30 mm x 0.17 mm 
glass cover slips as substrates in an open system. Briefly, the 
cover slips were cleaned with acetone and 2-propanol (both 
Sigma-Aldrich, St. Louis, MO) before a drop of resin was 
placed on the top and the substrate was fixed in the holder 
with 4 drops of Fixogum (Marabu, Tamm, Germany). After 
exposure the substrates were developed in 2-propanol by 
submersion in a beaker for 20 min and washed with acetone 
before drying with compressed air.  
 The polymer chip (µ-Slide Chemotaxis3D, ibidi, 
Martinsried, Germany) was mounted on the stage via fixation 
with Fixogum to a custom made aluminum adaptor (see Fig. 

1A). A drop of resin was placed on one channel inlet for the 
channel to fill by capillary forces. Residual resin on the inlet 
was removed with tissue. Identical writing parameters were 
used for the chip and the cover slip substrates. An initial 
measurement of the channel dimensions was performed by 
the autofocus system to determine the required structure 
height to fill the channel. Development was done by filling 
the reservoirs with 2-propanol and emptying after 10 min. 
The process was repeated three times. After development, the 
reservoirs and channels were sterilized by flushing with 
ethanol in a flow bench, and left to dry for 24 h. 
 Confocal micrograph stacks were acquired with a Zeiss 
LSM 5 microscope (Carl Zeiss, Oberkochen, Germany) with 
either a 63x, 1.4 NA (numerical aperture) oil immersion 
objective or a 40x, 1.2 NA water immersion objective, using 
excitation light at 488 nm and collecting emitted light from 
515-550 nm. The recorded stacks were processed into 3D 
reconstructions using ImageJ.29 

Generation of monocyte-derived dendritic cells 

CellGro DC serum-free medium, GM-CSF, IL-4, IL-1β,  
TNF-α  and  IL-6 were all obtained from CellGenix (Freiburg, 
Germany). PGE2 was obtained from Sigma-Aldrich. Iscoves 
modified   Dulbecco’s   medium   (IMDM),   and   human   AB-
Serum was acquired from Lonza (Basal, Switzerland), 
penicillin / streptomycin (P/S) and Fetal Bovine Serum (FBS) 
from Invitrogen (Life Technologies, Paisley, UK). NaHCO3 

solution (7.5%), 10x MEM solution, and collagenase 
(Clostridium Histolyticum, cell culture tested) were from 
Sigma-Aldrich, PureCol (collagen I) solution from Advanced 
Biomatrix (San Diego, CA) and CCL21 from R&D Systems 
(Minneapolis, MN).  
 Leukapheresis was done on healthy blood donors after 
informed consent followed by separation using elutriation 
(Terumo BCT, Lakewood, CO) and subsequent freezing of 
monocytes (80-90% pure as determined by flow cytometry 
on CD14). Thawed monocytes with a viability >99% were 
cultured   for   five   days   in   culture   plates   (Ø   21   cm)   at   5∙105 
cells/ml in CellGro DC medium supplemented with 1000 
U/ml GM-CSF and 250 U/ml IL-4 to produce immature DCs. 
Maturation of DCs was induced for 2 days by adding 1000 
U/ml TNF-α,   1000   U/ml   IL-1β,   1000   U/mL   IL-6, and 1 
µg/ml PGE2.30 Harvest of DCs was performed by aspiration 
followed by cold incubation of the remaining cells in PBS 
with EDTA (5 mM) and subsequent scraping of cells 
followed by freezing of DCs in aliquots (90% human serum 
and 10 % DMSO). 

Collagen gel and DC loading in chips with constructs 

Mature DCs were thawed and transferred to pre-warmed 
IMDM, 10% FBS, 1% P/S. The DCs were centrifuged at 
220g for 5 minutes. Medium with DMSO was removed and 
the cells were left to acclimatize for 30 minutes at room 
temperature in fresh medium. The cells were centrifuged and 
re-suspended at 4×106 cells/ml. A collagen mixture with cells 
was prepared according to the ibidi manual. Briefly, 10 µl of 
NaHCO3 (7.5%) was mixed with 20 µl of 10 x MEM 
solution. After addition and mixing with 150 µl of PureCol 
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solution, 90 µl of DC suspension was added and the mixture 
was applied to the chip for polymerization at 37°C for 30 
minutes (either 6 µl inside the ibidi channel or 60 µl in the 
sink reservoir). After collagen polymerization, the sink and 
source reservoirs were filled with medium alone and medium 
with added CCL21 (60 nM), respectively. In the cases where 
the cells were loaded in the sink reservoir, only the source 
reservoir was filled upon collagen polymerization. The final 
collagen concentration was 1.67 mg/ml. 

