CORE

Remarks on contractive mappings via Ω-distance

Leila Gholizadeh ${ }^{1}$ and Erdal Karapınar2*

"Correspondence: erdalkarapinar@yahoo.com; ekarapinar@atilim.edu.tr
${ }^{2}$ Department of Mathematics, Atilim University, İncek, Ankara 06836, Turkey
Full list of author information is available at the end of the article

Abstract

Very recently, some authors discovered that some fixed point results in the context of a G-metric space can be derived from the fixed point results in the context of a quasi-metric space and hence the usual metric space. In this article, we investigate some fixed point results in the framework of a G-metric space via Ω-distance that cannot be obtained by the usual fixed point results in the literature. We also add an application to illustrate our results.

MSC: $47 \mathrm{H} 10 ; 54 \mathrm{H} 25 ; 46 \mathrm{~J} 10 ; 46 \mathrm{~J} 15$
Keywords: Ω-distance; fixed point; G-metric space

1 Introduction and preliminaries

Very recently, Jleli and Samet [1] and Samet et al. [2] proved that some fixed point results in the setting of G-metric spaces, introduced by Sims and Mustafa [3], are consequences of the well-known fixed point theorem in the context of the usual metric space. Indeed, authors in [1,2] noticed that $G(x, y, y)=q(x, y)$ is a quasi-metric and obtained that the results are just a characterization of existence results in the framework of a quasi-metric. On the other hand, a G-metric was introduced as a generalization of the (usual) metric. Basically, G-metrics claim the geometry of three points instead of two points. Consequently, Jleli and Samet [1] and Samet et al. [2] concluded that if the expression in the fixed point theorem can be reduced to two points, then it can be written as a consequence of the related existence result in the literature.

Recently, Saadati et al. [4] introduced the concept of Ω-distance on a complete G-metric space as a generalized notion of ω-distance due to Kada et al. [5]. In these papers, the authors investigate the existence/uniqueness of a fixed point of certain operators in this setting. In this paper, we revise some published papers (see, e.g., $[6,7]$) and improve the statements in a way that cannot be manipulated by the techniques used in $[1,2]$ (see also [8-10]).

We first recall some necessary definitions and basic results on the topics in the literature.

Definition 1 ([3]) Let X be a non-empty set. A function $G: X \times X \times X \rightarrow[0, \infty)$ is called a G-metric if the following conditions are satisfied:
(i) $G(x, y, z)=0$ if $x=y=z$ (coincidence),
(ii) $G(x, x, y)>0$ for all $x, y \in X$, where $x \neq y$,
(iii) $G(x, x, z) \leq G(x, y, z)$ for all $x, y, z \in X$, with $z \neq y$,
(iv) $G(x, y, z)=G(p\{x, y, z\})$, where p is a permutation of x, y, z (symmetry),
(v) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality).

A G-metric is said to be symmetric if $G(x, y, y)=G(y, x, x)$ for all $x, y \in X$.

Definition 2 ([3]) Suppose that (X, G) is a G-metric space.
(1) A sequence $\left\{x_{n}\right\}$ in X is said to be G-Cauchy sequence if, for each $\varepsilon>0$, there exists a positive integer n_{0} such that for all $n, m, l \geq n_{0}, G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$.
(2) A sequence $\left\{x_{n}\right\}$ in X is said to be G-convergent to a point $x \in X$ if, for each $\varepsilon>0$, there exists a positive integer n_{0} such that for all $m, n \geq n_{0}, G\left(x_{m}, x_{n}, x\right)<\varepsilon$.

Definition 3 ([4]) Let (X, G) be a G-metric space. Then a function $\Omega: X \times X \times X \longrightarrow$ $[0, \infty)$ is called an Ω-distance on X if the following conditions are satisfied:
(a) $\Omega(x, y, z) \leq \Omega(x, a, a)+\Omega(a, y, z)$ for all $x, y, z, a \in X$,
(b) $\Omega(x, y, \cdot), \Omega(x, \cdot, y): X \rightarrow[0, \infty)$ are lower semi-continuous for any $x, y \in X$,
(c) for each $\varepsilon>0$, there exists $\delta>0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G(x, y, z) \leq \varepsilon$.

Example 4 ([4]) Suppose that (X, d) is a metric space. Let $G: X^{3} \longrightarrow[0, \infty)$ be defined as follows:

$$
G(x, y, z)=\max \{d(x, y), d(y, z), d(x, z)\}
$$

for all $x, y, z \in X$. Then one can easily show that $\Omega=G$ is an Ω-distance on X.

Example 5 ([4]) Let $X=\mathbb{R}$ and (X, G) be a G-metric, where

$$
G(x, y, z)=\frac{1}{3}(|x-y|+|y-z|+|x-z|)
$$

for all $x, y, z \in X$. If we define $\Omega: \mathbb{R}^{3} \longrightarrow[0, \infty)$ as follows:

$$
\Omega(x, y, z)=\frac{1}{3}(|z-x|+|x-y|)
$$

for all $x, y, z \in X$, then it is an Ω-distance on \mathbb{R}.

We refer, e.g., to $[4,11]$ for more details and examples on the topic.

Lemma 6 [4] Suppose that (X, G) is a G-metric space and Ω is an Ω-distance on X. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences in X and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be sequences in $[0, \infty)$ converging to zero and $x, y, z, a \in X$. Then
(a) if $\Omega\left(y, x_{n}, x_{n}\right) \leq \alpha_{n}$ and $\Omega\left(x_{n}, y, z\right) \leq \beta_{n}$ for $n \in \mathbb{N}$, then $G(y, y, z)<\varepsilon$, and hence $y=z$;
(b) if $\Omega\left(y_{n}, x_{n}, x_{n}\right) \leq \alpha_{n}$ and $\Omega\left(x_{n}, y_{m}, z\right) \leq \beta_{n}$ for $m>n$, then $G\left(y_{n}, y_{m}, z\right) \rightarrow 0$, and hence $y_{n} \rightarrow z ;$
(c) if $\Omega\left(x_{n}, x_{m}, x_{l}\right) \leq \alpha_{n}$ for any l, $m, n \in \mathbb{N}$ with $n \leq m \leq l$, then $\left\{x_{n}\right\}$ is a G-Cauchy sequence;
(d) if $\Omega\left(x_{n}, a, a\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a G-Cauchy sequence.

