

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

How to determine composite material properties using numerical homogenization

Andreassen, Erik; Andreasen, Casper Schousboe

Published in:
Computational Materials Science

Link to article, DOI:
10.1016/j.commatsci.2013.09.006

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Andreassen, E., & Andreasen, C. S. (2014). How to determine composite material properties using numerical
homogenization. Computational Materials Science, 83, 488-495. DOI: 10.1016/j.commatsci.2013.09.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/19503747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.commatsci.2013.09.006
http://orbit.dtu.dk/en/publications/how-to-determine-composite-material-properties-using-numerical-homogenization(af2819cc-dd74-467f-babc-c5cbace088e6).html

How to determine composite material properties using numerical homogenization

Erik Andreassen∗, Casper Schousboe Andreasen

Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, Building 404, Denmark

Abstract

Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a
periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained
Matlab implementation. It is shown how the basic code, which computes the effective elasticity tensor of a two material composite,
where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of
conductivity, thermal expansion, and fluid permeability are described in detail. The unit cell of the periodic material can take the
shape of a square, rectangle, or parallelogram, allowing for all kinds of 2D periodicities.

Keywords: Numerical homogenization, Microstructure, microFE, Matlab

Figure 1: A section of a 2D periodic microstructure consisting
of two materials (white and black). The red line encloses a
square unit cell, the blue a rectangular unit cell, and the green a
parallelogram unit cell.

1. Introduction

The microstructure of composite materials, where two or
more materials are combined to achieve a material with attrac-
tive properties, can often be described by a unit cell, which is
periodically repeated in one or more directions, as illustrated in
Fig. 1.

Such periodic, or almost periodic, microstructures can be
found in materials such as fiber composites and bone. Informa-
tion about the microstructure can be obtained by e.g. a CT-scan.
The technique described in the following can thereafter be ap-
plied to find the effective properties of the material. For human

∗E-mail: erand@mek.dtu.dk

bone this has been done by e.g. Hollister [1], who has also been
among those to apply the technique for the design of metal and
polymer implants [2, 3].

Assuming length scales where the theory of elasticity can
be applied and perfect bonding between the different materials
in the unit cell, homogenization can be used to compute the
macroscopic composite material properties. Homogenization
relies on an asymptotic expansion of the governing equations,
which allows for a separation of scales. This is valid when there
is a clear separation between the macro- and microscopic length
scales. The theory behind homogenization is covered in detail
in several works, some of the first being [4] and [5]. Another
good theoretical introduction to the subject can be found in [6].

According to the theory of homogenization, the macroscopic
elasticity tensor EH

i jkl of a periodic composite material can be
computed as:

EH
i jkl =

1
|V |

∫

V
Epqrs

(
ε

0(i j)
pq − ε(i j)

pq

) (
ε0(kl)

rs − ε(kl)
rs

)
dV (1)

where |V | denotes the volume of the unit cell, Epqrs is the locally
varying stiffness tensor, ε0(i j)

pq are prescribed macroscopic strain
fields (in 2D there are three; e.g. unit strain in the horizontal
direction (11), unit strain in the vertical direction (22), and unit
shear strain (12 or 21)), while the locally varying strain fields
ε

(i j)
pq are defined as:

ε
(i j)
pq = εpq

(
χi j

)
=

1
2

(
χ

i j
p,q + χ

i j
q,p

)
(2)

based on the displacement fields χkl found by solving the elas-
ticity equations with a prescribed macroscopic strain

∫

V
Ei jpqεi j(v)εpq(χkl)dV =

∫

V
Ei jpqεi j(v)ε0(kl)

pq dV ∀v ∈ V

(3)
where v is a virtual displacement field. For most practical prob-
lems the homogenization is performed numerically by discretiz-
ing and solving Eq. (3) using e.g. the finite element method.

Preprint submitted to Computational Materials Science August 22, 2013

1,2

1 4 7 10
3,421,2215,169,103,4

1,219,2013,147,8

2 5 8 11

3 6 9 12
7,81,2

5,623,2417,1811,125,6

13,14 19,20 1,2

(a)

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

ly

lx

φ

(b)

Figure 2: a) Illustration of finite element mesh used to discretize unit cell (element numbers are big, and degrees of freedom are
small) and b) corresponding structure of indicator matrix x.

This is often referred to as numerical homogenization. The nu-
merical homogenization procedure is also well described in the
literature. One of the first detailed descriptions of the proce-
dure can be found in Guedes and Kikuchi [7], while Hassani
and Hinton [8, 9, 10] provide a three paper review of both nu-
merical homogenization and how it is used in conjunction with
topology optimization to design periodic materials.

However, the implementation can still seem daunting, and
with the small and self-contained Matlab example provided in
Appendix A, we try to lower the barrier for using numerical
homogenization. The code computes the homogenized elastic-
ity tensor for a two material composite. A detailed description
of the implementation is provided in Section 2, while examples
of extensions to three material composites, homogenized ther-
mal expansion, and thermal conductivity are given in Section
3. Section 4 is devoted to a slightly more involved extension of
homogenized permeability.

2. Matlab implementation

In the basic Matlab implementation we treat the case of a
composite consisting of two materials. The RVE is discretized
using bilinear finite elements (plane strain elements are used,
but plane stress can be specified by providing modified mate-
rial data), and an indicator matrix x specifies whether a finite
element contains material 1 (xe = 1) or material 2 (xe = 2).

In Fig. 2 the structure of the mesh used to discretize the
RVE and the indicator matrix x are illustrated. Figure 2b also
shows how the geometry of the unit cell is specified in the Mat-
lab code. The homogenization function needs six user specified
inputs. The two first arguments (lx and ly) are the width, lx

and height, ly , of the unit cell. The third argument (lambda)
is a vector containing Lame’s first parameter for material 1 and
for material 2. Similarly, the fourth argument (mu) is a vector
with Lame’s second parameter for the two materials. The fifth
argument (phi) is the angle, φ, between the horizontal axis and
the left wall in the unit cell. Finally, the sixth argument is the in-
dicator matrix x. The discretization is determined from the size
of x; number of rows equals number of elements in the vertical
direction, and number of columns equals number of elements
in the horizontal direction.