Time-lapse microscopy of DC migration 

We monitored DC migration using a custom made time lapse 
setup based on an inverted phase contrast microscope (Zeiss 
Axiovert 100, Oberkochen, Germany) with a 20x phase 
contrast objective. The plugged chip with loaded DCs was 
mounted on a computer controlled translation stage, holding a 
temperature controlled (37°C) humidified incubation 
chamber supplied with 5% CO2 in air. This setup allowed 
tracking for several days. Analysis of cell migration in the X, 
Y and Z direction is in principle possible. However, the 
optical contrast was insufficient for allowing analysis in the Z 
direction, since the DCs during migration are often very long 
and slender with dendrite lengths of 100-300 µm and only a 
few µm in width and consequently a very small cell body. 
DC migration was tracked for approximately 48 hours. This 
is the time-span during which the gradient established inside 
the chip is reported to be stable.28 
 Slight positional variations in the stage position during 
time-lapse recordings were corrected by use of the 
TurboStack plugin for ImageJ.31 The faint outlines of the DC 
dendrites within the microporous constructs were 
subsequently enhanced by subtracting the average (static) 
image of the construct from all images in the time-lapse 
sequence, and adding the subtracted images into the green 
channel of the recorded phase contrast images. Thus, the non-
static cells will appear with a green tint in the final image 
sequences. Movies are provided of both the unprocessed and 
image processed time lapse sequences. 

Collagenase treatment of construct 

After experimentation, the IPL woodpile structures were 
collagenase treated for removal of collagen and cells: 
collagenase solution (0.5 mg/ml in PBS) was added to the 
reservoirs and the channel inlets of the chip. The chip was 
incubated for 1 hour at 37°C, the collagenase solution was 
withdrawn from the reservoirs, and the chip reservoirs were 
washed with water and then ethanol. Before reuse, the chip 
reservoirs were washed once more in sterile water, and the 
reservoirs and structures were completely emptied by 
applying suction to the channel after plugging the reservoir 
inlets. 

Results and discussion 
Writing optimization using free-standing constructs 

Woodpile structures were chosen as the starting point for 
designing and investigating directed cell migration in 3D, 
since they provide the cells with multiple straight pathways at 

perpendicular orientations in close vertical proximity (Fig. 3). 
Writing time is a key limitation in 2PP fabrication. Thus, the 
material volume fraction in the woodpile design should be 
minimized to reduce writing time while still maintaining 
structural integrity of the construct. We tested a range of 
beam cross-sections and found optimum rectangular beam 
height-to-width ratios of 5:2 for 5x5 µm to 10x10 µm pore 
sizes and 3:1 for 15x15 µm pore sizes, respectively. 
Additionally, overlying layers of beams were written with a 
vertical overlap of one writing layer (1.3 µm) to enhance the 
mechanical stability. The 2PP-induced polymerization 
resulted in a change in refractive index from the 
unpolymerized resin. The associated light scattering through 
structured construct parts prevented accurate and fast writing 
at greater writing depths. Consequently, writing of the 
structured construct volumes had to proceed from the largest 
writing  depths   (hereafter   termed  “top”  with   reference   to   the  
channel structure configuration) towards the smallest writing 
depths  (termed  “bottom”).   
 The woodpile writing process was optimized in an open 
system prior to in-chip fabrication due to easier access for 
structural characterization by confocal optical microscopy 
and electron microscopy. All constructs had outer dimensions 
of W x L x H = 100 µm x 100 µm x 70 µm produced on glass 
cover slips as substrates. Polymerization of a free-floating 
polymer wire in liquid resin was problematic since 
convective flow resulted in the wire floating away before its 
neighboring wire could be written. Thus, at least the 
endpoints of all polymerized wires must be anchored to a 
solid material. The fabrication of free standing constructs 
using the top-to-bottom approach called for the introduction 
of support pillars and beams as anchoring objects, as shown 
in Fig. 3 with and without the supports. The support pillars 
were fabricated bottom-to-top to ensure anchoring to the 
cover slip surface before initiating polymerization of the 
targeted woodpile construct. A substantial power loss was 
observed at larger writing depths which could be 
compensated by reducing the writing speed from 1200 µm/s 
at the bottommost layer to 400 µm/s at the topmost layer (70 
µm writing depth). The spatial separation of neighboring 
written wires directly affects the writing time. Center-to-
center spacings of 250 nm and 1300 nm in the lateral and 
vertical dimensions, respectively, were found to minimize 
writing time while maintaining structural integrity.  
 The use of a lower magnification objective will increase 
the voxel volume (formally the two-photon point spread 
function) and might lead to higher volumetric writing speeds 
(µm3/s). However, the larger voxel volume also reduces the 
photon density resulting in a strong decrease in two-photon 
initiated processes. We explored this experimentally using 
either a 100x/1.4 NA or a 20x/0.5 NA objective and found 
the required reduction in writing speed at lower 
magnification to result in largely equal volumetric writing 
speeds using either objective. The lower magnification 
objective with a lower numerical aperture will have a 
substantially elongated voxel in the axial direction leading to 
poorer vertical resolution.20, 32 Consequently, a 100x/1.4 NA 
objective was used for the fabrication of all free-standing and 
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in-chip constructs. 

