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On the realization of the bulk modulus bounds for
two-phase viscoelastic composites

Casper Schousboe Andreasen, Erik Andreassen, Jakob Sgndergaard Jensen,
Ole Sigmund

Department of Mechanical Engineering, Section for Solid Mechanics, Technical
University of Denmark, Nils Koppels Allé, Building 404, DK-2800 Kgs. Lyngby

Abstract

Materials with good vibration damping properties and high stiffness are of
great industrial interest. In this paper the bounds for viscoelastic composites
are investigated and material microstructures that realize the upper bound
are obtained by topology optimization. These viscoelastic composites can be
realized by additive manufacturing technologies followed by an infiltration
process. Viscoelastic composites consisting of a relatively stiff elastic phase,
e.g. steel, and a relatively lossy viscoelastic phase, e.g. silicone rubber,
have non-connected stiff regions when optimized for maximum damping. In
order to ensure manufacturability of such composites the connectivity of the
matrix is ensured by imposing a conductivity constraint and the influence on
the bounds is discussed.

Keywords: viscoelasticity, topology optimization, microstructure,
analytical bounds

1. Introduction

Materials with enhanced vibration damping capabilities are of great in-
terest in a variety of industrial and personal appliances ranging from pumps
over satellite communication equipment to phono cartridges. Typical struc-
tural materials such as steel display low intrinsic damping and additional
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measures need to be taken to damp unwanted vibrations. A composite ma-
terial such as gray cast iron shows significant damping in the order of 1-1.5%
of the critical damping due to its graphite content (Millet et al., 1981), how-
ever, metallic materials in general exhibit damping less than 1%. Cast iron
is just one composite material to consider for increased damping, other cast
composites could potentially have larger damping ratios. The development
of viscoelastic composites has attained quite some attention in order to de-
velop materials with both high stiffness and high damping (Brodt and Lakes,
1995).

One production method for generating advanced composites with archi-
tectured microstructure is additive manufacturing (AM), e.g. selective laser
sintering/melting where it is possible to manufacture composite materials
with a geometrically advanced metallic matrix which afterwards can be in-
filtrated by a viscoelastic material. These advanced composites may exhibit
very large damping, though obviously, limited by the theoretical bounds.

For low frequency harmonic vibrations where the inertia effects can be
neglected the loss can be described by the elasticity equations using a com-
plex modulus of elasticity (Hashin, 1970) according to the correspondence
principle (Hashin, 1965). The theoretical bounds for the complex stiffness of
viscoelastic composites have been developed with offset in the correspond-
ing bounds for elastic composites by Hashin and Shtrikman (1963). The
bounds for the complex material properties are derived using the translation
method developed by Cherkaev and Gibiansky (1994). In Gibiansky and
Milton (1993), and Gibiansky and Lakes (1993) the bounds for the complex
bulk modulus for two- and three-dimensional two-phase isotropic viscoelastic
composites are derived for a fixed and arbitrary volume fraction, respectively.
Gibiansky and Lakes (1997) summarize the bounds, both for complex bulk
and shear moduli of two-dimensional two-phase isotropic viscoelastic com-
posites and present a method for computing the bounds. The bounds for the
three-dimensional two-phase complex shear modulus are presented in Milton
and Berryman (1997).

The structures that realize the viscoelastic bounds include multiscale
structures such as the Hashin coated spheres assemblage (Hashin and Shtrik-
man, 1963) and rank-N laminates (Lurie and Cherkaev, 1986; Francfort and
Murat, 1986). These structures are also optimal for elastic materials with
respect to stiffness. For elastic materials the bounds have been realized us-
ing single scale structures in Vigdergauz (1994) and two scale structures in
Sigmund (2000) which presumably also apply to the viscoelastic bounds as
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it does for the coated spheres assemblage.

The structure of viscoelastic composites has been studied by e.g. Vi
et al. (1998) where the effective viscoelastic stiffness for a certain composite
is computed by homogenization. The approach is extended in Yi et al. (2000)
where viscoelastic composites are optimized using topology optimization for
increased damping using an inverse homogenization approach similar to the
one introduced in Sigmund (1994, 1995) for elastic materials. The inverse
homogenization approach has also been used in e.g. Otomori et al. (2012)
in order to obtain materials with prescribed electromagnetic permittivity for
studying the bounds for this complex-valued material property.

The inverse homogenization concept is taken even further in this paper
where the microstructures of the viscoelastic composites that realize the theo-
retical bounds, especially the upper bound, for the viscoelastic bulk modulus
are assessed. An important contribution is the development of numerical
bounds due to the influence of a connectivity constraint. This is an im-
portant bound as it applies to manufacturing processes, such as additive
manufacturing, where the metallic phase needs to be connected.