Remark the angle φ should be given in degrees and to avoid
overly distorted elements it should not be smaller than 45◦ nor
larger than 135◦. As discussed in [11] a parallelogram RVE
allows for the analysis of general periodic materials, including
polygonal cells.

Calling the function in Appendix A as:

x = randi([1 2],200)
homogenize(1,1,[.01 2],[0.02 4],90,x)

will compute the effective properties of a random microstruc-
ture consisting of two materials, where the stiff material has an
elasticity modulus of about 100 times the soft material. The ho-
mogenization is done by discretizing the RVE with 200 times
200 bilinear elements, since that is the size of x. The differ-
ent parts of the homogenization procedure implementation are
explained in detail in the following.

If only a single material is used the stiffness will be constant
throughout the RVE resulting in zero displacements i.e. εi j = 0
and the original stiffness is obtained when applying Eq. (1).

2.1. The element stiffness matrix and load vectors (line 17 and
86-125)

The elasticity equation from (3) can be discretized using
the finite element method. The left hand side, i.e. the stiffness
matrix, yields:

K =

N∑

e=1

∫

Ve

BT
e CeBedVe (4)

where the summation denotes the assembly of N finite ele-
ments. The matrix Be is the element strain-displacement ma-
trix, Ve is the volume of element e, and Ce is the constitutive
matrix for the element, which for an isotropic material (we as-
sume the materials used to build the composite are isotropic)
is:

Ce = λe ·

1 1 0
1 1 0
0 0 0

 + µe ·

2 0 0
0 2 0
0 0 1

 (5)

where λe and µe are Lamé’s first and second parameter for the
material in element e, respectively. Lamé’s parameters can be

2

(a)

1,2

1 4 7 10
3,421,2215,169,103,4

1,219,2013,147,8

2 5 8 11

3 6 9 12
7,81,2

5,623,2417,1811,125,6

13,14 19,20 1,2

(a)

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

ly

lx

φ

(b)

Figure 2: a) Illustration of finite element mesh used to discretize unit cell (element numbers are big, and degrees of freedom are
small) and b) corresponding structure of indicator matrix x.

This is often referred to as numerical homogenization. The nu-
merical homogenization procedure is also well described in the
literature. One of the first detailed descriptions of the proce-
dure can be found in Guedes and Kikuchi [7], while Hassani
and Hinton [8, 9, 10] provide a three paper review of both nu-
merical homogenization and how it is used in conjunction with
topology optimization to design periodic materials.

However, the implementation can still seem daunting, and
with the small and self-contained Matlab example provided in
Appendix A, we try to lower the barrier for using numerical
homogenization. The code computes the homogenized elastic-
ity tensor for a two material composite. A detailed description
of the implementation is provided in Section 2, while examples
of extensions to three material composites, homogenized ther-
mal expansion, and thermal conductivity are given in Section
3. Section 4 is devoted to a slightly more involved extension of
homogenized permeability.

2. Matlab implementation

In the basic Matlab implementation we treat the case of a
composite consisting of two materials. The RVE is discretized
using bilinear finite elements (plane strain elements are used,
but plane stress can be specified by providing modified mate-
rial data), and an indicator matrix x specifies whether a finite
element contains material 1 (xe = 1) or material 2 (xe = 2).

In Fig. 2 the structure of the mesh used to discretize the
RVE and the indicator matrix x are illustrated. Figure 2b also
shows how the geometry of the unit cell is specified in the Mat-
lab code. The homogenization function needs six user specified
inputs. The two first arguments (lx and ly) are the width, lx

and height, ly , of the unit cell. The third argument (lambda)
is a vector containing Lame’s first parameter for material 1 and
for material 2. Similarly, the fourth argument (mu) is a vector
with Lame’s second parameter for the two materials. The fifth
argument (phi) is the angle, φ, between the horizontal axis and
the left wall in the unit cell. Finally, the sixth argument is the in-
dicator matrix x. The discretization is determined from the size
of x; number of rows equals number of elements in the vertical
direction, and number of columns equals number of elements
in the horizontal direction.

Remark the angle φ should be given in degrees and to avoid
overly distorted elements it should not be smaller than 45◦ nor
larger than 135◦. As discussed in [11] a parallelogram RVE
allows for the analysis of general periodic materials, including
polygonal cells.

Calling the function in Appendix A as:

x = randi([1 2],200)
homogenize(1,1,[.01 2],[0.02 4],90,x)

will compute the effective properties of a random microstruc-
ture consisting of two materials, where the stiff material has an
elasticity modulus of about 100 times the soft material. The ho-
mogenization is done by discretizing the RVE with 200 times
200 bilinear elements, since that is the size of x. The differ-
ent parts of the homogenization procedure implementation are
explained in detail in the following.

If only a single material is used the stiffness will be constant
throughout the RVE resulting in zero displacements i.e. εi j = 0
and the original stiffness is obtained when applying Eq. (1).

2.1. The element stiffness matrix and load vectors (line 17 and
86-125)

The elasticity equation from (3) can be discretized using
the finite element method. The left hand side, i.e. the stiffness
matrix, yields:

K =

N∑

e=1

∫

Ve

BT
e CeBedVe (4)

where the summation denotes the assembly of N finite ele-
ments. The matrix Be is the element strain-displacement ma-
trix, Ve is the volume of element e, and Ce is the constitutive
matrix for the element, which for an isotropic material (we as-
sume the materials used to build the composite are isotropic)
is:

Ce = λe ·

1 1 0
1 1 0
0 0 0

 + µe ·

2 0 0
0 2 0
0 0 1

 (5)

where λe and µe are Lamé’s first and second parameter for the
material in element e, respectively. Lamé’s parameters can be

2

(b)

Figure 2: a) Illustration of finite element mesh used to discretize unit cell (element numbers are big, and degrees of freedom are
small) and b) corresponding structure of indicator matrix x.

This is often referred to as numerical homogenization. The nu-
merical homogenization procedure is also well described in the
literature. One of the first detailed descriptions of the proce-
dure can be found in Guedes and Kikuchi [7], while Hassani
and Hinton [8, 9, 10] provide a three paper review of both nu-
merical homogenization and how it is used in conjunction with
topology optimization to design periodic materials.