Definition 7 ([4]) Suppose that (X, G) is a G-metric space and Ω is an Ω-distance on X. (X, G) is called Ω-bounded if there is a constant $C>0$ with $\Omega(x, y, z) \leq C$ for all $x, y, z \in X$.

Definition 8 Let (X, \leq) be a partially ordered set. A self-mapping $T: X \rightarrow X$ is said to be non-decreasing if, for $x, y \in X$,

$$
x \leq y \quad \Longrightarrow \quad T(x) \leq T(y)
$$

The tripled (X, G, \leq) is called a partially ordered G-metric space if (X, \leq) is a partially ordered set endowed with a G-metric on X; see also [12, 13].

2 Fixed point theorems on partially ordered G-metric spaces

We start this section with the following classes of mappings:

$$
\begin{aligned}
& \Phi=\{\phi \mid \phi:[0, \infty) \rightarrow[0, \infty) \text { continuous, non-decreasing }\} \text { and } \\
& \Psi=\{\psi \mid \psi:[0, \infty) \rightarrow[0, \infty) \text { continuous, non-decreasing }\}
\end{aligned}
$$

with $\phi^{-1}(\{0\})=\psi^{-1}(\{0\})=\{0\}$.

Definition 9 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space. A self-mapping $T: X \rightarrow X$ is said to be a generalized weak-contraction mapping if it satisfies the following condition:

$$
\psi\left(\Omega\left(T x, T^{2} x, T y\right)\right) \leq \psi(\Omega(x, T x, y))-\phi(\Omega(x, T x, y)) \quad \text { for all } x, y \in X, \text { with } x \leq y,
$$

where $\psi \in \Psi$ and $\phi \in \Phi$.

Theorem 10 Let (X, G, \leq) be a partially ordered complete G-metric space, and let Ω be an Ω-distance on X. Suppose that a non-decreasing self-mapping $T: X \rightarrow X$ is a generalized weak-contraction mapping, that is,

$$
\psi\left(\Omega\left(T x, T^{2} x, T y\right)\right) \leq \psi(\Omega(x, T x, y))-\phi(\Omega(x, T x, y)) \quad \text { for all } x, y \in X \text {, with } x \leq T x \text {, }
$$

with $\psi \in \Psi$ and $\phi \in \Phi$. Suppose also that $\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}>$ 0 for every $y \in X$ with $y \neq T y$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has a unique fixed point, say $u \in X$. Moreover, $\Omega(u, u, u)=0$.

Proof If $x_{0}=T x_{0}$, then the proof is finished. Suppose that $x_{0} \neq T x_{0}$. Since $x_{0} \leq T x_{0}$ and T is non-decreasing, we obtain

$$
x_{0} \leq T x_{0} \leq T^{2} x_{0} \leq \cdots \leq T^{n+1} x_{0} \leq \cdots
$$

Now, if for some $n \in \mathbb{N}, \Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)=0$, then

$$
\begin{aligned}
\psi\left(\Omega\left(T^{n+1} x_{0}, T^{n+2} x_{0}, T^{n+2} x_{0}\right)\right) \leq & \psi\left(\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)\right) \\
& -\phi\left(\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)\right),
\end{aligned}
$$

then $\Omega\left(T^{n+1} x_{0}, T^{n+2} x_{0}, T^{n+2} x_{0}\right)=0$. Due to [(a), Definition 3], we have $\Omega\left(T^{n} x_{0}, T^{n+2} x_{0}\right.$, $\left.T^{n+2} x_{0}\right)=0$. On the other hand, by [(c), Definition 3], we easily derive that $G\left(T^{n} x_{0}, T^{n+2} x_{0}\right.$, $\left.T^{n+2} x_{0}\right)=0$, which completes the proof.

Consequently, throughout the proof, we suppose that $\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)>0$ for all $n \in \mathbb{N}$. Hence, we have

$$
\begin{align*}
\psi\left(\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)\right) \leq & \psi\left(\Omega\left(T^{n-1} x_{0}, T^{n} x_{0}, T^{n} x_{0}\right)\right) \\
& -\phi\left(\Omega\left(T^{n-1} x_{0}, T^{n} x_{0}, T^{n} x_{0}\right)\right), \tag{2.1}
\end{align*}
$$

which yields that

$$
\psi\left(\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)\right) \leq \psi\left(\Omega\left(T^{n-1} x_{0}, T^{n} x_{0}, T^{n} x_{0}\right)\right)
$$

As a result, we conclude that $\left\{\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)\right\}$ is non-increasing. Thus, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)=r .
$$

We shall show that $r=0$. Suppose, on the contrary, that $r>0$. Then we have $\phi(r)>0$. Letting $n \rightarrow \infty$ on (2.1), we obtain

$$
\psi(r) \leq \psi(r)-\phi(r)
$$

a contraction. Hence, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)=0 \tag{2.2}
\end{equation*}
$$

Recursively, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+t} x_{0}\right)=0 \tag{2.3}
\end{equation*}
$$

for every $t \in \mathbb{N}$.
Let $l \geq m \geq n$ with $m=n+k$ and $l=m+t(k, t \in \mathbb{N})$. By the triangle inequality, we derive that

$$
\begin{aligned}
\Omega\left(T^{n} x_{0}, T^{m} x_{0}, T^{l} x_{0}\right) \leq & \Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)+\Omega\left(T^{n+1} x_{0}, T^{m} x_{0}, T^{l} x_{0}\right) \\
\leq & \Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, T^{n+1} x_{0}\right)+\Omega\left(T^{n+1} x_{0}, T^{n+2} x_{0}, T^{n+2} x_{0}\right) \\
& +\cdots+\Omega\left(T^{m-1} x_{0}, T^{m} x_{0}, T^{l} x_{0}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the inequality above, by keeping the limits (2.2) and (2.3), we obtain

$$
\lim _{n, m, l \rightarrow \infty} \Omega\left(T^{n} x_{0}, T^{m} x_{0}, T^{l} x_{0}\right)=0
$$