 
Fig. 3 Confocal fluorescence microscopy of a freestanding 

autoflourescent woodpile structure on a glass cover slip with pore 
sizes of 8 x 8 µm in the x, y and z directions. (A) 3D reconstruction of 
the woodpile construct, confirming a porous 3D structure. Support 
pillars and beams were added at the corners and around the edges 

of the structure (pillars marked by white arrows). (B) Reconstruction 
of the center volume outlined in A. 

In-chip cell migration constructs 

Most microfluidic chips designed for in-channel high 
resolution optical microscopy can be used as substrates for 
in-chip 2PP fabrication. The thin bottom layer and the two 
reservoirs situated next to the channel in the ibidi chip is a 
particular favorable design (see Fig. 1). The two reservoirs 
with a total volume of 130 µL in close proximity to a total 
channel volume   of   ≈1   µL   facilitate   fast   diffusion   based  
development due to a very short diffusion distance of only 
0.5 mm. Development times are further reduced by pressure-
driven and thermal convection effects during filling and 
emptying of the reservoirs. In terms of material economics, 
the closed microchannel system uses very small volumes 
(few µL) of costly resins and optional biomolecular additives 
compared to open systems. For chemotaxis analysis, the 
closed chip system can sustain a controlled linear 
concentration gradient in solution for up to 48h 28 with a 
better control of the observed gradient than in previously 
reported open systems written by 2PP.24, 25 
 The chemoattractant concentration gradient is established 
in the middle channel section of dimensions W x L x H = 1 
mm x 2 mm x 70 µm. Microstructured constructs of that size 
would take several days to produce using the available 
combination of resin and 2PP system. We chose to reduce the 

writing time by fabricating a construct of smaller outer 
dimensions (W x L x H = 100 µm x 300 µm x 70 µm) in the 
middle of the channel. The minimum construct dimensions 
were given by three requirements: (a) A substantial number 
of cells should traverse the porous construct instead of 
migrating around the construct (minimum length); (b) No 
cells should be able to sense both ends of the construct with 
their dendrites simultaneously (minimum width); (c) Cells 
should not be able to migrate above or below the construct 
(full channel height). The biological relevance of migration 
analysis constructs with widths on the 100 µm length scale is 
supported by a recent publication showing oriented motion of 
murine dendritic cells only within the nearest 100-150 µm of 
chemokine-secreting lymphatic vessels.33  Ideally, all cells 
should be forced to migrate through the construct. We tried to 
achieve   this   by   a   “mix-and-match”   combination   of 2PP 
fabrication of the 3D microstructured construct followed by 
conventional 2D patterned exposure through a shadow mask 
in a mask aligner to polymerize bulk barriers leading up to 
the construct. The process and the resulting in-chip structures 
are presented in the Electronic Supplementary Information 
(ESI) Fig. S1. The fabrication procedure was successful but 
the bulk structures resulted in substantial cytotoxicity that 
prevented reliable migration studies. We did not further 
explore the use of bulk barriers since the cell analysis could 
be performed with statistical significance on the fraction of 
cells migrating through the construct in the absence of bulk 
barriers. 
 Complete development of in-channel woodpile constructs 
was verified by fluorescence microscopy. A CO2 laser (FH 
Flyer, Synrad, Mukilteo, WA) was employed for sectioning a 
chip next to the woodpile construct to provide optical access. 
The chip had already been used for cell migration analysis 
followed by regeneration (collagen degradation) by 
collagenase treatment. Fig. 4 shows fluorescence 
micrographs of an in-channel woodpile construct in side view 
and in bottom view, and confirms the presence of a 
continuous porous structure from channel top to bottom. 
 Cytotoxicity is a well-known issue of photopolymerized 
materials. We compared the metabolic activity of dendritic 
cells cultured on polymerized slabs of IP-L resin to 
polymerized slabs of a widely used poly(ethylene glycol) 
diacrylate resin.34 Both materials induced similar slightly 
reduced metabolic activity compared to a reference cell 
culture surface of tissue culture grade polystyrene (TCPS) 
(ESI Fig. S2). The cytotoxicity of the in-chip written IP-L 
constructs was not evaluated directly. However, the efficient 
washing process via the chip reservoirs is expected to remove 
unreacted macromers and photoinitiators to a similar extent 
as found for the IP-L slabs. Cell functional assays supported 
this assumption by showing indistinguishable migration 
behavior of DCs loaded in channels with or without a 
fabricated IP-L construct. 
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Fig. 4 Fluorescence micrograph of a woodpile construct in an ibidi 
channel shown in (A) top view and (B) side view after cell analysis 