The paper is organized as follows. The viscoelastic model is introduced
in Section 2 along with the corresponding bounds. Section 3 presents the ho-
mogenization procedure and the topology optimization problem to be solved.
The implementation is described in Section 4 and the results are presented
in Section 5. Finally, the paper is concluded in Section 6.

2. Method and Materials

In this paper a linear viscoelastic material is modeled which is governed
by the conservation of momentum, here in time-harmonic form

Vx- o+ pwu=0 (1)

where the capital X denotes the dimensional coordinates, o is the stress
tensor which for viscoelastic materials is frequency dependent, p is the mass
density, w the frequency, and u the displacement vector.
The stress-strain relation, Hooke’s law, for an isotropic material may be
written as a combination of the volumetric and deviatoric contributions as
E(w)
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where E(w) is the frequency-dependent stiffness at frequency w and v is the
Poisson’s ratio. The parameter d = {2, 3} is the spatial dimension and ¢;; is
the infinitesimal strain defined as

1/ 0u; Ou;

£i(W) = 3 <an i 8X],-> 3)
The stiffness of the viscoelastic material is modeled by the Standard Lin-
ear Solid (SLS) model (Zener, 1948) which is a relatively simple three param-
eter model for viscoelastic materials. A spring is assembled in series with a
dashpot, a so-called Maxwell element, while another spring is parallel to this
assembly. The SLS model is a further development of the Maxwell model,
which suffers from vanishing stiffness at infinity. This is addressed by the
introduction of the additional spring. The derivation is considered in Ap-
pendix A. For a harmonic excitation, the stiffness and the damping can be

represented by a complex frequency-dependent stiffness

kw372 o kwt
1
1+ w2r? 1+ w?r?

K (w) =k +ik" = ko + (4)
where 7 = p/k,, is a characteristic relaxation time i.e. the ratio of viscosity u
and stiffness of the spring k,, in series with the dashpot and k is the stiffness
of the spring assembled in parallel. The asterisk indicates a complex number
and the single prime denotes the real part of the modulus, which is referred
to as the storage modulus, while the double prime denotes the complex part,
which is referred to as the loss modulus. This one-dimensional model is used
to model the stiffness of the continuum, E, while assuming that the Poisson’s
ratio is constant, i.e. independent of frequency, and equal to v = 0.3. The
physical consequence of this is the neglection of the possible phase lag be-
tween the longitudinal and transversal strains (common relaxation function
for both bulk and shear modulus) which may have an impact on the damp-
ing properties of the composites (Meaud and Hulbert, 2012). Furthermore
Poisson’s ratio will be constant in time which is debatable if e.g. a polymer
is used as a constituent cf. Lakes and Wineman (2006). The restriction
to the choice of materials is only chosen to limit the amount of parameters
that change with frequency. The presented procedure for obtaining bounds
is general and works independently of these parameter choices.

In order to generalize the approach the governing equations (1)-(4) are
non-dimensionalized. Since the effective viscoelastic properties of the two-
material composites will be considered, the non-dimensionalization is based
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on the properties of a reference material, this could e.g. be the softest
material. The following relations are introduced with [J denoting the non-
dimensionalized quantities

ref

. E* _ - ~ re ~ P
Ef = el T = Xi/Lo, Ui=w/Lo, p=p/py’, @= E(;’efLow
’ 0

where Egef is the stiffness of the reference material at zero frequency, Lq the

characteristic length e.g. the unit cell size and pgef the mass density of the

reference material. This yields the following non-dimensional equations

Vi 0+ polu=0 (5)
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This paper is focused on the damping of vibrations and thus it is appropriate
to introduce the loss factor

where

o

n:2§:tan5:§ (10)

where £ is the damping ratio, and 0 the phase angle between cyclic stress
and strain.

Furthermore, the vibrations considered are assumed to be in the low
frequency range such that quasi-static conditions apply, i.e. the forces due
to inertia are negligible and the inertial term in (5) can be neglected.

For the optimization results presented, two base materials with different
time-dependent behavior are used. The material parameters used are given
in terms of stiffnesses and relaxation times for each of the two materials and



are presented in Table 1. One is acting almost as an elastic material i.e.
having a large long-term storage modulus, while the other is more rubbery
with a large instantaneous modulus and a lower long-term storage modulus.

| Ey |E, |7 |Fat&a=001|E" at® =001
Material 1 |20 —107° | 1077 | 107 |20 T
Material 2 | 3 17 | 5.8823.059 0.997

Table 1: Non-dimensional material parameters for viscoelastic base materials.