However, the implementation can still seem daunting, and
with the small and self-contained Matlab example provided in
Appendix A, we try to lower the barrier for using numerical
homogenization. The code computes the homogenized elastic-
ity tensor for a two material composite. A detailed description
of the implementation is provided in Section 2, while examples
of extensions to three material composites, homogenized ther-
mal expansion, and thermal conductivity are given in Section
3. Section 4 is devoted to a slightly more involved extension of
homogenized permeability.

2. Matlab implementation

In the basic Matlab implementation we treat the case of a
composite consisting of two materials. The unit cell is dis-
cretized using bilinear finite elements (plane strain elements are
used, but plane stress can be specified by providing modified
material data), and an indicator matrix x specifies whether a fi-
nite element contains material 1 (xe = 1) or material 2 (xe = 2).

In Fig. 2 the structure of the mesh used to discretize the
unit cell and the indicator matrix x are illustrated. Figure 2b
also shows how the geometry of the unit cell is specified in the
Matlab code. The homogenization function needs six user spec-
ified inputs. The two first arguments (lx and ly) are the width,
lx and height, ly , of the unit cell. The third argument (lambda)
is a vector containing Lame’s first parameter for material 1 and
for material 2. Similarly, the fourth argument (mu) is a vector
with Lame’s second parameter for the two materials. The fifth
argument (phi) is the angle, φ, between the horizontal axis and
the left wall in the unit cell. Finally, the sixth argument is the in-
dicator matrix x. The discretization is determined from the size
of x; number of rows equals number of elements in the vertical
direction, and number of columns equals number of elements
in the horizontal direction.

Remark the angle φ should be given in degrees and to avoid
overly distorted elements it should not be smaller than 45◦ nor
larger than 135◦. As discussed in [11] a parallelogram unit cell
allows for the analysis of general periodic materials, including
polygonal cells.

Calling the function in Appendix A as:

x = randi([1 2],200)
homogenize(1,1,[.01 2],[0.02 4],90,x)

will compute the effective properties of a random microstruc-
ture consisting of two materials, where the stiff material has an
elasticity modulus of about 100 times the soft material. The
homogenization is done by discretizing the unit cell with 200
times 200 bilinear elements, since that is the size of x. The dif-
ferent parts of the homogenization procedure implementation
are explained in detail in the following.

If only a single material is used the stiffness will be con-
stant throughout the unit cell resulting in zero displacements
i.e. εi j = 0 and the original stiffness is obtained when applying
Eq. (1).

2.1. The element stiffness matrix and load vectors (line 17 and
86-125)

The elasticity equation from (3) can be discretized using
the finite element method. The left hand side, i.e. the stiffness
matrix, yields:

K =

N∑

e=1

∫

Ve

BT
e CeBedVe (4)

where the summation denotes the assembly of N finite ele-
ments. The matrix Be is the element strain-displacement ma-
trix, Ve is the volume of element e, and Ce is the constitutive
matrix for the element, which for an isotropic material (we as-
sume the materials used to build the composite are isotropic)
is:

Ce = λe ·

1 1 0
1 1 0
0 0 0

 + µe ·

2 0 0
0 2 0
0 0 1

 (5)

where λe and µe are Lamé’s first and second parameter for the
material in element e, respectively. Lamé’s parameters can be

2

computed from Young’s modulus E and the Poisson’s ratio ν
using the relations:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

(6)

And to get plane stress properties Lamé’s first parameter must
further be modified as follows:

λ̂ =
2µλ
λ + 2µ

(7)

In the initialization the element stiffness matrix is split into two
corresponding parts, such that the stiffness matrix is a function
of the material properties in the elements:

K =

N∑

e=1

ke =

N∑

e=1

(
λekλ + µekµ

)
(8)

where the split simplifies the extension to more materials.
The discretization of the right hand side of (3) is the loads

fi which correspond to macroscopic volumetric straining

fi =
∑

e

∫

Ve

BT
e Ceε

idVe (9)

where the strains are chosen to be:

ε1 = (1, 0, 0)T , ε2 = (0, 1, 0)T , ε3 = (0, 0, 1)T (10)

However, any 3 independent strains can be used, but for sim-
plicity unit strains in the coordinate directions have been choosen.
The load vectors are assembled using a split as for the stiffness
matrix:

fi =
∑

e

(
λefi

λ + µefi
µ

)
(11)

Finally, the displacement fields are computed solving the finite
element problem with three loadcases (six in 3D):

Kχi = fi, i = 1, ..., 3 (12)

where the displacement vectors χi are assumed to be V-periodic.
The computations of kλ, kµ, fi

λ, and fi
µ are all done in the

call to elementMatVec in line 17. Here we utilize the iden-
tical shape of the elements (not necessary as such for the ho-
mogenization, but makes the implementation simpler) by only
executing this function once.

The element integration is done by mapping to an isopara-
metric element and computing the integral numerically using
four Gauss points as described in e.g. [12]. The local number-
ing of degrees of freedom in the element is illustrated in Fig.
3, wherefrom the coordinate matrix in the computation of the
Jacobian in line 104-105 can be deduced. The use of tan(φ) in
line 104 does not cause an issue when φ = 90◦, because Matlab
just returns a very large number, implying 1/ tan(90◦) = 0.

In line 119-123 the element matrix and element loads are
computed, and as mentioned earlier these are kept in two sepa-
rate parts; one should be multiplied with λe and one with µe.

7,8 5,6

1,2 3,4

dy = 2b

dx = 2a

φ

Figure 3: Illustration of how local degrees of freedom in an
element are numbered.

2.2. Degrees of freedom and periodic boundary conditions (line
19-36)

In order to assemble the global stiffness matrix and load
vectors, we utilize the concept of an index matrix denoted edofMat,
as also done in [13]. Consider the 12 element mesh in Fig. 2a.
If the degrees of freedom were not periodic edofMat would
have the structure in Fig. 4a. Each row i (shown in bold), con-
tains the global degrees of freedom associated with element i.
The non-periodic edofMat, which is created in line 21, is used
to index into a periodic version of the mesh to create a periodic
edofMat in line 35. The structure of the periodic edofMat is
shown in Fig. 4b.