and regeneration with collagenase. Each construct consists of three 
100 x 100 x 70 µm3 volumes with 5x5 µm, 8x8 µm, and 10x10 µm 

pore sizes respectively. A reflection in the channel bottom is seen in 
the side view image. The construct microstructure is found to 

sustain multiple cell loading, cell analysis, and regeneration cycles 
without observable degradation. 

Directed in-chip cell migration 

The IP-L woodpile constructs were tested for their ability to 
allow directed DC transmigration in a concentration gradient 
of the chemokine CCL21 in the construct, hereafter termed 
“front-to-back”  migration.  We  designed  woodpile  constructs  
with square pore sizes of 5x5 µm, 8x8 µm, 10x10 µm, and 
15x15 µm to evaluate the ability of the DCs to migrate or 
squeeze through cell-sized passage ways (Fig. 3 and Fig. 4). 
Collagen was introduced into the construct pores to provide a 
biological environment supporting migration, while still 
permitting formation of the chemokine gradient, as 
demonstrated in former chemotaxis studies using similar 
minimal channel cross-sections (3 µm x 10 µm versus 5 µm x 
5 µm in this work).11 Migration through the 5x5 µm pores 
was rarely seen and thus not included in the statistical 
analysis of the migration pathways. The inability of DCs to 
pass 5x5 µm pores despite the presence of a chemokine 
gradient is interesting, since we have recently successfully 
used conventional Transwell migration assays with circular 
pore diameters of 5 µm to study other aspects of DC 
migration potential.35 The main topological difference is the 
much smaller thickness (width) of the 10 µm thick Transwell 
membrane that allows DC dendrites of lengths >50 µm to 
explore the highest and lowest chemokine concentrations 
simultaneously, effectively presenting a very steep 
concentration gradient. In this aspect, our 100 µm wide 
constructs with a definable gradient slope likely resemble the 
in vivo microenvironment of the DCs more closely.33  
 In the further migration experiments we only used 
woodpile constructs with pore sizes of 8x8, 10x10, and 15x15 
µm, respectively. DC migration was analyzed by manual 
inspection of time-lapse image sequences to determine the 
number of lateral turns (in bottom view) performed by each 

cell inside woodpile structures of different pore sizes. A 
lateral turn requires concomitant vertical translocation due to 
the woodpile topology, thereby revealing full 3D cell motion. 
Directed cell migration analysis requires a stable CCL21 
concentration gradient that is established by diffusion in the 
full channel width within hours, and cells need to migrate in 
from the sink reservoir where they are seeded. Consequently, 
the tracking of cells was only started once significant 
migration was observed within the channel region (typically 
within 4 hours). The introduction of a microporous construct 
might delay gradient formation within the construct. As 
discussed in the ESI, the microscopic pore dimensions, the 
large porosity of the woodpile topology (>0.68), and the high 
constrictivity factor (estimated to be 0.9) 36 gives a reduction 
in the effective CCL21 diffusion constant by <2. Thus, the 
additional time involved in establishing a stable gradient 
within the 100 µm wide construct will be insignificant 
compared to the time for forming the full gradient across the 
1 mm wide channel.  