Using the above mentioned material model the stiffness depends on the
frequency w as seen from (8) and this is illustrated in Fig. 1 where the storage
and loss moduli are plotted versus frequency. The frequency dependence of
the viscoelastic material is most pronounced in the two decades from w = 0.01
to w = 1 in which the storage modulus increases and the damping peaks. The
almost elastic material (number 1) has vanishing frequency-dependence. For
low frequencies the viscoelastic material (number 2) is relatively soft while it
hardens for higher frequencies. In the transition zone from soft to hard the
loss modulus is increasing, which is also reflected in Fig. 2 where the loss
tangent for both materials is plotted versus the frequency.

The material bounds for isotropic viscoelastic materials are usually not
stated using the stiffness, F, and Poisson’s ratio, v, but generally in terms of
bulk, K = 3(1% and shear G = #ﬂ/) modulus. Furthermore, in order to
simplify the notation, the tilde will <be omitted in the following sections and
the quantities are thus the non-dimensionalized versions.

2.1. Bounds for viscoelastic composites

The bounds for composites of viscoelastic materials have been investi-
gated in the papers by Gibiansky and Milton (1993); Gibiansky and Lakes
(1993, 1997); Milton and Berryman (1997) among others. In comparison to
the bounds for elastic materials where the bounds for a given volume ratio of
the constituents will be given by two numbers, the bounds for the viscoelastic
moduli enclose an area in the complex plane. The frequency dependence of
the bounds for the moduli of a composite consisting of the aforementioned
constituents are illustrated in Fig. 3 for both the bulk and shear modulus.

The bounds are lens shaped with end points that correspond to the ma-
terial properties of each phase. When the frequency is increased, the moduli
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Figure 2: Frequency dependence of the
loss tangent, tand. The solid line de-
notes material 1 while the dashed line
denotes material 2.

Figure 1: Frequency dependence of the
storage modulus E” and the loss modulus
E”. The solid and dotted lines denote
the storage and loss modulus of material
1, respectively. The dashed and dash-dot
lines denote the storage and loss modu-
lus of material 2, respectively.

change and as material 2 exhibits a clear frequency dependence this endpoint
moves in accordance with the plots in Fig. 1. For low frequencies the lens
region is very narrow. As the frequency is increased the lens region first
expands with increasing frequency and then narrows again. In accordance
with the previous plots the storage modulus of the composite will increase
with frequency and the loss will peak during the transition frequencies.

3. Theory

The effective moduli for an elastic composite can be computed by ho-
mogenization assuming that a unit cell can represent the periodic material
(Bensoussan et al., 1978; Sanchez-Palencia, 1980). For a two-phase periodic
heterogeneous material (cf. Fig. 4) having the stiffness tensors C},;, and C7,;
corresponding to the black (£2;) and white (€25) domains, respectively, the
effective stiffness can be computed, based on the displacements x of some
test problems, by evaluating the volume integral over the unit cell
(x”)) dQ

1
Cgkl = @ /Q Cogrs (Eggkl) - Eznq<Xkl)) (5%)) —&rs (11)
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Figure 3: Frequency dependence of the bounds for two-dimensional viscoelastic composites
based on the materials described in Table 1. The small numbers indicate the frequency
associated with each set of bounds (Gibiansky and Lakes, 1997).

Figure 4: An illustration of a periodic medium and a representative unit cell.



where e,4(x") = (x¥,+x¥,)/2 is the linear strain tensor and €% is a second
order tensor with a single non-zero entry at 5?]-(” ). The local stiffness tensor,
Cijri, depends on the distribution of material within the unit cell and is here

denoted by the indicator function Z

Cluy, HZeQ
Cijr = ijl , ' (12)
C'jkl? lf 7 S QQ

where each of the stiffness tensors, ¢ = {1, 2}, are defined as

q E1

B 2
R 41+ v(1 — d)) d

Ea
5ij5kl + m <5ik5jl + 5il5jk - dézjékl) (13>

The displacement fields x*! are obtained as the solutions to a set of cell
problems with periodic boundary conditions obeying the elasticity equations
(2). The state equations can in weak form be stated as

Find x* € V? such that

/S;EZ']'(V)Ciqu€pq(Xkl)dQ = /S;€Z'j(V)Ciqu€2((Zkl)dQ, Vv € V3 (14)

where y* is V-periodic and corresponds to a straining of the unit cell in

each normal and shear direction. Due to symmetry of the stiffness tensor

only three and six cases need to be considered for 2D and 3D, respectively.
In a finite element formulation (14) yields a linear equation system

Ku" = b* (15)

where the stiffness matrix and load vectors are given by
K= / B'DBd, bf= / B DBu}dQ
Q Q

and periodic boundary conditions are imposed, and where £ is the number
of load cases (three or six). The strain displacement matrix is denoted B
and the constitutive matrix D while the pre-strain is given in terms of the

prescribed displacements in uj.