The periodic boundary conditions are imposed using elim-
ination. This corresponds to using the same nodes on two op-
posite faces. This is implemented by using the matrix edofMat
for a full, regular grid to index into a periodic version of the
grid.

2.3. Assembly of the stiffness matrix (line 37-46)
The assembly of the sparse stiffness matrix is based on triplets.

First vectors with the row and column indices of the non-zero
entries are created from edofMat in line 39-40. Then matrices
with the element material properties λe and µe are assigned in
line 42-43 based on the indicator matrix x. If the user supplies
an indicator matrix with values other than 1 or 2, the element
material properties will be wrongly assigned.

In line 45 the element matrices keLambda and keMu are
multiplied with the corresponding element properties and added
together. The resulting vector sK contains 64 (8 · 8) entries for
each element. Finally, in line 46 the global stiffness matrix is
assembled using the triplets.

2.4. Load vectors and solution (line 47-54)
In line 49-53 the load vectors are assembled in a similar

fashion as the stiffness matrix. Thereafter the system in Eq.
(12) is solved for χi. Due to small numerical differences Matlab
might not recognize K as a symmetric matrix and therefore use
a more general, but slower, linear solver. If speed is an issue,
this could be remedied by adding K=0.5*(K+K.’).

2.5. Homogenization (line 55-84)
Before the homogenized elasticity tensor is computed the

displacements of an element corresponding to the unit strain
cases are found. This is simply done by solving for the ele-
ment’s nodal displacement corresponding to the uniform strains

3

1
2
3
4
...

12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 4 11 12 9 10 1 2
5 6 13 14 11 12 3 4
7 8 15 16 13 14 5 6
11 12 19 20 17 18 9 10
...

...
...

...
31 32 39 40 37 38 29 30

(a)

1
2
3
4
...

12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 4 9 10 7 8 1 2
5 6 11 12 9 10 3 4
1 2 7 8 11 12 5 6
9 10 15 16 13 14 7 8
...

...
...

...
19 20 1 2 5 6 23 24

(b)

Figure 4: Structure of the edofMat-matrix for 12 element mesh in a) a non-periodic version, and b) periodic version. The bold
numbers denote the row numbers and indicate which element the degrees of freedom in the row belong to.

in Eq. (10), while constraining enough degrees of freedom to
make the element stiffness matrix non-singular. This is done in
line 62 as:

ke([3 5:end],[3 5:end])\fe([3 5:end],:);

where the first, second, and fourth degree of freedom are con-
strained. The resulting element displacements are the same for
all elements, since all elements are equivalent in the mesh used.

When the displacements have been obtained, the entries in
the homogenized constitutive matrix CH can be found as:

CH
i j =

1
|V |

N∑

e=1

∫

Ve

(
χ0(i)

e − χ(i)
e

)T
ke

(
χ0(j)

e − χ(j)
e

)
dVe (13)

where χ0
e contains the three displacement fields corresponding

to the unit strains in Eq. (10), and χe contains three columns
corresponding to the three displacement fields resulting from
globally enforcing the unit strains in Eq. (10). The indices
in parentheses refer to the column number. |V | is the unit cell
volume.

The sum in Eq. (13) is computed in line 71-82, and it can be
seen that again the summation is split in a λ and µ part, which
is added together after being multiplied with the corresponding
element material properties. After the homogenization is done,
the homogenized elasticity tensor is displayed.

For meshes where the elements differ in shape, and thus the
numerical integration must be performed for each element, the
homogenization can be written as:

CH =
1
|V |

N∑

e=1

∫

Ve

(
I − Beχe

)T Ce
(
I − Beχe

)
dVe (14)

where I is a three times three identity matrix (six in 3D). The
term Beχe can be interpreted as the strains caused by the non-
homogeneous material distribution.

3. Extensions

In the following some extensions to allow for more mate-
rials and the homogenization of other properties are presented.
The mentioned lines will refer to line numbers of the original
unextended version of the code attached in Appendix A.

3.1. One material phase and void

Single-phase architecture cellular materials can be simu-
lated by assigning a very soft second material. I. e. λ2 =

10−9λ1, and µ2 = 10−9µ1. Alternatively, the void elements can
be ignored when solving the system by substituting line 54 with
the lines:

activedofs = edofMat(x==1,:);
activedofs = sort(unique(activedofs(:)));
chi = zeros(ndof,3);
chi(activedofs(3:end),:) = ...

K(activedofs(3:end),activedofs(3:end))\F(activedofs(3:end),:);

The last approach will save some computational time, but it
does of course require material 1 to be connected. Furthermore,
to get the correct homogenized constitutive matrix the material
properties of material 2 must be set to 0.

3.2. Three material phases

In this section the extension to three material phases is de-
scribed. Since the element stiffness matrix and load vectors
have been split in a λ and µ part, the extension to more ma-
terials is straight-forward. The element material properties are
assigned in line 42-43 as:

mu = mu(1)*(x==1) + mu(2)*(x==2);
lambda = lambda(1)*(x==1) + lambda(2)*(x==2);

The above assumes entries in the indicator matrix contain either
a 1 or 2. For three materials line 42 should be substituted with:

mu = mu(1)*(x==1) + mu(2)*(x==2) + mu(3)*(x==3);

which means the entries in the indicator matrix x should take
one of the values 1, 2, or 3. Line 43 should of course be modi-
fied in the same way as line 42. Furthermore, the input vectors
lambda and mu should have three entries each.

Assuming we have a material structure as the one shown in
Fig. 1 where every other row of circular inclusions, each with a
radius of 1/8 of the spacing between their centers, is alternating
between material 2 and 3 in a matrix of material 1. If we assign
the material properties λ1 = 1, λ2 = 50, λ3 = 100 and µ1 = 2,
µ2 = 40, λ3 = 80 to the three phases, the resulting homogenized
constitutive matrix is:

CH =

5.8 1.2 0.0
1.2 5.8 0.0
0.0 0.0 2.3

 (15)

4

In Fig. 5 the corresponding square unit cell is shown together
with force distributions. The force distributions illustrates clearly
how the force vectors in Eq. 12 only have non-zero entries at
the interfaces between the materials. If there are no material in-
terfaces, there would be no local deformations in the unit cell.
That is the solutions to Eq. 12 would be vectors of zeros.