Therefore, $\left\{T^{n} x_{0}\right\}$ is a G-Cauchy sequence. Since X is G-complete, $\left\{T^{n} x_{0}\right\}$ converges to a point $u \in X$. Now, for $\varepsilon>0$ and by the lower semi-continuity of Ω,

$$
\Omega\left(T^{n} x_{0}, T^{m} x_{0}, u\right) \leq \liminf _{p \rightarrow \infty} \Omega\left(T^{n} x_{0}, T^{m} x_{0}, T^{p} x_{0}\right) \leq \varepsilon, \quad m \geq n
$$

and

$$
\Omega\left(T^{n} x_{0}, u, T^{l} x_{0}\right) \leq \liminf _{p \rightarrow \infty} \Omega\left(T^{n} x_{0}, T^{p} x_{0}, T^{l} x_{0}\right) \leq \varepsilon, \quad l \geq n .
$$

Assume that $u \neq T u$. Since $T^{n} x_{0} \leq T^{n+1} x_{0}$,

$$
0<\inf \left\{\Omega\left(T^{n} x_{0}, u, T^{n} x_{0}\right)+\Omega\left(T^{n} x_{0}, u, T^{n+1} x_{0}\right)+\Omega\left(T^{n} x_{0}, T^{n+1} x_{0}, u\right): n \in \mathbb{N}\right\} \leq 3 \varepsilon,
$$

a contraction. Hence, we have $u=T u$.
We shall show that u is the unique fixed point of T. Suppose, on the contrary, that v is another fixed point of T. So, we have

$$
\begin{aligned}
\psi(\Omega(u, u, v)) & =\psi\left(\Omega\left(T u, T^{2} u, T v\right)\right) \\
& \leq \psi(\Omega(u, T u, v))-\phi(\Omega(u, T u, v)) \\
& =\psi(\Omega(u, u, v))-\phi(\Omega(u, u, v)) \\
& <\psi(\Omega(u, u, v)),
\end{aligned}
$$

a contraction. Thus, the fixed point u is unique. Now, since $u=T u$, we have

$$
\begin{aligned}
\psi(\Omega(u, u, u)) & =\psi\left(\Omega\left(T u, T^{2} u, T u\right)\right) \\
& \leq \psi(\Omega(u, T u, u))-\phi(\Omega(u, T u, u)) \\
& =\psi(\Omega(u, u, u))-\phi(\Omega(u, u, u)) .
\end{aligned}
$$

So, $\Omega(u, u, u)=0$.

Definition 11 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space. A self-mapping $T: X \rightarrow X$ is said to be a weak-contraction mapping if it satisfies the following condition:

$$
\Omega\left(T x, T^{2} x, T y\right) \leq \Omega(x, T x, y)-\phi(\Omega(x, T x, y)) \quad \text { for all } x, y \in X, \text { with } x \leq y,
$$

where $\phi \in \Phi$.

Corollary 12 Let (X, G, \leq) be a partially ordered complete G-metric space, and let Ω be an Ω-distance on X. Suppose that a non-decreasing self-mapping $T: X \rightarrow X$ is a weakcontraction mapping, that is,

$$
\Omega\left(T x, T^{2} x, T y\right) \leq \Omega(x, T x, y)-\phi(\Omega(x, T x, y)) \quad \text { for all } x, y \in X \text {, with } x \leq T x \text {, }
$$

where $\phi \in \Phi$. Suppose also that $\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}>0$ for every $y \in X$ with $y \neq T y$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has a unique fixed point, say $u \in X$. Moreover, $\Omega(u, u, u)=0$.

If we take $\phi(t)=k t$, where $k \in[0,1)$, we derive Theorem 2.2 [4] as the following corollary.

Corollary 13 Let (X,G, \leq) be a partially ordered complete G-metric space, and let Ω be an Ω-distance on X. Suppose that there exists $k \in[0,1)$ such that

$$
\Omega\left(T x, T^{2} x, T y\right) \leq k \Omega(x, T x, y) \quad \text { for all } x, y \in X, \text { with } x \leq T x .
$$

Suppose also that $\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}>0$ for every $y \in X$ with $y \neq T y$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has a unique fixed point, say $u \in X$. Moreover, $\Omega(u, u, u)=0$.

Definition 14 Let (X, \leq) be a partially ordered space. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space. A self-mapping $T: X \rightarrow X$ is said to be a Ćirić-type contraction mapping if it satisfies that there exists $0 \leq k<1$ such that

$$
\Omega\left(T x, T^{2} x, T y\right) \leq k M(x, x, y)
$$

where

$$
M(x, x, y)=\max \left\{\Omega(x, T x, T x), \Omega(y, T y, T y), \frac{1}{2} \Omega(x, T y, T y)\right\}
$$

for all $x, y \in X$ with $x \leq y$.

Theorem $15 \operatorname{Let}(X, G, \leq)$ be a partially ordered complete G-metric space, and let Ω be an Ω-distance on X. Suppose that a non-decreasing self-mapping $T: X \longrightarrow X$ is a Ćirić-type contraction mapping.
(i) For every $x \in X$ and $y \in X$ with $y \neq T(y)$, $\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T(x)\}>0$,
(ii) There exists $x_{0} \in X$ such that $x_{0} \leq T\left(x_{0}\right)$,
then T has a fixed point u in X and $\Omega(u, u, u)=0$.

Proof By assumption (ii), there exists $x_{0} \in X$ such that $x_{0} \leq T\left(x_{0}\right)$. We fix $x_{1} \in X$ such that $x_{1}=T\left(x_{0}\right)$. Since T is a non-decreasing mapping, $T x_{0} \leq T x_{1}$. There exists $x_{2} \in X$ such that $T x_{1}=x_{2}$. Recursively, we construct the sequence $\left\{x_{n}\right\}$ in the following way:

$$
x_{n+1}=T x_{n} \leq T x_{n+1}=x_{n+2} \quad \text { for all } n \geq 0
$$

Since T is a Ćirić-type contraction mapping, by replacing $x=x_{n}$ and $y=x_{n+1}$, we get that

$$
\begin{equation*}
\Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right)=\Omega\left(T x_{n}, T x_{n+1}, T x_{n+1}\right) \leq k M\left(x_{n}, x_{n}, x_{n+1}\right), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
M\left(x_{n}, x_{n}, x_{n+1}\right)= & \max \left\{\Omega\left(x_{n}, T x_{n}, T x_{n}\right), \Omega\left(x_{n+1}, T x_{n+1}, T x_{n+1}\right),\right. \\
& \left.\frac{1}{2} \Omega\left(x_{n}, T x_{n+1}, T x_{n+1}\right)\right\} \\
= & \max \left\{\Omega\left(x_{n}, x_{n+1}, x_{n+1}\right), \Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{1}{2} \Omega\left(x_{n}, x_{n+2}, x_{n+2}\right)\right\} \\
\leq & \max \left\{\Omega\left(x_{n}, x_{n+1}, x_{n+1}\right), \Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right),\right. \\
& \left.\frac{1}{2}\left[\Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)+\Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right)\right]\right\} \\
= & \max \left\{\Omega\left(x_{n}, x_{n+1}, x_{n+1}\right), \Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right)\right\} .
\end{aligned}
$$

Notice that if $M\left(x_{n}, x_{n}, x_{n+1}\right) \leq \Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right)$, then (2.4) yields a contradiction since $k<1$.