 
Fig. 5 Phase contrast microscopy snapshots (bottom view) showing 
two  dendritic  cells  (labeled  “1”  and  “2”)  migrating  inside  a  15  x  15  

µm pore size woodpile construct. Both cells probe neighboring 
channels in (B) and (C), before deciding on a channel to migrate 
through in (D). The cell outlines have been highlighted by use of 

image processing in ImageJ. 
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Fig. 6 Comparison of the fraction of cells moving straight through a 
woodpile construct to cells taking 1 or more turns, as a function of 

the construct pore size. Significantly more cells turn as they migrate 
through 8x8 µm pore constructs than through 15x15 µm pore 

constructs (p=0.033). Error bars show the standard error of the 
mean  (n≥7). 

 
 In general the DCs continue their migration path after 
entering the construct and do not seem to have problems 
detecting the concentration gradient within the construct. Fig. 
5 shows microscopy snapshots at different time points of two 
DCs crossing a 15x15 µm pore-size woodpile structure. Both 
cells initially probe two neighboring channel structures with 
their dendrites before deciding to traverse one of the channels 
without performing any turns inside the construct. Equivalent 
behavior has been observed for neutrophils encountering 
bifurcations in a straight microchannel system.37 Movies of 
the time-lapse series are available in image processed and 
unprocessed versions (ESI Movies 1 and 2). Fig. 6 
summarizes the observed difference in migration behavior. 
Cells migrating through the smaller pore dimensions (8x8 
and 10x10 µm) have a significantly higher probability of 
making at least one turn than cells migrating through the 
largest pores (15x15 µm). In the latter geometry, the majority 
of the DCs moves straight through the porous construct, 
while most cells make at least one turn on their passage of the 
smallest pore size structures. ESI Fig. S3 shows a detailed 
analysis of the number of turns made (0, 1-2, 3-4, or 5-6 
turns, respectively) as a function of pore size, with a clear 
trend towards more turns occurring in smaller pores. The 
results indicate that the cells are more prone to seek 
alternative paths when confined to smaller cross-sectional 
areas in a tighter woodpile. 
 The free-form 2PP process allows for the introduction of 
barriers to cell migration at arbitrary locations. We explored 
this design freedom to measure the ability of DCs to navigate 
in 3D maze structures. The basic woodpile topology permits 
direct cell migration from the front to the back of the 
construct, as was most commonly observed for the 15x15 µm 
pores (Fig. 6). If the cell wants to turn it will need to change 
its vertical level beforehand to reach a channel in the 
perpendicular orientation. By blocking the straight front-to-
back channels by one additional photopolymerized barrier per 
channel at alternating positions in neighboring channels, we 
force all migrating cells to perform at least two half spiral 
turns in 3D. Fig. 7A shows a computer rendition of the 

targeted structure in perspective and in side view. The basic 
woodpile structure is shown in gray while the additional 
barriers present in all three layers with front-to-back 
pathways are shown in dark green. The side view shows the 
barrier-free passage ways for cells in the three layers with 
sideway channels. The outer dimensions of the construct are 
increased to W x L x H = 200 µm x 400 µm x 70 µm to 
provide longer and more detailed analysis of the migration 
path of the individual cells. The detailed DC migration 
analysis through the basic woodpile structure indicated a 
higher fraction of cells making multiple turns through the 
10x10 µm porous construct than either 15x15 µm or 8x8 µm 
pores (ESI Fig. S3). Consequently, we selected the 10x10 
pore size for the higher complexity construct. Fig. 7B shows 
a confocal fluorescence micrograph of one of the layers 
containing extra barriers in the final in-chip produced 
construct. Cross-sectional views through one set of the 
additional barriers show blockage of every second front-to-
back channel, while cross-section through the other set of 
barriers would show blockage of the remaining front-to-back 
channels. 

 
Fig. 7 Higher complexity 3D cell migration construct. (A) Schematic 

of the construct highlighting in green the additional barriers 
introduced to obstruct cell migration straight through the construct 
(from front to back). Insert: Construct in side view showing the free 

passage ways in the perpendicular direction. (B) Confocal 
fluorescence micrograph of the construct fabricated by 2PP, 

focusing on the lower three layers. Left: Orthogonal slice through 
the barriers (along dashed line in x/y projection) showing blockage 
of every second front-to-back channel in the x/z projection. Right: 

Slice through the basic woodpile showing all channels being open at 
these locations. 