3.3. Thermal conductivity
The homogenization equations for the thermal conductivity

are analogous to those of the elastic problem though it is enough
to solve for a scalar field - the temperature. Remark also that the
problem is identical for electrical conductivity. The equations
can be written as:

∫

V
v,iµi jT k

, jdV =

∫

V
v,iµi jT

0(k)
, j dV ∀v ∈ V (16)

µH
i j =

1
|V |

∫

V
(T 0(i)

,l − T (i)
,l)µlm(T 0(j)

,m − T (j)
,m)dV (17)

where v is a virtual temperature field, µi j is the conductivity
tensor and T is the temperature field. The finite element prob-
lem and the homogenization is analogous to the elasticity tensor
homogenization. However, only one material parameter, µ, is
necessary to describe the conductivity of an isotropic material,
which should be an input vector to the homogenization func-
tion. Therefore, the changes described below assume the user
gives the conductivity of the materials in the input argument mu
and that the input argument lambda is a vector of zeros. Then
only minor changes to the code are necessary to compute the
conductivity tensor of a composite.

In the computations of the element matrices only one line
needs to be changed; line 88 should be updated to read:
CMu = diag([1 1 0]); CLambda = zeros(3);

This assures that the odd rows and columns in keMu contain the
contributions associated with variations in potential in the x-
direction (horizontal), and the even rows and columns contain
the corresponding contributions for variations in the y-direction.

As mentioned, only a scalar field is necessary, this means
that the element matrix is really a four times four matrix, found
by summing the contributions from the odd and even rows/-
columns. To keep the changes in the code to a minimum, this
four times four matrix is put into the odd rows and columns of
keMu by adding the below line after the call to elementMatVec
in line 17:
keMu(1:2:end,1:2:end) = keMu(1:2:end,1:2:end) + ...

keMu(2:2:end, 2:2:end);

Now the remaining parts of the code should be modified to work
with the odd rows and columns. The solution of the finite ele-
ment problem in line 54 should be changed to:
chi = zeros(ndof,2);
chi(3:2:ndof,:) = K(3:2:end,3:2:end)\...

[F(3:2:end,1) F(4:2:end,2)];

Similarly, the solution of the element strain cases in line 62
should be changed to:
chi0_e(3:2:end,1:2) = keMu(3:2:end,3:2:end)\...

[feMu(3:2:end,1) feMu(4:2:end,2)];

Finally, the two loops in line 71-72 should only run through
indices 1 and 2.

The homogenized conductivity for the composite in Fig. 1,
with high conducting circular disks/cylinders (µ1 = 10) with a
radius r = 0.125lx in a matrix with a lower conductivity (µ2 =

1), is µH = 1.175. This fits perfectly with the analytical result
derived in [14], which for a low disk volume fraction f = 2πr2

can accurately be expressed by the low order approximation:

µH = µ2
1 + 2β f

1 − β f − 0.075422β2 f 6 (18)

with β = (µ2 − µ1)/(µ2 + µ1).

3.4. Thermal expansion

In [15] numerical homogenization was used together with
topology optimization to design a three material (two materials
and void) isotropic composite with a negative thermal expan-
sion. The composite’s unit cell is pictured in Fig. 6.

The homogenized thermal stress tensor can be computed as:

βH
i j =

1
|V |

∫

V
Epqrs

(
αpq − εαpq

) (
ε

0(i j)
rs − ε(i j)

rs

)
dV (19)

where αpq is the thermal expansion tensor, corresponding to a
unit strain for a unit thermal load. The strain field εαpq is com-
puted according to Eq. (2) based on the displacement field Γ,
which is found for a unit thermal load:

∫

V
εi j (v) Ei jpqεpq(Γ)dV =

∫

V
εi j (v) Ei jpqαpqdV ∀v ∈ V

(20)
Continuing from the three material extension, the homogeniza-
tion function needs to be extended with an input vector (alpha)
specifying the thermal expansion coefficient of the three mate-
rials. Furthermore, after line 43 a line assigning the correspond-
ing element thermal expansion coefficients must be added:

alpha = alpha(1)*(x==1) + alpha(2)*(x==2) + alpha(3)*(x==3);

In order to compute the macroscopic thermal expansion using
homogenization it is necessary to find the displacement field Γ
corresponding to a unit thermal strain load case:

KΓ = fα (21)

with the unit thermal load defined as:

fα =
∑

e

∫

Ve

BT
e CeαedVe (22)

where αe is the unit thermal strain corresponding to a unit in-
crease in the temperature field. Therefore, elementMatVec
must be extended with the computation of this element load
vector. This is done by initializing an additional load vector
below line 94:

feAlpha = zeros(8,1);

and adding the computation of it below line 123:

feAlpha = feAlpha + weight*(B.'*CMu*[1;1;0]);

5

(a) (b) (c) (d)

Figure 5: a) Square unit cell for a three material structure. Force magnitudes for f1, f2, and f3 are shown in b), c), and d),
respectively. Dark indicates large magnitude, while white indicates a zero magnitude.

Figure 6: A unit cell of a three material composite with macro-
scopic negative thermal expansion. The white part is void, mod-
eled by setting the material stiffness to a millionth of the solid
parts. The thermal expansion coefficient of the red and blue
material are α2 and α3, respectively. The red and blue mate-
rial have identical elastic properties, but α2/α3 = 10. Figure
courtesy of Ole Sigmund, Technical University of Denmark.

And remember to return the element load vector from the func-
tion. It is clear that the load vector’s two parts, corresponding
to µe and λe, are equal and that is why only the first part is
computed.