3.1. Viscoelasticity - The correspondence principle

The correspondence principle states that it is possible to compute the
solution to a viscoelastic problem by the corresponding elastic solution. The
viscoelastic solution is obtained by substituting the static stiffness tensor C
with its Laplace transformed counterpart multiplied by the transform vari-
able, i.e. SC(S). For a harmonic excitation this can be simplified to substi-
tuting the static stiffness tensor by the Fourier transformed counterpart, the
complex stiffness C*(w) (cf. Lakes (2009)). By applying the correspondence
principle to the homogenization procedure the effective complex stiffness can
be computed in analog to the effective static stiffness using the same formu-
las and methods except that complex arithmetics are needed. In practice we
solve (14) where the stiffness tensor C is complex.

3.2. Investigating the bounds

The bounds by Gibiansky and Lakes (1997) for the material parameters
mentioned previously at frequency w = 0.01 are plotted in Fig. 5. The
results of a simple parameter study of the effective moduli are also presented
as markers in the figure. By homogenizing a 30 x 30 element (2D) square unit
cell having a square elastic inclusion (material 1) of varying size embedded
in a viscoelastic matrix (material 2) the upper bound is approached for the
complex bulk modulus. For orthotropic materials with square symmetry two
shear moduli exist and as seen from the figure one of these shear moduli
violates the isotropic upper bound while the other stays inside the bounds.

For the opposite material configuration, a viscoelastic square embedded in
an elastic matrix, it is possible to approach the lower bound for the complex
bulk modulus, while the isotropic bounds for the shear modulus are again
violated due to the lack of isotropy. Furthermore, it is evident that when
the upper bound is approached the left part is well resolved using a coarse
unit cell representation, while the right part of the upper bound is difficult
to resolve (indicated by the distance between the markers). In order to reach
the bound in this region a high resolution is required to resolve fine micro-
structural details with very thin layers of the lossy material phase. The same
observation is done for the upper bound on the shear modulus.

3.3. Topology optimization

In the previous section the bounds were reached using a simple orthotropic
microstructure with square symmetry. However, obtaining isotropic mi-
crostructures by pure intuition is more difficult, thus the use of topology
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Figure 5: Upper and lower bounds for an isotropic composite consisting of materials
mentioned in Table 1. The asterisk (*) and cross (x) markers correspond to the composite
with a square inclusion of elastic material in a viscoelastic matrix. Plus (+) and dot (.) is
vice versa. As the microstructure only exhibits square symmetry two shear moduli exist,
hence four datasets are plotted in the right figure. Bounds from Gibiansky and Lakes
(1997).

optimization is proposed in order to obtain microstructures that approach
the bound. Furthermore, an automated process for obtaining microstruc-
tures makes it possible to impose multiple constraints such as e.g. volume
and/or connectivity constraints.

The discrete problem of (12) is relaxed by introducing a continuous pa-
rameter p € [0;1], named the relative density, which indicates the fraction
of phase-1 material (the stiff phase) in every material point while the rest
is phase-2 material. As the optimization proceeds, the material points may
take any intermediate value, however, towards the end a 0-1 solution is de-
sired such that the composite can be produced and makes physical sense.
Typically, a power-law scheme is chosen for the interpolation

Cijri(p) = ppCiljkl + (1 - p)pcz?jkl (16)

in which p is the relative density of phase 1 while p is a penalization pa-
rameter that makes intermediate design variables values uneconomical in the
optimization process.

For topology optimization of multi-material problems in the frequency
domain it has previously been reported (Sigmund and Jensen, 2003) that us-
ing a penalization factor of p = 1 (linear interpolation) works well. However,
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Figure 6: Effective complex moduli vs. relative density corresponding to the composite
with a square inclusion of elastic material in a viscoelastic matrix for w = 0.01. Two shear
moduli exist as the material exhibits square symmetry. Bounds (Gibiansky and Lakes,
1997) are plotted as dotted lines.

the problem at hand is different and hence we investigate the consequences
of choosing another penalization parameter. In order to investigate the in-
fluence from the penalization parameter, the effective complex moduli of the
structures used in the previous section are plotted versus the relative den-
sity in Fig. 6. It is clearly seen that for both the real part of the bulk and
shear modulus a power-law interpolation with an exponent larger than one,
resulting in a convex function, would be representative. However, for the
complex part it is seen that the largest imaginary part is present when the
relative density is approximately 0.8 and that it is lower in both ends of the
density range. This is approximated much better by a concave function i.e.
power-law with exponent less than one. As a compromise no penalization
is used, i.e. p = 1 for both real and complex moduli, which yields a linear
interpolation function. As can be seen in Fig. 7, the interpolation violates
the lower bound for the complex bulk modulus. However, this is not seen as
a problem for an objective function where the imaginary part of the modu-
lus is maximized since material points having intermediate densities perform
worse than black/white.