DCs were seeded next to the complex constructs using the 
same procedure as for basic woodpile constructs. The 
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resulting time lapse sequences are available in image 
processed and unprocessed formats as ESI Movies 3 and 4, 
respectively. In general, DCs efficiently found their way 
through the construct, showing their detection of the 
chemotactic concentration gradient even in a more complex 
topology calling for intermittent migration perpendicular to 
the concentration gradient. Fig. 8 compares the results from 
the manual cell tracking in 10x10 µm pore woodpiles with or 
without additional barrier structures. The comparison shows a 
clear trend for DCs to take many more turns in constructs 
with additional barriers, also beyond the minimum 2 turns 
required to traverse the construct from front to back. We 
observed multiple possible pathways being probed by both 
DCs in Fig. 5 with very long straight dendrites (up to 70 µm 
in length, see ESI Movies 1 and 2) being extended into the 
construct channels prior to deciding on a channel for 
transmigration. The presence of additional barriers prevents 
straight extension of probing dendrites, and may thus result in 
less persistent cell motion either due to differences in signal 
processing or due to the need for repeated cytoskeletal 
rearrangements. This is most likely also the case in the less 
organized in vivo extracellular microenvironment. 

 
Fig. 8 Fraction of DCs making specific numbers of turns inside an in-
chip woodpile construct with 10x10 µm pores without (top) or  with 

(bottom) additional barriers as shown in Fig. 7. Note that cells by 
design of the construct must make at least two turns to pass the 
barriers. Error bars show the standard error of the mean (n=3). 

Recent work explored the correlation of average pore sizes in 
random 3D collagen gel networks to the resulting chemotaxis 
speeds of different cell types ranging from small neutrophils 
over intermediate sized T blasts to large cancer cells.4 The 
fibrillar collagen gel pore size was varied via the 
concentration and type of collagen used to reflect the 
variability of fiber widths and interfibrillar spacing  observed 
in connective tissue in vivo.17 The authors observed a strong 
correlation between average pore size and migration speed 
for all three cell types correlating to the size and 
deformability of their respective nuclei. However, the 
measured pore sizes spanned more than a factor of 3 for the 

less dense networks (average pore size >15 µm2), which 
likely contributed to the broad range of measured cell 
migration speeds. In a complementary approach, the motion 
of dendritic cells was accurately confined within straight 
PDMS microchannels at a substrate surface, thus bordering 
2D and 3D migration.14 The latter study provided a highly 
reproducible porous environment for cell migration at the 
cost of a highly simplified model of a connected 3D pore 
network of spatially varying complexity. The synthetic in-
chip fabricated 3D constructs presented here ideally capture 
the best of both analytical approaches by providing accurate 
structural definition and allowing for arbitrary variation in 3D 
connectivity, with or without the added ultrastructure of 
fibrillar collagen. We observed dendritic cell migration 
speeds of 5-6 µm/min in unbranched straight microchannels 
filled with fibrillar collagen (data not shown) in good 
agreement with the former work using protein coated but 
unfilled channels.14  However, the effective migration speed 
was significantly reduced upon introduction of branching or 
barriers in the channel systems due to repeated directional 
decision processes by the cell when encountering an obstacle 
parallel (woodpile wall at the construct entrance) or 
perpendicular (barrier) to its direction of motion. This is in 
agreement with in vivo migration studies showing slower 
migration speeds of approx. 2 µm/min of dendritic cells 
migrating towards towards lymph nodes.38 

Chip regeneration compensates for higher fabrication 
costs 

Two-photon polymerization is a serial and time-consuming 
fabrication process which is not well suited for affordable 
single-use systems. Thanks to the easy liquid exchange and 
sink/source design of the ibidi chip system the collagenase 
treatment introduced here thoroughly rinses the chip of 
collagen residues and prepares the construct for repeated 
experiments. The effect of the collagenase treatment is 
observed in Fig. 4 where there is no sign of collagen left on 
the construct after multiple experiments. The hard IP-L resin 
creates a tough structure where the pores are still intact and 
the structural integrity of the construct is not compromised by 
the treatment. The collagenase regeneration not only 
drastically reduces the cost of multiple experiments for this 
system but also for many others that utilize collagen in 
confined spaces. The only requirement is easy liquid 
exchange in the system. 