The load assembly must also be modified. Lines 51-53 are
substituted with:

sF = [sF;feAlpha(:)*(alpha(:).*(lambda(:)+mu(:))).'];
iF = repmat(edofMat',4,1);
jF = [ones(8,nel); 2*ones(8,nel);

3*ones(8,nel); 4*ones(8,nel)];
F = sparse(iF(:), jF(:), sF(:), ndof, 4);

This means that when the system is solved, the fourth displace-
ment vector is Γ. For sake of clarity assign this vector to its own
variable by adding after line 54:

gamma = chi(:,4);

The element displacements Γ0
e corresponding to the unit ther-

mal strains must also be computed. This is done by changing
the number of columns in line 59 from three to four, and adding

fe = [fe 2*feAlpha];

below line 61, where one should remember that feAlpha only
contains one part of the thermal strain to understand the multi-
plication with two. Now, Γ0

e can be computed by adding after
line 62:

gamma0 = alpha(:)*chi0_e(:,4)';

The entries in the homogenized thermal stress vector β can be
found as:

βH
i =

1
|V |

∑

e

∫

Ve

(
Γ0

e − Γe

)T
ke

(
χ0(i)

e − χi
e

)
dVe (23)

This is done in the code snippet below, which can be added in
the outer for-loop starting on line 71.

sumLambda = ((gamma0(:,:)-gamma(edofMat))*...
keLambda).*(chi0(:,:,i)-chi(edofMat+(i-1)*ndof));

sumMu = ((gamma0(:,:)-gamma(edofMat))*keMu).*...
(chi0(:,:,i)-chi(edofMat+(i-1)*ndof));

sumLambda = reshape(sum(sumLambda,2), nely, nelx);
sumMu = reshape(sum(sumMu,2), nely, nelx);
beta(i) = 1/cellVolume*sum(sum(lambda.*sumLambda+mu.*sumMu));

Finally, the homogenized thermal strain vector is given as the
solution to:

CHαH = βH (24)

which is solved as CH\beta in the Matlab code.
With the above extensions the thermal expansion coefficient

of the composite in Fig. 6 is computed to be −4.3α2, which
fits well with the reported −4.2α2 in [15]. The small discrep-
ancy can be explained by the fact that Sigmund and Torquato
[15] used a continuous interpolation between the three materi-
als, while we have thresholded to get an indicator matrix with
discrete entries. Furthermore, the discretization used here is
based on a compressed image, and not the mesh used in [15].

4. Fluid permeability

The base program can also be extended such that the fluid
permeability of a porous structure, having one solid and one
fluid phase, can be computed. The permeability can be used
in macroscopic porous flow simulations of slowly moving in-
compressible fluids using Darcy’s law. Examples of materials

6

where the permeability influences the design are discussed in
e.g. [16] and [17].

Stokes flow is modeled within the fluid domain while the
solid, no flow domain, is enforced using Brinkman penaliza-
tion. The penalization parameter, ζ, is zero in the fluid domain
while it takes a large value e.g. ζ = 106 in the solid domain.
Elaborating on the existing implementation a pressure degree
of freedom is added to every node. In order to avoid pres-
sure oscillations due to the even ordered elements a pressure
stabilization method is applied [18]. The permeability can be
computed as the volume average of the fluid velocity for Stokes
flow with a prescribed unit pressure gradient. The weak form
including Brinkman penalization and stabilization reads:
∫

V
vi, juk

i, jdV +

∫

V
vi,i pdV +

∫

V
ζviuk

i dV =

∫

V
viδikdV ∀v ∈ V0

(25)
∫

V
quk

i,idV −
∫

V
τq,i p,idV = 0 ∀q ∈ Q

(26)

where τ = h2

12 is the pressure stabilization coefficient with h
being the longest diagonal of the element, u is the velocity field,
p is the pressure and v and q are virtual velocity and pressure
fields, respectively. From the velocity field the permeability can
be computed as:

κik =
l2

|V |
∫

V
uk

i dV (27)

where l is the characteristic length of the unit cell as the perme-
ability, opposed to the effective stiffness, is size dependent.

The equation system is slightly more complicated for flow
problems and more element matrices are needed. Therefore line
17 needs to be changed to

[ke, ke_brink,be,pe,le] = ...
elementMatVec(dx/2, dy/2,phi);

in order to obtain the additional Brinkman (ke_brink), cou-
pling (be), stabilization (pe), and load (le) terms. The extra
element matrices also need to be implemented yielding the fol-
lowing changes in the elementMatVec function, where first the
function header needs to be adjusted accordingly:

function [ke, ke_brink, be, pe, le] = elementMatVec(a,b,phi)

Extra element matrices must be initialized along with the stabi-
lization parameter. Therefore, lines 93-94 should be substituted
with:

ke = zeros(8); ke_brink = zeros(8);
be = zeros(8,4); pe = zeros(4);
le = zeros(4,1);
h2 = 4*(a^2+b^2+2*a*b*abs(cos(phi)/sin(phi)));
stab = h2/12;

As the pressure coupling utilize the shape functions, these are
included by adding the shape function matrix N after line 99:

N = 1/4*[(1-y)*(1-x) 0 (1-y)*(1+x) 0 ...
(1+y)*(1+x) 0 (1-x)*(1+y) 0;
0 (1-y)*(1-x) 0 (1-y)*(1+x) ...
0 (1+y)*(1+x) 0 (1-x)*(1+y)] ;

The pressure gradient matrix is computed by inserting
Bp = invJ*[dNx;dNy;];

after line 107, while the additional element matrices and vectors
can be obtained by substituting the lines 119-123 with:
ke = ke + weight*(B'*CMu*B);
ke_brink = ke_brink + weight*(N'*N);
be = be + weight*(B'*[1 1 0]'*N(1:4:end));
pe = pe + weight*(Bp'*Bp*stab);
le = le + weight*(N(1,1:2:end)');

In the main program an extra degree of freedom, assigned to the
pressure, is added in every node by after line 21 to introduce the
lines
edofVecp = 2*(nelx+1)*(nely+1) + ...

reshape(1*nodenrs(1:end-1,1:end-1)+1,nel,1);
edofMatp = repmat(edofVecp,1,4) + ...

repmat([0 nely+[1 0] -1],nel,1);

In line 36 the total number of dofs needs to be updated (ndof
= 3*nnP;). The dof-vector also needs an extension in order to
accommodate the pressure by adding these two lines after line
35:
dofVector(2*nn+1:3*nn) = 2*nnP+nnPArray(:);
edofMatp= dofVector(edofMatp);