Thus, $M\left(x_{n}, x_{n}, x_{n+1}\right) \leq \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)$ and inequality (2.4) and $k<1$ turn into

$$
\begin{equation*}
\Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \leq k \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right) . \tag{2.5}
\end{equation*}
$$

Upon the discussion above, we conclude that the sequence $\left\{\Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\}$ is nonincreasing and bounded below. Therefore, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)=r .
$$

We shall show that $r=0$. By a standard calculation, using inequality (2.5) and keeping $k<1$ in mind, we obtain $\lim _{n \rightarrow \infty} \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$. We claim that the sequence $\left\{x_{n}\right\}$ is G-Cauchy. Let $l \geq m \geq n$ with $m=n+k$ and $l=m+t(k, t \in \mathbb{N})$. By the triangle inequality, we derive that

$$
\begin{align*}
\Omega\left(x_{n}, x_{m}, x_{l}\right) & \leq \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)+\Omega\left(x_{n+1}, x_{m}, x_{l}\right) \\
& \leq \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)+\Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+\cdots+\Omega\left(x_{m-1}, x_{m}, x_{l}\right) . \tag{2.6}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\Omega\left(x_{m-1}, x_{m}, x_{m+t}\right) \leq & k M\left(x_{m-2}, x_{m-2}, x_{m+t-1}\right) \\
= & k \max \left\{\Omega\left(x_{m-2}, x_{m-1}, x_{m-1}\right), \Omega\left(x_{m+t-1}, x_{m+t}, x_{m+t}\right),\right. \\
& \left.\frac{1}{2} \Omega\left(x_{m-2}, x_{m+t}, x_{m+t}\right)\right\} \\
\leq & k \max \left\{\Omega\left(x_{m-2}, x_{m-1}, x_{m-1}\right), \Omega\left(x_{m+t-1}, x_{m+t}, x_{m+t}\right),\right. \\
& \frac{1}{2}\left[\Omega\left(x_{m-2}, x_{m-1}, x_{m-1}\right)+\Omega\left(x_{m-1}, x_{m}, x_{m}\right)\right. \\
& \left.\left.+\cdots+\Omega\left(x_{m+t-1}, x_{m+t}, x_{m+t}\right)\right]\right\} . \tag{2.7}
\end{align*}
$$

By combining expressions (2.6) and (2.7), we find that

$$
\begin{aligned}
& \Omega\left(x_{n}, x_{m}, x_{l}\right) \\
& \quad \leq \Omega\left(x_{n}, x_{n+1}, x_{n+1}\right)+\Omega\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+\cdots+\Omega\left(x_{m-2}, x_{m-1}, x_{m-1}\right)
\end{aligned}
$$

$$
\begin{align*}
& +k \max \left\{\Omega\left(x_{m-2}, x_{m-1}, x_{m-1}\right), \Omega\left(x_{m+t-1}, x_{m+t}, x_{m+t}\right), \frac{1}{2}\left[\Omega\left(x_{m-2}, x_{m-1}, x_{m-1}\right)\right.\right. \\
& \left.\left.+\Omega\left(x_{m-1}, x_{m}, x_{m}\right)+\cdots+\Omega\left(x_{m+t-1}, x_{m+t}, x_{m+t}\right)\right]\right\} \tag{2.8}
\end{align*}
$$

Taking $n \rightarrow \infty$ in (2.8), we conclude that

$$
\lim _{n, m, l \rightarrow \infty} \Omega\left(x_{n}, x_{m}, x_{l}\right)=0
$$

and hence $\left\{x_{n}\right\}$ is a G-Cauchy sequence due to expression (c) of Lemma 6. Since X is Gcomplete, $\left\{x_{n}\right\}$ converges to a point $u \in X$. Thus, for $\varepsilon>0$ and by the lower semi-continuity of Ω, we have

$$
\Omega\left(x_{n}, x_{m}, u\right) \leq \liminf _{p \rightarrow \infty} \Omega\left(x_{n}, x_{m}, x_{p}\right) \leq \varepsilon, \quad m \geq n
$$

and

$$
\Omega\left(x_{n}, u, x_{l}\right) \leq \liminf _{p \rightarrow \infty} \Omega\left(x_{n}, x_{p}, x_{l}\right) \leq \varepsilon, \quad l \geq n .
$$

Assume that $u \neq T u$. Since $x_{n+1} \leq x_{n+2}$,

$$
0<\inf \left\{\Omega\left(x_{n+1}, u, x_{n+1}\right)+\Omega\left(x_{n+1}, u, x_{n+2}\right)+\Omega\left(x_{n+1}, x_{n+2}, u\right): n \in \mathbb{N}\right\} \leq 3 \varepsilon
$$

for every $\varepsilon>0$, that is a contraction. Therefore, we have $u=T u$ and $\Omega(u, u, u)=0$.

Definition 16 Let (X, \leq) be a partially ordered space and $f, g: X \rightarrow X$. We say that g is an f-monotone mapping if

$$
x, y \in X, \quad f(x) \leq f(y) \quad \Longrightarrow \quad g(x) \leq g(y) .
$$

Theorem 17 Let (X, G, \leq) be a partially ordered complete G-metric space, and let Ω be an Ω-distance on X such that X is Ω-bounded. Let $f: X \longrightarrow X$ and $g: f(X) \longrightarrow X$ commute, f be non-decreasing and g be an f-monotone mapping such that:
(a) $g f(X) \subseteq f^{2}(X)$;
(b) $\Omega\left(g f x, g y, g^{2} x\right) \leq k M(x, x, y)$, where
$M(x, x, y)=\max \left\{\Omega\left(f^{2} x, f y, f g x\right), \Omega(f y, f y, g y), \Omega\left(f^{2} x, f^{2} x, f g x\right)\right\}$ for all $x, y \in X$ with
$f(x) \leq f(y)$ and $0 \leq k<1$;
(c) for every $x \in X$ and $z \in X$ with $f^{2} z \neq g f z$,

$$
\inf \left\{\Omega(x, z, x)+\Omega(x, x, z)+\Omega\left(f^{2} x, g x, g f x\right): f^{2} x \leq g f x\right\}>0 ;
$$

(d) there exists $x_{0} \in f(X)$ such that $f\left(x_{0}\right) \leq g\left(x_{0}\right)$;
then f and g have a unique common fixed point u in X and $\Omega(u, u, u)=0$.