Conclusions 
In-chip two-photon polymerization of 3D microporous 
constructs combines the best of two chip fabrication 
approaches: (1) Fast low-definition 2D macroscopic scale 
production of channel structures compatible with 
conventional optical analysis and standardized connectors 
interfacing to the surroundings; (2) Slower high-definition 3D 
fabrication of small volume application-specific components. 
Direct in-chip fabrication obviates the need for subsequent 
chip bonding processes that often requires extensive 
optimization to avoid leakage and may easily damage fragile 
micro- or nanostructures present at the chip surfaces to be 
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bonded. The 2PP process provides accurate control of both 
the pore size and the topology experienced by the migrating 
cells in a material that does not appear to affect their 
migratory behavior. The source/drain design of the ibidi chip 
gives complete control of the concentration and thus the 
steepness of the chemokine gradient. Combining these 
aspects with easy visualization and cell tracking through the 
thin bottom adds up to a very versatile and easy to use 
migration analysis system. The collagenase regeneration 
procedure strongly reduces the cost per experiment and thus 
compensates for the higher expense of 2PP fabrication. We 
foresee that our in-chip designed constructs can be employed 
both for optimizing cell processing conditions to maximize in 
vivo chemotaxis of DCs 35 and for validating the migratory 
potential  of  each  patient’s  cells  in immunotherapy. 
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Mix-and-match in-chip fabrication of bulk barriers 
Bulk barriers blocking the majority of the chip microchannel were fabricated to prevent cells from migrating 

around the in-chip produced microporous construct. In brief, the in-chip construct was exposed as described 

in the Materials and Methods section but without development of the structure, i.e. unexposed IP-L 780 resin 

remained in the chip channel. The bulk barriers were designed as open areas in a standard photolithography 

chrome-on-glass shadow mask. The resin-loaded chip was mounted in a Suss MA4 mask aligner (Süss 

Microtec, Garching, Germany) where the bulk barrier outlines on the shadow mask were aligned to the 

visible polymerized construct in the resin. The bulk barrier areas were exposed with a dose of 300 mJ/cm2 at 

365 nm, followed by simultaneous development of both construct and bulk barriers according to the 

procedure described in the Materials and Methods section. Fig. S1 shows that the bulk barriers effectively 

blocked the channel volume next to the construct and forced the cells to migrate through the construct. 

Unfortunately, cells showed very limited or aberrant migration behavior that was interpreted as being caused 

by released of cytotoxic compounds from the bulk barriers. We did not further explore the use of bulk 

barriers since the cell analysis could be performed with statistical significance on the fraction of cells 

migrating through the construct in the absence of bulk barriers.  

 

 
Fig. S1 Fluorescence micrograph of 2PP-written woodpile constructs with pore sizes of 5x5, 10x10 and 15x15 µm inside the microchannel with bulk 

barriers blocking the remaining channel. The cells were thus forced to enter the construct in order to migrate from one reservoir to the other. 

ReservoirReservoir

Barrier

Barrier

2PP construct
15x15 µm
10x10 µm
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Cytotoxicity test of polymerized IP-L 780 resin 
Cytotoxicity of polymerized IP-L 780 resin was evaluated using a dendritic cell (DC) metabolism assay. 

Cytotoxic comparison was made against Tissue Culture grade polystyrene (TCPS) as a non-toxic reference 

and photopolymerized poly(ethylene glycol) diacrylate (PEGDA) that is often used in biomedical 

applications of two-photon polymerization. Experiments were performed in a 96 well TCPS microtiter plate 

(Nunclon grade, Nunc, Roskilde, Denmark). 50 µL IP-L 780 was dispensed into a well and 

photopolymerized with a dose of 180 mJ/cm2 at 365 mW in an MA4 mask aligner (Suss Microtec). 50 µL of 

1 kDa PEGDA (Laysan Bio, Arab, AL) with 0.1% w/v IrgaCure 2959 (2-Hydroxy-4′-(2-hydroxyethoxy)-2-

methylpropiophenone, Sigma-Aldrich) was dispensed into a second well and photopolymerized with 8.6 

J/cm2. The latter high exposure dose was required due to the presence of ambient oxygen acting as radical 

quencher. A third untreated well was used as the non-toxic TCPS reference. Samples were prepared in 

triplicate on each plate.  