The design dependence and the assembly of the system matrix
is altered. Due to the pressure coupling it is now a saddle-point
system assembled as:
%% ASSEMBLE STIFFNESS MATRIX
zeta = zeta(1)*(x==1) + zeta(2)*(x==2);
K = repmat(ke(:),1,nel)+ke_brink(:)*zeta(:).';
B = repmat(be(:),nel,1);
P = repmat(pe(:),nel,1);
iK = kron(edofMat,ones(8,1))';
iB = iK(:,1:2:end);
iP = kron(edofMatp,ones(4,1))';
jK = kron(edofMat,ones(1,8))';
jB = kron(edofMatp,ones(1,8))';
jP = jB(1:2:end,:);
sA = [K(:); B; B; -P];
iA = [iK(:); iB(:); jB(:); iP(:)];
jA = [jK(:); jB(:); iB(:); jP(:)];
A = sparse(iA,jA,sA);

while the load vectors can be assembled by changing lines 49-
52 to:
iF = [reshape(edofMat(:,1:2:end)',4*nel,1)' ...

reshape(edofMat(:,2:2:end)',4*nel,1)']';
jF = [ones(4*nel,1); 2*ones(4*nel,1)];
sF = repmat(le(:),2*nel,1);
F = sparse(iF,jF,sF,3*nnP,2);

The system is solved constraining a single pressure degree of
freedom:
chi = zeros(ndof,2);
solfor = 1:ndof-1; % all except last pressure dof
chi(solfor,:) = A(solfor,solfor)\F(solfor,:);

The homogenization is, compared to the elastic case, much sim-
pler and reads
CH = zeros(2);
CH(1,1) = sum(chi(dofVector(1:2:2*nn),1));
CH(1,2) = sum(chi(dofVector(2:2:2*nn),1));
CH(2,1) = sum(chi(dofVector(1:2:2*nn),2));
CH(2,2) = sum(chi(dofVector(2:2:2*nn),2));
CH = CH/nel;

7

Finally, substitute the two input arguments lambda and mu with
zeta, in which the material permeabilities of the two materials
are specified. Solving for the material in Fig. 1 assuming white
is fluid (ζ = 0) and black is impermeable material (ζ = 106)
yields the isotropic permeability κH = 0.0207. This compares
well to κ = r2/(8c)(− ln(c) − 1.476 + 2c − 1.774c2) = 0.0209,
which is the analytical permeability prediction by [19], where r
is inclusion radius and c is solid volume fraction.

5. Other extensions

Other, more involved extensions, could be multiphysics (see
e.g. [20]) or optimization of the material distribution using e.g.
topology optimization as first described in [21].

Extending the code’s applicability to a three-dimensional
unit cell is straight-forward, but imply that the computations
can become very time-consuming on a personal computer. There-
fore, numerical homogenization of a three-dimensional, contin-
uum, unit cell should preferable be done in parallel using an
iterative solver, such as a multigrid PCG, to solve the linear
system of equations.

6. Conclusion

The Matlab implementation provided here is simple and ef-
ficient; it can quickly compute the macroscopic properties of a
2D composite material where the unit cell is finely discretized.
However, if the considered unit cell is three-dimensional, a par-
allel implementation in e.g. Fortran or C++ is better suited.
But the same principles still apply, especially the implementa-
tion of the periodic boundary conditions should be analogous,
since a penalty approach or Lagrange multipliers will increase
the solution time considerably. Finally, we want to mention that
a 3D unit cell consisting of discrete elements, such as beam ele-
ments, can be computationally much cheaper than a continuum
unit cell.

Acknowledgement

This work was funded by the Danish Research Agency through
the innovation consortium F rMAT.

Appendix A. Matlab code

1 function CH = homogenize(lx, ly, lambda, mu, phi, x)
2 %%
3 % lx = Unit cell length in x-direction.
4 % ly = Unit cell length in y-direction.
5 % lambda = Lame's first parameter for both materials. Two entries.
6 % mu = Lame's second parameter for both materials. Two entries.
7 % phi = Angle between horizontal and vertical cell wall. Degrees
8 % x = Material indicator matrix. Size used to determine nelx/nely
9 %%

10 %% INITIALIZE
11 % Deduce discretization
12 [nely, nelx] = size(x);
13 % Stiffness matrix consists of two parts, one belonging to lambda and
14 % one belonging to mu. Same goes for load vector
15 dx = lx/nelx; dy = ly/nely;
16 nel = nelx*nely;
17 [keLambda, keMu, feLambda, feMu] = elementMatVec(dx/2, dy/2, phi);
18 % Node numbers and element degrees of freedom for full (not periodic) mesh
19 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
20 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1);
21 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nel,1);
22 %% IMPOSE PERIODIC BOUNDARY CONDITIONS
23 % Use original edofMat to index into list with the periodic dofs