Proof Let $x_{0} \in f(X)$ such that $f\left(x_{0}\right) \leq g\left(x_{0}\right)$. By part (a), we can choose $x_{1} \in f(X)$ such that $f\left(x_{1}\right)=g\left(x_{0}\right)$. Again from part (a), we can choose $x_{2} \in f(X)$ such that $f\left(x_{2}\right)=g\left(x_{1}\right)$.

Continuing this process, we can construct sequences $\left\{x_{n}\right\}$ in $f(X)$ and $\left\{z_{n}\right\}$ in $f^{2}(X)$ such that

$$
\begin{equation*}
y_{n}=g x_{n}=f x_{n+1}, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{n}=g y_{n-1}=g f x_{n}=f g x_{n}=f y_{n} . \tag{2.10}
\end{equation*}
$$

Since $f\left(x_{0}\right) \leq g\left(x_{0}\right)$ and $f\left(x_{1}\right)=g\left(x_{0}\right)$, we have $f\left(x_{0}\right) \leq f\left(x_{1}\right)$. Then by Definition 16, $g\left(x_{0}\right) \leq$ $g\left(x_{1}\right)$. Continuing, we obtain

$$
\begin{equation*}
g x_{n} \leq g x_{n+1}, \quad \forall n \geq 0 \tag{2.11}
\end{equation*}
$$

So, by (2.9) and (2.11), for all $t \geq 1, f x_{n} \leq f x_{n+t}$. Now, for all $s \geq 0$,

$$
\begin{aligned}
\Omega\left(z_{n}, z_{n+s}, z_{n+1}\right)= & \Omega\left(g f x_{n}, g x_{n+s-1}, g^{2} x_{n}\right) \\
\leq & k \max \left\{\Omega\left(f^{2} x_{n}, f y_{n+s-1}, f g x_{n}\right), \Omega\left(f y_{n+s-1}, f y_{n+s-1}, g y_{n+s-1}\right),\right. \\
& \left.\Omega\left(f^{2} x_{n}, f^{2} x_{n}, f g x_{n}\right)\right\} \\
= & k \max \left\{\Omega\left(z_{n-1}, z_{n+s-1}, z_{n}\right), \Omega\left(z_{n+s-1}, z_{n+s-1}, z_{n+s}\right),\right. \\
& \left.\Omega\left(z_{n-1}, z_{n-1}, z_{n}\right)\right\} .
\end{aligned}
$$

Then, for $s=0$,

$$
\Omega\left(z_{n}, z_{n}, z_{n+1}\right) \leq k \Omega\left(z_{n-1}, z_{n-1}, z_{n}\right)
$$

For $s=1$,

$$
\Omega\left(z_{n}, z_{n+1}, z_{n+1}\right) \leq k^{1+1} \max \left\{\Omega\left(z_{n-1}, z_{n}, z_{n}\right), \Omega\left(z_{n-1}, z_{n-1}, z_{n}\right)\right\} .
$$

For $s=2$,

$$
\Omega\left(z_{n}, z_{n+2}, z_{n+1}\right) \leq k^{1+2} \max \left\{\Omega\left(z_{n-1}, z_{n+1}, z_{n}\right), \Omega\left(z_{n-1}, z_{n-1}, z_{n}\right)\right\}
$$

and

$$
\begin{aligned}
\Omega\left(z_{n-1}, z_{n-1}, z_{n}\right) & \leq k \max \left\{\Omega\left(z_{n-2}, z_{n-2}, z_{n-1}\right), \Omega\left(z_{n-2}, z_{n-2}, z_{n-1}\right), \Omega\left(z_{n-2}, z_{n-2}, z_{n-1}\right)\right\} \\
& =k \Omega\left(z_{n-2}, z_{n-2}, z_{n-1}\right) \\
& \vdots \\
& \leq k^{n-1} \Omega\left(z_{0}, z_{0}, z_{1}\right) .
\end{aligned}
$$

Therefore, for all $n \geq 1$ and $s \geq 0$,

$$
\begin{equation*}
\Omega\left(z_{n}, z_{n+s}, z_{n+1}\right) \leq k^{n+s} \max \left\{\Omega\left(z_{n-1}, z_{n+s-1}, z_{n}\right), \Omega\left(z_{0}, z_{0}, z_{1}\right)\right\} . \tag{2.12}
\end{equation*}
$$

Notice that if $\Omega\left(z_{n}, z_{n+s}, z_{n+1}\right) \leq k^{n+s} \Omega\left(z_{0}, z_{0}, z_{1}\right)$, so for all $s \geq 0, \lim _{n \rightarrow \infty} \Omega\left(z_{n}, z_{n+s}, z_{n+1}\right)=$ 0 . If $\Omega\left(z_{n}, z_{n+s}, z_{n+1}\right) \leq k^{n+s} \Omega\left(z_{n-1}, z_{n+s-1}, z_{n}\right)$, so $\left\{\Omega\left(z_{n-1}, z_{n+s-1}, z_{n}\right)\right\}$ is non-increasing and bounded below. Therefore, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \Omega\left(z_{n-1}, z_{n+s-1}, z_{n}\right)=r .
$$

We shall show that $r=0$. By a standard calculation, using inequality (2.12) and keeping $k<$ 1 in mind, we obtain $\lim _{n \rightarrow \infty} \Omega\left(z_{n-1}, z_{n+s-1}, z_{n}\right)=0$. Now, for any $l \geq m \geq n$ with $m=n+k$ and $l=m+t(k, t \in \mathbb{N})$, we have

$$
\begin{aligned}
\Omega\left(z_{n}, z_{m}, z_{l}\right) \leq & \Omega\left(z_{n}, z_{n+1}, z_{n+1}\right)+\Omega\left(z_{n+1}, z_{m}, z_{l}\right) \\
\leq & \Omega\left(z_{n}, z_{n+1}, z_{n+1}\right)+\Omega\left(z_{n+1}, z_{n+2}, z_{n+2}\right)+\cdots+\Omega\left(z_{m-1}, z_{m}, z_{l}\right) \\
\leq & \Omega\left(z_{n}, z_{n+1}, z_{n+1}\right)+\Omega\left(z_{n+1}, z_{n+2}, z_{n+2}\right)+\cdots+\Omega\left(z_{m-1}, z_{m}, z_{m}\right) \\
& +\Omega\left(z_{m}, z_{m+1}, z_{m+1}\right)+\cdots+\Omega\left(z_{m+t-1}, z_{m}, z_{m+t}\right) .
\end{aligned}
$$