In relation to vibration damping it is of great interest to approach the
upper bound for the complex modulus as this, for a given real modulus, will
result in the highest possible damping cf. (10). The problem of distributing
material within a unit cell in order to achieve maximum damping is formu-
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Figure 7: Interpolation function from (16) and bounds (dashed lines) (Gibiansky and
Lakes, 1997). Solid line is the interpolation with p = 1, Upper dash-dotted line is inter-
polation with p = 0.5 and the dotted lower line is interpolation p = 2.

lated as a topology optimization problem:

-~

max Im(KH) Loss modulus )
pERN
subject to Ku"* = bF for k=1,...,3(d—1) State equations (15)
Re(K™) < Kppin Minimum storage
g <0 Isotropy constraint
0<p <1, fore=1,...,N Box constraints )
(17)

where N denotes the number of design variables and K,,;, denotes the mini-
mum desired real bulk modulus. As the underlying homogenization method
computes the homogenized stiffness matrix the bulk and shear moduli can be
computed assuming isotropy based on the CH and C coefficients. However,
in order to increase the robustness in case of anisotropic intermediate designs
the bulk modulus is computed as the average of two expressions. In 2D this
yield

K" = (Cf] + C3t +2C) /4 (18)

and the shear modulus is computed as
G = (O]} + C3y — 2015 +2C33) /6 (19)

The isotropy constraint is formulated as the error between the effective stiff-
ness matrix and the corresponding isotropic stiffness matrix based on the

13



homogenized K and G i.e.

i Z f) 2 <0 (20)

=1 j5=1
where ¢ is a small number (i.e. 1072).

3.3.1. Connectivity of the elastic phase

Connectivity of the elastic phase can be ensured in different ways. One
option is to impose a stiffness constraint assuming that the viscoelastic phase
is softer than the elastic one and thereby force connectivity between elastic
material. This, however, is problematic when the frequency goes up as the
stiffness of the viscoelastic material will increase and the connectivity of the
elastic phase cannot be ensured.

As a better alternative we solve an additional homogenization problem,
namely a conductivity problem similar to Sigmund (1999) on top of the exist-
ing problem. Using the same design but assigning good conductive properties
to the elastic phase and poor to the viscoelastic phase, connectivity can be
ensured by enforcing a lower bound on the conductivity i.e. an additional
constraint

g=1-0c"/os <0 (21)

where oy is the desired minimum effective conductivity.

Cross property bounds between bulk modulus and electrical /thermal con-
ductivity exist for isotropic materials with real material properties and are
described in Gibiansky and Torquato (1996). These bounds are also con-
structed using the translation method and span an area in the conduction-
bulk modulus plane. The cross property bounds for bulk storage and con-
ductivity can be seen in Fig. 8 where three infeasible property combinations
are indicated, namely the combinations (K =3, 0 =0.1), (K =3, 0 = 0.2),
(K =4, 0 =0.2). These points are marked as they belong to the set of in-
vestigated material designs and become unrealizable due to the conductivity
constraint and cross property bound.

Alternatively, connectivity can be ensured by constraining the lowest
eigenfrequency of the metallic phase in the unit cell to be greater than zero
(letting the stiffness of the second phase vanish) (Wang et al., 2011). How-
ever, there are two issues with such a procedure for the present design prob-
lem. The first is that the computational effort is much larger than solving

14
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Figure 8: The shaded area is the feasible set of conductivity and bulk storage properties.
The three markers indicate the points (K = 3, 0 = 0.1), (K = 3, 0 = 0.2) and (K = 4,
o = 0.2) which lie outside the cross property bounds (Gibiansky and Torquato, 1996) and
thus cannot be realized.

the heat conduction problem. The second, which might be more problem-
atic, is that it is not straightforward to impose boundary conditions for the
associated eigenvalue problem as the metallic structure may not be present
at the boundary of the domain cf. Fig. 9.

4. Implementation

In order to solve the inverse homogenization problem by topology opti-
mization a numerical homogenization procedure (cf. Guedes and Kikuchi
(1990)) is implemented. The practical implementation is twofold, one for the
two-dimensional problem implemented in Matlab and another for the three-
dimensional problem implemented using a parallel C++ framework DFEM
(Aage and Lazarov, 2013), however, they have much in common. They both
use linear elements and the periodic boundary conditions are imposed by
sharing nodes between elements on each side of the unit cell. A single node
is fully constrained in order to avoid rigid body motion.