All wells were washed 3 times with MilliQ grade water (Merck Millipore, Billerica, MA) water and left with 

MilliQ water for a further 72 h at room temperature. Culture medium consisted of IMDM with 10% FBS and 

1% P/S. The wells were filled with culture medium for 15 min and emptied, prior to seeding 5000 – 10000 

DCs in 100 µl culture medium in each well and incubation for 24 h. 10 µl AlamarBlue (Life Technologies) 

was added to each well and incubation was continued for 2 h. After incubation 100 µl supernatant was 

transferred to a new microtiter plate, and the developed color was measured in a Victor3 plate reader (Perkin 

Elmer, Waltham, MA). The TCPS well bottom was chosen as reference material for the DC metabolic 

activity on the two photopolymerized materials. Fig. S2 shows that photopolymerized IP-L 780 induces 

some reduction in DC metabolism compared to TCPS, but a smaller reduction than observed on the 

commonly used PEGDA/IrgaCure 2959 system. These results were obtained on 1.5 mm thick material layers 

coating the entire well bottom. Considering the extremely small volumes photopolymerized in the in-chip 

constructs, we do not anticipate significant cytotoxic effects. 

 
Fig. S2 Metabolic activity of dendritic cells cultured on different materials. Tests are performed with an AlamarBlue assay and the 

graph shows the activity relative to the metabolic activity on TCPS. Values are the average of 2 independent experiments.  
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Detailed analysis of the cell migration pathways through woodpile constructs 

 
Fig. S3. Detailed cell migration analysis as a function of construct pore size. There is a clear trend towards more cells making at least 
one turn in the smaller pore constructs. It is less clear if the 8x8 µm pores induce more cell turns than the 10x10 µm pores. Error bars 

show  the  standard  error  of  the  man  (n  ≥  3). 

 
Diffusion-based concentration gradients in woodpile constructs 
The diffusivity of a compound A in a medium B can be written as DAB. The diffusibility, Q, in a porous 

medium is then the ratio of the effective diffusivity, Deff, of compound A through the porous medium to DAB.1 

van Brakel and Heertjes expressed the diffusibility as:  

𝑄 = εδ
τ       (eq. 1) 

where  ε  is  the  porosity,  δ  the  constrictivity,  and  τ  the tortuosity. 2 The  tortuosity  τ  is  approximately  unity  in  

the woodpile design since the straight channels of the construct are parallel to the gradient direction outside 

the construct. The porosity is 0.71 for a perfect woodpile structure with 10 µm x10 µm pores separated by 

bars of cross-sectional dimensions 10 µm x 4 µm. The introduction of a 1.3 µm vertical overlap between 

overlying bars to optimize the mechanical stability reduces the porosity slightly to a value no smaller than 

0.68. The constrictivity cannot be calculated directly. However, van Brakel and Heertjes estimated that the 

constrictivity does not depend on the particular shape of the porous structure but only on the ratio β between 

the maximum and minimum cross-sectional dimension of the porous path through the construct. For our 

woodpile design β≈2 corresponding to a constrictivity of approximately 0.9.2 Inserting the worst case values 

into eq. 1 yields a diffusibility: 

𝑄 = 0.68 ⋅ 0.9
1 = 0.61 

The results shows that the effective diffusion constant is reduced by ~50% inside the construct compared to 

outside with a corresponding small delay in establishing a chemoattractant concentration gradient within the 

construct. However, the lateral extent of the construct is only up to 20% (200 µm) of the entire channel 

extent (1 mm) in the direction of the concentration gradient. This implies that the delay in gradient formation 

inside the construct will be insignificant in comparison to establishment of the channel-wide concentration 

gradient. 
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Description of the time-lapse movies 
Movie 1: Migration of dendritic cells through a woodpile construct with 15x15 µm pores (see Fig. 4 in the 

main text). The image sequence has been processed to highlight the cells. Images were captured every 2 

minutes. 

Movie 2: Migration of dendritic cells through a woodpile construct with 15x15 µm pores. Same image 

sequence as Movie 1 but without any image processing. Images were captured every 2 minutes. 

Movie 3: Migration of dendritic cells through a woodpile construct with 10x10 µm pores and added barrier 

structures (see Fig. 7 in the main text). The image sequence has been processed to highlight the cells. Images 

were captured every 2 minutes. 

Movie 4: Migration of dendritic cells through a woodpile construct with 10x10 µm pores and added barrier 

structures (see Fig. 7 in the main text). Same image sequence as Movie 3 but without any image processing. 

Images were captured every 2 minutes. 
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