So,

$$
\lim _{n, m, l \rightarrow \infty} \Omega\left(z_{n}, z_{m}, z_{l}\right)=0
$$

and consequently, by Part (3) of Lemma $6,\left\{z_{n}\right\}$ is a G-Cauchy sequence. Since X is Gcomplete, $\left\{z_{n}\right\}$ converges to a point $z \in X$. Thus, for $\varepsilon>0$ and by the lower semi-continuity of Ω, we have

$$
\Omega\left(z_{n}, z_{m}, z\right) \leq \liminf _{p \rightarrow \infty} \Omega\left(z_{n}, z_{m}, z_{p}\right) \leq \varepsilon, \quad m \geq n
$$

and

$$
\Omega\left(z_{n}, z, z_{l}\right) \leq \liminf _{p \rightarrow \infty} \Omega\left(z_{n}, z_{p}, z_{l}\right) \leq \varepsilon, \quad l \geq n .
$$

Assume that $f^{2} z \neq g f z$. Since f is non-decreasing, we obtain

$$
z_{n}=f^{2} x_{n+1}=f\left(f x_{n+1}\right) \leq f\left(f x_{n+2}\right)=g f x_{n+1}=z_{n+1},
$$

then $z_{n} \leq z_{n+1}$. Also, for all $n \geq 1$,

$$
\begin{aligned}
\Omega\left(f^{2} z_{n}, g z_{n}, g f z_{n}\right)= & \Omega\left(g f z_{n-1}, g z_{n}, g^{2} z_{n-1}\right) \\
\leq & k \max \left\{\Omega\left(f^{2} z_{n-1}, f z_{n}, f g z_{n-1}\right), \Omega\left(f z_{n}, f z_{n}, g z_{n}\right)\right. \\
& \left.\Omega\left(f^{2} z_{n-1}, f^{2} z_{n-1}, f g z_{n-1}\right)\right\} \\
= & k \max \left\{\Omega\left(g f z_{n-2}, g z_{n-1}, g^{2} z_{n-2}\right), \Omega\left(f z_{n}, f z_{n}, g z_{n}\right),\right. \\
& \left.\Omega\left(g f z_{n-2}, g f z_{n-2}, g^{2} z_{n-2}\right)\right\} \\
\leq & k^{3} \max \left\{\Omega\left(f^{2} z_{n-2}, f z_{n-1}, f g z_{n-2}\right), \Omega\left(f z_{n-1}, f z_{n-1}, g z_{n-1}\right),\right. \\
& \Omega\left(f^{2} z_{n-2}, f^{2} z_{n-2}, f g z_{n-2}\right), \Omega\left(f z_{n}, f z_{n}, g z_{n}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \Omega\left(f^{2} z_{n-2}, f^{2} z_{n-2}, f g z_{n-2}\right), \Omega\left(f^{2} z_{n-2}, f^{2} z_{n-2}, g f z_{n-2}\right), \\
&\left.\Omega\left(f^{2} z_{n-2}, f^{2} z_{n-2}, f g z_{n-2}\right)\right\} \\
&= k^{3} \max \left\{\Omega\left(f^{2} z_{n-2}, f z_{n-1}, f g z_{n-2}\right), \Omega\left(f z_{n-1}, f z_{n-1}, g z_{n-1}\right),\right. \\
&\left.\Omega\left(f^{2} z_{n-2}, f^{2} z_{n-2}, f g z_{n-2}\right), \Omega\left(f z_{n}, f z_{n}, g z_{n}\right)\right\} \\
& \vdots \\
& \leq k^{2 n+1} \max \left\{\Omega\left(f^{2} z_{1}, g z_{1}, g f z_{1}\right), \Omega\left(f^{2} z_{1}, f^{2} z_{1}, f g z_{1}\right),\right. \\
&\left.\Omega\left(f z_{i}, f z_{i}, g z_{i}\right), 0 \leq i \leq n\right\} \\
& \leq k^{2 n+1} C,
\end{aligned}
$$

where $C=\max \left\{\Omega\left(f^{2} z_{1}, g z_{1}, g z_{1}\right), \Omega\left(f^{2} z_{1}, f^{2} z_{1}, f g z_{1}\right), \Omega\left(f z_{i}, f z_{i}, g z_{i}\right), 0 \leq i \leq n\right\}$, and consequently $\lim _{n \rightarrow \infty} \Omega\left(f^{2} z_{n}, g z_{n}, g f z_{n}\right)=0$. Therefore,

$$
0<\inf \left\{\Omega\left(z_{n}, z, z_{n}\right)+\Omega\left(z_{n}, z_{n}, z\right)+\Omega\left(f^{2} z_{n}, g z_{n}, g f z_{n}\right): n \in \mathbb{N}\right\} \leq 3 \varepsilon
$$

for every $\varepsilon>0$, that is a contraction. So, we have $f^{2} z=g f z$. Then, by (b),

$$
\begin{aligned}
\Omega\left(g f^{2} z, g(g f z), g^{2} f z\right) \leq & k \max \left\{\Omega\left(f^{2} f z, f(g f z), f g(f z)\right), \Omega(f(g f z), f(g f z), g(g f z)),\right. \\
& \left.\Omega\left(f^{2}(f z), f^{2}(f z), f g(f z)\right)\right\} .
\end{aligned}
$$

So, $\Omega\left(g f^{2} z, g(g f z), g^{2} f z\right)=0$. Since X is Ω-bounded, $\Omega\left(g f^{2} z, g(g f z), g^{2} f z\right)=0<M$. Similarly, $\Omega\left(g f^{2} z, g f z, g^{2} f z\right) \leq k \Omega\left(f^{2} z, f^{2} z, f^{2} z\right)<M$. By part (c) of Definition 3, $G\left(g f^{2} z, g f z, g^{2} f z\right)=0$. Then $g^{2} f z=g f z$, which implies that $g f z$ is a fixed point for g. Now,

$$
f(g f z)=g f^{2} z=g^{2} f z=g f z .
$$

Then $u=g f z$ is a common fixed point of f and g.
Uniqueness. Assume that there exists $v \in X$ such that $f v=g \nu=v$. Hence, we have

$$
\Omega(v, v, v) \leq k \Omega(v, v, v),
$$

and so $\Omega(v, v, v)=\Omega(u, u, u)=0$. Also, $\Omega(v, u, v)=0$. Then, by Part (c) of Definition 3, $u=v$ and $\Omega(u, u, u)=0$.