24 nn = (nelx+1)*(nely+1); % Total number of nodes
25 nnP = (nelx)*(nely); % Total number of unique nodes
26 nnPArray = reshape(1:nnP, nely, nelx);
27 % Extend with a mirror of the top border
28 nnPArray(end+1,:) = nnPArray(1,:);
29 % Extend with a mirror of the left border
30 nnPArray(:,end+1) = nnPArray(:,1);
31 % Make a vector into which we can index using edofMat:
32 dofVector = zeros(2*nn, 1);
33 dofVector(1:2:end) = 2*nnPArray(:)-1;
34 dofVector(2:2:end) = 2*nnPArray(:);
35 edofMat = dofVector(edofMat);
36 ndof = 2*nnP; % Number of dofs
37 %% ASSEMBLE STIFFNESS MATRIX
38 % Indexing vectors
39 iK = kron(edofMat,ones(8,1))';
40 jK = kron(edofMat,ones(1,8))';
41 % Material properties in the different elements
42 lambda = lambda(1)*(x==1) + lambda(2)*(x==2);
43 mu = mu(1)*(x==1) + mu(2)*(x==2);
44 % The corresponding stiffness matrix entries
45 sK = keLambda(:)*lambda(:).' + keMu(:)*mu(:).';
46 K = sparse(iK(:), jK(:), sK(:), ndof, ndof);
47 %% LOAD VECTORS AND SOLUTION
48 % Assembly three load cases corresponding to the three strain cases
49 sF = feLambda(:)*lambda(:).'+feMu(:)*mu(:).';
50 iF = repmat(edofMat',3,1);
51 jF = [ones(8,nel); 2*ones(8,nel); 3*ones(8,nel)];
52 F = sparse(iF(:), jF(:), sF(:), ndof, 3);
53 % Solve (remember to constrain one node)
54 chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:);
55 %% HOMOGENIZATION
56 % The displacement vectors corresponding to the unit strain cases
57 chi0 = zeros(nel, 8, 3);
58 % The element displacements for the three unit strains
59 chi0_e = zeros(8, 3);
60 ke = keMu + keLambda; % Here the exact ratio does not matter, because
61 fe = feMu + feLambda; % it is reflected in the load vector
62 chi0_e([3 5:end],:) = ke([3 5:end],[3 5:end])\fe([3 5:end],:);
63 % epsilon0_11 = (1, 0, 0)
64 chi0(:,:,1) = kron(chi0_e(:,1)', ones(nel,1));
65 % epsilon0_22 = (0, 1, 0)
66 chi0(:,:,2) = kron(chi0_e(:,2)', ones(nel,1));
67 % epsilon0_12 = (0, 0, 1)
68 chi0(:,:,3) = kron(chi0_e(:,3)', ones(nel,1));
69 CH = zeros(3);
70 cellVolume = lx*ly;
71 for i = 1:3
72 for j = 1:3
73 sumLambda = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keLambda).*...
74 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));
75 sumMu = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keMu).*...
76 (chi0(:,:,j) - chi(edofMat+(j-1)*ndof));
77 sumLambda = reshape(sum(sumLambda,2), nely, nelx);
78 sumMu = reshape(sum(sumMu,2), nely, nelx);
79 % Homogenized elasticity tensor
80 CH(i,j) = 1/cellVolume*sum(sum(lambda.*sumLambda + mu.*sumMu));
81 end
82 end
83 disp('--- Homogenized elasticity tensor ---'); disp(CH)
84
85 %% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (NUMERICALLY)
86 function [keLambda, keMu, feLambda, feMu] = elementMatVec(a, b, phi)
87 % Constitutive matrix contributions
88 CMu = diag([2 2 1]); CLambda = zeros(3); CLambda(1:2,1:2) = 1;
89 % Two Gauss points in both directions
90 xx=[-1/sqrt(3), 1/sqrt(3)]; yy = xx;
91 ww=[1,1];
92 % Initialize
93 keLambda = zeros(8,8); keMu = zeros(8,8);
94 feLambda = zeros(8,3); feMu = zeros(8,3);
95 L = zeros(3,4); L(1,1) = 1; L(2,4) = 1; L(3,2:3) = 1;
96 for ii=1:length(xx)
97 for jj=1:length(yy)
98 % Integration point
99 x = xx(ii); y = yy(jj);

100 % Differentiated shape functions
101 dNx = 1/4*[-(1-y) (1-y) (1+y) -(1+y)];
102 dNy = 1/4*[-(1-x) -(1+x) (1+x) (1-x)];
103 % Jacobian
104 J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi/180)-a; ...
105 -b -b b b]';
106 detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1);
107 invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)];
108 % Weight factor at this point
109 weight = ww(ii)*ww(jj)*detJ;
110 % Strain-displacement matrix
111 G = [invJ zeros(2); zeros(2) invJ];
112 dN = zeros(4,8);
113 dN(1,1:2:8) = dNx;
114 dN(2,1:2:8) = dNy;
115 dN(3,2:2:8) = dNx;
116 dN(4,2:2:8) = dNy;
117 B = L*G*dN;
118 % Element matrices
119 keLambda = keLambda + weight*(B' * CLambda * B);
120 keMu = keMu + weight*(B' * CMu * B);
121 % Element loads
122 feLambda = feLambda + weight*(B' * CLambda * diag([1 1 1]));
123 feMu = feMu + weight*(B' * CMu * diag([1 1 1]));
124 end
125 end

References

[1] S. J. Hollister, Nat Mater 4 (2005) 518–524.
[2] J. M. Kemppainen, S. J. Hollister, J. Biomed. Mater. Res. Part A 94 (2010)

9–18.

8

[3] M. Dias, P. Fernandes, J. Guedes, S. Hollister, Journal of Biomechanics
45 (2012) 938–944.

[4] A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for
periodic structures, North-Holland, 1978.

[5] E. Sanchez-Palencia, Lecture Notes in Physics, Springer-Verlag 127
(1980) –.

[6] S. Torquato, Random heterogeneous materials / Microstructure and
macroscopic properties., Springer, New York,NY, 2002.

[7] J. Guedes, N. Kikuchi, Computer Methods in Applied Mechanics and
Engineering 83 (1990) 143–198.

[8] B. Hassani, E. Hinton, Computers & Structures 69 (1998) 707–717.
[9] B. Hassani, E. Hinton, Computers & Structures 69 (1998) 719–738.

[10] B. Hassani, E. Hinton, Computers & Structures 69 (1998) 739–756.
[11] A. R. Diaz, A. Bernard, International Journal for Numerical Methods in

Engineering 57 (2003) 301 – 314.
[12] R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Appli-

cations of Finite Element Analysis, John Wiley and Sons, fourth edition,
2002.

[13] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, O. Sigmund,
Struct Multidisc Optim 43 (2011) 1–16.

[14] W. T. Perrins, D. R. McKenzie, R. C. McPhedran, Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences 369
(1979) 207–225.

[15] O. Sigmund, S. Torquato, Journal of the Mechanics and Physics of Solids
45 (1997) 1037–1067.

[16] J. K. Guest, J. H. Prévost, International Journal of Solids and Structures
43 (2006) 7028–7047.

[17] C. S. Andreasen, O. Sigmund, Struct Multidisc Optim 43 (2011) 693–
706.

[18] T. J. R. Hughes, L. P. Franca, Computer Methods in Applied Mechanics
and Engineering 65 (1987) 85–96.

[19] J. Drummond, M. Tahir, International Journal of Multiphase Flow 10
(1984) 515 – 540.

[20] Q. Yu, J. Fish, International Journal of Solids and Structures 39 (2002)
6429–6452.

[21] O. Sigmund, International Journal of Solids and Structures 31 (1994)
2313–2329.

9