The equation system differs from that of the corresponding elastic prob-
lem as it includes complex variables and the system matrix is non-Hermitian
which means that neither a direct solver based on a Cholesky factorization
nor a conjugate gradient method can be used. Instead the 2D implementation
uses a direct solver with LU-factorization while the 3D implementation uses
a block version of a Jacobi-preconditioned stabilized bi-conjugate gradient
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method (van der Vorst, 1992). For the 2D problems the unit cells have been
discretized using square regular bi-linear finite elements which, for the square
domains, consist of 100 x 100 elements while the rectangular domains consist
of 140 x 80 elements. For the 3D problems the cubic unit cells have been
discretized using tri-linear elements and the resolution of either 40 x 40 x 40
or 60 x 60 x 60 elements.

The topology optimization procedure is similar to that in Sigmund (1995)
used for elastic materials and the optimization problem is solved using the
Method of Moving Asymptotes (MMA) kindly provided by Svanberg (1987).
The design is regulated using a Heaviside projection filter (Guest et al.,
2004; Sigmund, 2007) in order to get black/white designs. By experience the
regularization is only needed when the conductivity constraint is imposed,
however, for consistency it is applied to all designs.

Material microstructure design problems are prone to local minima re-
lated to small details in the microstructure or reentrant structures. A con-
tinuation scheme has been imposed in the discreteness measure of the Heavi-
side projection filter and the isotropy error (¢) in order to give the optimizer
more freedom in the beginning of the optimization process, and avoid getting
stuck prematurely in a local minimum.

5. Results and discussion

In this section the composites that realize the upper bound for viscoelastic
bulk modulus will be presented both in two and three dimensions. This is
followed by manufacturable optimized designs in two and three dimensions
which is ensured by the conductivity constraint.

5.1. Extreme bulk modulus structures in 2D

Optimizing for the bulk loss modulus the upper bound is approached and
in order to find structures along the upper bound, restrictions are imposed
on the effective bulk storage modulus. Vigdergauz (1994) presented opti-
mal single scale microstructures for elastic materials, which also showed up
in Sigmund (2000) where extremal two phase elastic composites were inves-
tigated. The microstructures that exhibit the highest bulk modulus either
have a honeycomb structure (near circular void inclusions in a triangulas)
which requires a rectangular unit cell or an octagonal structure with circular
inclusions of two different sizes supporting a square unit cell. For this first
case both unit cell types have been investigated for the maximization of the
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Figure 9: Optimized microstructures for maximum bulk loss modulus. Top row using
square design domain and square symmetry, middle row using square design domain with
isotropic symmetry and bottom row using a rectangular design domain with isotropic
symmetry. Each column corresponds to a different constraint on the effective bulk storage
modulus.
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Figure 10: Performance of the optimized microstructures for maximum imaginary bulk
modulus along with the corresponding bounds (Gibiansky and Lakes, 1997) for w = 0.01
. The optimized designs are shown in Fig. 9.

bulk loss modulus. The performances of the realized structures are shown
in Fig. 10 while the corresponding designs are shown in Fig. 9. From the
figure it is clearly seen that Vigdergauz structures are obtained. The up-
per row exhibits square symmetry while the two lower rows exhibit isotropic
symmetry. As the requirements for the bulk storage are increased (moving
towards right in the plot) it gets progressively more difficult to resolve the
details of the microstructures so, due to the finite mesh resolution, the de-
signs lose geometric symmetry and the performances decrease in comparison
to the upper bound.
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Figure 11: Optimized microstructures for maximum imaginary part of bulk modulus. Left:
Stiff phase. Right: Soft phase. a), ¢) and d) are isotropic, while b) is cubic symmetric.

5.2. Extreme bulk modulus structures in 3D

Figure 11 shows four 3D isotropic microstructures obtained by tracing
the upper complex bulk modulus bound. The phase properties used are the
same as for the 2D case and the homogenized complex bulk modulus of the
obtained designs are compared to the bounds from Gibiansky and Lakes
(1993) in Fig. 12, where it can be seen that, as in the 2D case, the right
part of the bound is not attained due to the limited discretization. With the
coarsest discretization (40° elements) the obtained designs deviate more from
the bounds, because the loss is maximized by making sure the stiff phase is
unconnected. Assuring an unconnected stiff phase requires a larger volume
fraction of the soft phase for a coarser discretization, and for the material
in Fig. 11(d) there is simply not enough soft material to isolate the stiff
phase. From a manufacturing point of view a connected phase is desired
in e.g. selective laser sintering. However, the connectivity of the structure
should rather be ensured by imposing a constraint than by relying on the
coarseness of the discretization.
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Figure 12: Performance of the optimized three-dimensional microstructures compared to
the theoretical bounds (Gibiansky and Lakes, 1993) for w = 0.01. The letters refer to the
designs in Fig. 11 .