The following corollary is a generalization of Theorem 2.1 [14].
Denote by Λ the set of all functions $\lambda:[0,+\infty) \rightarrow[0,+\infty)$ satisfying the following hypotheses:
(i) λ is a Lebesgue-integrable mapping on each compact subset of $[0,+\infty)$,
(ii) for every $\varepsilon>0$, we have $\int_{0}^{\varepsilon} \lambda(s) d s>0$,
(iii) $\|\lambda\|<1$, where $\|\lambda\|$ denotes the norm of λ.

Now, we have the following corollary.

Corollary 18 Let (X, G, \leq) be a partially ordered complete G-metric space, let Ω be an Ω distance on X, and let $T: X \rightarrow X$ be a non-decreasing self-mapping. Suppose that $\psi \in \Psi$
and $\phi \in \Phi$ such that

$$
\begin{equation*}
\int_{0}^{\psi\left(\Omega\left(T x, T^{2} x, T y\right)\right)} \lambda(s) d s \leq \int_{0}^{\psi(\Omega(x, T x, y))} \lambda(s) d s-\int_{0}^{\phi(\Omega(x, T x, y))} \lambda(s) d s, \tag{2.13}
\end{equation*}
$$

for all $x \leq T x, y \in X$, where $\lambda \in \Lambda$. Also, for every $x \in X$,

$$
\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}>0
$$

for every $y \in X$ with $y \neq T y$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has a unique fixed point.

Proof Define $\gamma:[0,+\infty) \rightarrow[0,+\infty)$ by $\gamma(t)=\int_{0}^{t} \lambda(s) d s$, then from inequality (2.13), we have

$$
\gamma\left(\psi\left(\Omega\left(T x, T^{2} x, T y\right)\right)\right) \leq \gamma(\psi(\Omega(x, T x, y)))-\gamma(\phi(\Omega(x, T x, y))),
$$

which can be written as

$$
\psi_{1}\left(\Omega\left(T x, T^{2} x, T y\right)\right) \leq \psi_{1}(\Omega(x, T x, y))-\phi_{1}(\Omega(x, T x, y)),
$$

where $\psi_{1}=\gamma \circ \psi$ and $\phi_{1}=\gamma \circ \phi$. Since the functions ψ_{1} and ϕ_{1} satisfy the properties of ψ and ϕ, by Theorem 10, T has a unique fixed point.

Corollary 19 Let (X, G, \leq) be a partially ordered complete G-metric space, let Ω be an Ω-distance on X, and let $T: X \rightarrow X$ be a non-decreasing self-mapping. Suppose that there exists $0 \leq k<1$ such that

$$
\begin{equation*}
\int_{0}^{\psi\left(\Omega\left(T x, T^{2} x, T y\right)\right)} k \lambda(s) d s \leq \int_{0}^{M(x, x, y)} \lambda(s) d s \tag{2.14}
\end{equation*}
$$

for all $x \leq T x, y \in X$, where

$$
M(x, x, y)=\max \left\{\Omega(x, T x, T x), \Omega(y, T y, T y), \frac{1}{2} \Omega(x, T y, T y)\right\}
$$

and $\lambda \in \Lambda$. Also, for every $x \in X$,

$$
\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}>0
$$

for every $y \in X$ with $y \neq T y$. If there exists $x_{0} \in X$ with $x_{0} \leq T x_{0}$, then T has a unique fixed point.

3 Application

In this section, we give an existence theorem for a solution of the following integral equations:

$$
\begin{equation*}
x(t)=\int_{0}^{1} K(t, s, x(s)) d s+g(t), \quad t \in[0,1] . \tag{3.1}
\end{equation*}
$$

Let $X=C([0,1])$ be the set of all continuous functions defined on [0,1]. Define $G: X \times$ $X \times X \rightarrow \mathbb{R}$ by

$$
G(x, y, z)=\|x-y\|+\|y-z\|+\|z-x\|,
$$

where $\|x\|=\sup \{|x(t)|: t \in[0,1]\}$. Then (X, G) is a complete G-metric space. Let $\Omega=G$. Then Ω is an Ω-distance on X. Define an ordered relation \leq on X by

$$
x \leq y \quad \text { iff } \quad x(t) \leq y(t), \quad \forall t \in[0,1] .
$$

Then (X, \leq) is a partially ordered set. Now, we prove the following result.
Theorem 20 Suppose the following hypotheses hold:
(1) $K:[0,1] \times[0,1] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and $g:[0,1] \rightarrow \mathbb{R}$ are continuous mappings,
(2) K is non-decreasing in its first coordinate and g is non-decreasing,
(3) There exists a continuous function $G:[0,1] \times[0,1] \rightarrow[0,+\infty)$ such that

$$
|K(t, s, u)-K(t, s, v)| \leq G(t, s)|u-v|
$$

for every comparable $u, v \in \mathbb{R}^{+}$and $s, t \in[0,1]$ with $\sup _{t \in[0,1]} \int_{0}^{1} G(t, s) d s \leq \frac{1}{2}$,
(4) There exist continuous, non-decreasing functions $\phi, \psi:[0, \infty) \rightarrow(0, \infty)$ with $\psi^{-1}(\{0\})=\phi^{-1}(\{0\})=\{0\}$ and $\psi(r) \leq \psi(2 r)-\phi(2 r)$ for all $r \in[0, \infty)$.
Then the integral equation has a solution in $C([0,1])$.
Proof Define $T x(t)=\int_{0}^{1} K(t, s, x(s)) d s+g(t)$. By hypothesis (2), we have that T is nondecreasing.