5.8. Manufacturability in 2D

The structures optimized in the previous section might not be realized
easily as an inclusion of the elastic phase is embedded into a viscoelastic
matrix. The targeted manufacturing process is a two step procedure in which
the first step is to create a metallic matrix by selective laser sintering and
the second step is to infiltrate the matrix with a viscoelastic filler. Hence,
the elastic phase should be connected in order to function as a matrix. The
infiltration process also requires the structures to be open. However, for 2D
designs, both conditions cannot be fulfilled. In this case we consider the
open cell requirement to relate to the out-of-plane direction and thus to be
fulfilled.

Based on the above considerations the optimization formulation is mod-
ified by adding a conductivity constraint. The optimized designs with this
constraint are shown in Fig. 13. Rows one and two are obtained imposing
a conductivity constraint of o > 0.1oy and square and isotropic symme-
try, respectively. Rows three and four are obtained imposing a conductivity
constraint of o” > 0.20¢ for square and isotropic symmetry, respectively.
Each column corresponds to a specific constraint on the effective bulk stor-
age modulus ranging from Re(K) < 3 to Re(KH) > 14 in order to assess
the entire upper bound. The designs in row one and three are more easily
obtained than the other two due to the lower degree of material symmetry. In
comparison to the structures in Fig. 9 (upper row) the designs differ by the
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connection such that the elastic material now forms a matrix instead of be-
ing inclusions. For the lowest effective bulk storage the designs deviate more
and the joint of the matrix takes a flower shape. This, however, might be
a local minima rather than a global one. When tightening the conductivity
constraint we generally observe that the connectors between the inclusions
get wider.

For the isotropic designs in the second and fourth row the structures
do show similarities with the ones obtained without conductivity constraint.
Except for the connections between the solid inclusions they also, at least
until Re(K*f) > 9, roughly consist of two different sized inclusions connected
by thin pins. For the designs Re(K) > 9 until Re(K*) > 14 there is a
change in topology that performs better than if the previous topology was
adapted to the increased storage demands.

The designs (Re(K") > 3, 0% /og > 0.1) and (Re(KH) > 4, o/ /oy >
0.2) do not fulfill the isotropy constraint completely as the optimizer has a
very hard time making the design feasible.

The performances corresponding to the designs are shown in Fig. 14
where the different conditions are indicated by different markers. It is seen
that the curves for the square and isotropic symmetry almost overlap. Mov-
ing towards right they deviate more as the details within the designs com-
bined with the isotropy constraint make it difficult to obtain feasible designs
that are as close to the upper bound as the square symmetric ones. Based on
these results a new numerical upper bound can be constructed which bounds
the structures with a connected stiff elastic phase.

Due to the cross property bounds shown in Fig. 8 it is seen that designs
that both restrict the maximum bulk storage and the minimum conduc-
tivity might be infeasible. Thus no designs are presented for (Re(K*%) < 3,
ol oy > 0.1), (Re(K") < 3, 0 /oy > 0.2) and (Re(KH) < 4, % /oy > 0.2).

5.4. Manufacturability in 3D

The performance-effect of the conductivity constraint in 3D is the same as
in 2D; it limits how closely the bounds can be approached. This is illustrated
in Fig. 16 where the upper bound is traced with a conductivity constraint of
10% (o /oy > 0.1).

Opposed to the two-dimensional designs, the designs in three dimensions
allow for both phases to be connected. This is clearly seen for the case
with cubic-symmetric material design in Fig. 15(a), where the stiff phase
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Figure 13: Optimized microstructures for maximum imaginary bulk modulus subject to
constraints on storage modulus (columns) and conductivity (2 x 2 rows). The microstruc-
tures exhibit square symmetry (rows 1 and 3) and isotropic symmetry (rows 2 and 4).
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Figure 14: Performance of the optimized microstructures for maximum bulk loss modulus
along with the corresponding bounds (Gibiansky and Lakes, 1997) for w = 0.01. The
blue square (0) and red asterisk (x) yields o/ /og > 0.1 and exhibit square and isotropic
symmetry, respectively. The magenta diamond (¢) and green dot (-) yields o /oy > 0.2
and exhibit square and isotropic symmetry, respectively.
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is connected with rods compared to Fig. 11(b) where the stiff phase is an
inclusion in a lossy matrix.

The constraint ensures some connectivity between the stiff parts, but
isolated stiff islands can still appear. This is the case for the isotropic designs
in Fig. 15(b) and (c), where the stiff phase is only partially connected and
the material is therefore not readily manufacturable. However, as shown in
Fig. 15(d) it is also possible to obtain a manufacturable isotropic material
using the constraint. The differences in the designs originate from the two
different initial guesses being used. The designs in Fig. 15(b) and (c) were
obtained with a stiff cross as an initial guess, while the design in Fig. 15(d)
was obtained having stiff spheres in the corners in the initial guess. The
performance does not seem to be affected negatively by the full connectivity,
since the coarse discretization material next to point (d) in Fig. 16 has the
same topology as points (b) and (c). In order to investigate the influence from
the discritization the result for a single optimization using a higher resolution
(802 elements) is presented. The optimized structure is similar to the one in
Fig. 15(a) and performs equally good. This indicates that the discretization
is not a problem for structures with a moderate storage modulus Re(K*™).

The conductivity constraint can be used to obtain manufacturable de-
signs, but it does not assure manufacturable designs in 3D. It should be
mentioned that requiring a larger conductivity is not guaranteed to assure
manufacturability, you still risk either isolated stiff or soft islands.

As a larger storage modulus is required the importance of the conductivity
constraint diminishes, and the structures at the rightmost part of the upper
bound are identical to the ones obtained without the conductivity constraint.

6. Conclusions

This paper presents a method to optimize the damping capabilities of
viscoelastic composite materials by designing the material microstructure
taking the manufacturability of the microstructure into account. The method
is demonstrated for material properties corresponding to a single frequency,
however, if the composite material is targeted for a broader frequency range
the optimization problem may be changed to a min-max type problem to
account, for multiple frequencies.

It is demonstrated that the design method is capable of attaining the
upper bound for the bulk loss modulus when manufacturability is neglected.
If manufacturability is considered the upper bound shrinks such that only
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Figure 15: Optimized microstructures for maximum imaginary part of bulk modulus with
a conductivity constraint. In each set of two, left is stiff and right is lossy phase. Design
(a) has cubic symmetry and the remaining have isotropic symmetry.
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Figure 16: Performance of the microstructures optimized with a conductivity constraint
compared to the theoretical bounds (Gibiansky and Lakes, 1993). The conductivity in
the stiff phase is required to be at least ten percent of the phase material’s conductivity.

w = 0.01. The letters refer to the designs in Fig. 15.
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lower bulk loss modulus and higher bulk storage modulus are obtainable.
This provides new numerical bounds for viscoelastic composites which have
stiff elastic matrix constructed for example by additive manufacturing.

The quasi-static approach taken in this paper allows for the design of
materials for low frequency application where the wavelength is much larger
than the size of the unit cell. For applications at higher frequency/shorter
wavelength one can resort to a fully dynamic approach by solving several mi-
croscale eigenvalue problems based on a Bloch wave expansion. Additionally
a multiscale model could be considered which, in addition, would allow the
material microstructure to vary throughout the macrostructure.
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Appendix A. Frequency domain stiffness for Standard Linear Solid

If a Maxwell element (spring and dashpot in serial) is mounted parallel
to a spring the Standard Linear Solid (SLS) model is constructed. The
difference from a Maxwell element is that at infinite time, the material has
a stiffness, the relaxation modulus.

Both branches in the SLS model is subjected to the same strain and the
total stress is the sum of stresses in each branch. The stress-strain relation
for the Maxwell element is given by

1
ke =G+ —Om (A.1)
T

where 7 = pu/k is the ratio between the viscosity of the damper and the
spring stiffness. The stress-strain relation in the spring follows Hooke’s law

Oc = ket (A.2)

For the case of harmonic excitation the stress and strain can be repre-
sented by exponential functions such that

o(t) = ofexp(iwt), and  e(t) = gjexp(iwt) (A.3)

Inserting into (A.1) and (A.2) the total stress is given by

. . . . wkTt
Oy :Ue‘l—Um:EO <k6+1—|—7,w7') (A4)

which is now independent of time but dependent on frequency. The complex
relaxation modulus can be obtained from the relation between stress and
strain as

o} iwkT kuw?T? - kwt

i e . - e + + 1
€5 1+ iwr 14 w272 14 w?r?

C*(w) = (A.5)

A drawback of the SLS model is that the stiffness drops in two decades
of time which compared to real materials is too fast (Lakes, 2009). A more
sophisticated model can be obtained by adding more Maxwell elements in
parallel. For each extra Maxwell element there will be another 2 parameters,
stiffness and viscosity, which will add an extra term to the total stress in

(A4).
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