Now, if

$$
\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}=0
$$

for every $y \in X$ with $y \neq T y$, then for each $n \in \mathbb{N}$, there exists $x_{n} \in C([0,1])$ with $x_{n} \leq T x_{n}$ such that

$$
\Omega\left(x_{n}, y, x_{n}\right)+\Omega\left(x_{n}, y, T x_{n}\right)+\Omega\left(x_{n}, T x_{n}, y\right) \leq \frac{1}{n} .
$$

Then we have

$$
\Omega\left(x_{n}, y, T x_{n}\right)=\sup _{t \in[0,1]}\left|x_{n}-y\right|+\sup _{t \in[0,1]}\left|y-T x_{n}\right|+\sup _{t \in[0,1]}\left|T x_{n}-x_{n}\right| \leq \frac{1}{n} .
$$

Thus,

$$
\lim _{n \rightarrow \infty} x_{n}(t)=y(t), \quad \lim _{n \rightarrow \infty} T x_{n}(t)=y(t)
$$

By the continuity of K, we have

$$
\begin{aligned}
y(t) & =\lim _{n \rightarrow \infty} T x_{n}(t)=\int_{0}^{1} K\left(t, s, \lim _{n \rightarrow \infty} x_{n}(s)\right) d s+g(t) \\
& =\int_{0}^{1} K(t, s, y(s)) d s+g(t)=T y(t)
\end{aligned}
$$

which is a contradiction. Therefore,

$$
\inf \{\Omega(x, y, x)+\Omega(x, y, T x)+\Omega(x, T x, y): x \leq T x\}>0 .
$$

Now, for $x, y \in X$ with $x \leq T x$, we have

$$
\begin{aligned}
\psi\left(\Omega\left(T x, T^{2} x, T y\right)\right)= & \psi\left(\sup _{t \in[0,1]}\left|T x(t)-T^{2} x(t)\right|+\sup _{t \in[0,1]}\left|T^{2} x(t)-T y(t)\right|\right. \\
& \left.+\sup _{t \in[0,1]}|T y(t)-T x(t)|\right) \\
\leq & \psi\left(\sup _{t \in[0,1]} \int_{0}^{1}|K(t, s, x(s))-K(t, s, T x(s))| d s\right. \\
& +\sup _{t \in[0,1]} \int_{0}^{1}|K(t, s, T x(s))-K(t, s, y(s))| d s \\
& \left.+\sup _{t \in[0,1]} \int_{0}^{1}|K(t, s, y(s))-K(t, s, x(s))| d s\right) \\
\leq & \psi\left(\sup _{t \in[0,1]}\left(\int_{0}^{1} G(t, s)|x(s)-T x(s)| d s\right)\right. \\
& +\sup _{t \in[0,1]}\left(\int_{0}^{1} G(t, s)|T x(s)-y(s)| d s\right) \\
& \left.+\sup _{t \in[0,1]}\left(\int_{0}^{1} G(t, s)|y(s)-x(s)| d s\right)\right) \\
\leq & \psi\left(\sup _{t \in[0,1]}(|x(t)-T x(t)|) \sup _{t \in[0,1]} \int_{0}^{1} G(t, s) d s\right. \\
& +\sup _{t \in[0,1]}(|T x(t)-y(t)|) \sup _{t \in[0,1]} \int_{0}^{1} G(t, s) d s \\
& \left.+\sup _{t \in[0,1]}(|y(t)-x(t)|) \sup _{t \in[0,1]} \int_{0}^{1} G(t, s) d s\right) \\
\leq & \psi\left(\frac{1}{2} \sup _{t \in[0,1]}(|x(t)-T x(t)|)+\frac{1}{2} \sup _{t \in[0,1]}(|T x(t)-y(t)|)\right. \\
& \left.+\frac{1}{2} \sup _{t \in[0,1]}(|y(t)-x(t)|)\right) \\
\leq & \psi\left(\frac{1}{2} \Omega(x, T x, y)\right) \leq \psi(\Omega(x, T x, y))-\phi(\Omega(x, T x, y)) .
\end{aligned}
$$

Thus, by Theorem 10, there exists a solution $u \in C[0,1]$ of integral equation (3.1).

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

'Department of Mathematics, Islamic Azad University, Sari Branch, Sari, Iran. ${ }^{2}$ Department of Mathematics, Atilim University, İncek, Ankara 06836, Turkey.

Acknowledgements

The authors thank anonymous reviewers for their remarkable comments, suggestions and ideas that helped to improve this paper.

Received: 19 July 2013 Accepted: 7 October 2013 Published: \#PUBLICATION_DATE

References

1. Jleli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 210 (2012)
2. Samet, B, Vetro, C, Vetro, F: Remarks on G-metric spaces. Int. J. Anal. 2013, Article ID 917158 (2013)
3. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289-297 (2006)
4. Saadati, R, Vaezpour, SM, Vetro, P, Rhoades, BE: Fixed point theorems in generalized partially ordered G-metric spaces. Math. Comput. 52, 797-801 (2010)
5. Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric space. Math. Jpn. 44, 381-391 (1996)
6. Gholizadeh, L, Saadati, R, Shatanawi, W, Vaezpour, SM: Contractive mapping in generalized, ordered metric spaces with application in integral equations. Math. Probl. Eng. 2011, Article ID 380784 (2011)
7. Gholizadeh, L: A fixed point theorem in generalized ordered metric spaces with application. J. Nonlinear Sci. Appl. 6, 244-251 (2013)
8. Abbas, M, Rhoades, B : Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 215, 262-269 (2009)
9. Karapinar, E, Agarwal, RP: Further fixed point results on G-metric spaces. Fixed Point Theory Appl. 2013, 154 (2013)
10. Asadi, M, Karapinar, E, Salimi, P: A new approach to G-metric and related fixed point theorems. J. Inequal. Appl. (2013)
11. Agarwal, R, Karapınar, E: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013, 2 (2013)
12. Gnana Bhaskar, T, Lakshmikantham, V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. TMA 65, 1379-1393 (2006)
13. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435-1443 (2004)
14. Manro, S, Bhatia, SS, Kumar, S: Expansion mappings theorems in G-metric spaces. Int. J. Contemp. Math. Sci. 5(51), 2529-2535 (2010)

\#DIGITAL_OBJECT_IDENTIFIER

Cite this article as: Gholizadeh and Karapınar: Remarks on contractive mappings via Ω-distance. Journal of Inequalities and Applications \#CITATION

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

