A note on higher-order Bernoulli polynomials

Dae San Kim ${ }^{1}$ and Taekyun Kim ${ }^{2 *}$
"Correspondence:
taekyun64@hotmail.com
${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

Let $\mathbb{P}_{n}=\{p(x) \in \mathbf{Q}[x] \mid \operatorname{deg} p(x) \leq n\}$ be the $(n+1)$-dimensional vector space over \mathbf{Q}. From the property of the basis $B_{0}^{(r)}, B_{1}^{(r)}, \ldots, B_{n}^{(r)}$ for the space \mathbb{P}_{n}, we derive some interesting identities of higher-order Bernoulli polynomials.

1 Introduction

Let $\mathbf{N}=\{1,2,3, \ldots\}$ and $\mathbf{Z}_{+}=\mathbf{N} \cup\{0\}$. For a fixed $r \in \mathbf{Z}_{+}$, the nth Bernoulli polynomials are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t}=e^{B^{(r)}(x) t}=\sum_{n=0}^{\infty} \frac{B_{n}^{(r)}(x) t^{n}}{n!} \quad(\text { see }[1-11]) \tag{1}
\end{equation*}
$$

with the usual convention about replacing $\left(B^{(r)}(x)\right)^{n}$ by $B_{n}^{(r)}(x)$. In the special case, $x=0$, $B_{n}^{(r)}(0)=B_{n}^{(r)}$ are called the nth Bernoulli numbers of order r.

From (1), we note that

$$
\begin{align*}
B_{n}^{(r)}(x) & =\sum_{k=0}^{n}\binom{n}{k} B_{k}^{(r)} x^{n-k}=\sum_{k=0}^{n}\binom{n}{k} B_{n-k}^{(r)} x^{k} \\
& =\sum_{n_{1}+\cdots+n_{r}+n_{r+1}=n}\binom{n}{n_{1}, \ldots, n_{r}, n_{r+1}} B_{n_{1}} \cdots B_{n_{r}} x^{n_{r+1}} . \tag{2}
\end{align*}
$$

Thus, by (2) we get the Euler-type sums of products of Bernoulli numbers as follows:

$$
\begin{equation*}
B_{n}^{(r)}=\sum_{n_{1}+\cdots+n_{r}=n}\binom{n}{n_{1}, \ldots, n_{r}} B_{n_{1}} B_{n_{2}} \cdots B_{n_{r}} \quad(\text { see }[11-17]) . \tag{3}
\end{equation*}
$$

By (2) and (3), we see that $B_{n}^{(r)}(x)$ is a monic polynomial of degree n with coefficients in \mathbf{Q}. From (2), we note that

$$
\begin{equation*}
\left(B_{n}^{(r)}(x)\right)^{\prime}=\frac{d}{d x} B_{n}^{(r)}(x)=n B_{n-1}^{(r)}(x) \quad(\text { see [11-17] }) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}^{(r)}(x+1)-B_{n}^{(r)}(x)=n B_{n-1}^{(r-1)}(x) . \tag{5}
\end{equation*}
$$

Let Ω denote the space of real-valued differential functions on $(-\infty, \infty)=\mathbf{R}$. Now, we define three linear operators I, Δ, D on Ω as follows:

$$
\begin{equation*}
I f(x)=\int_{x}^{x+1} f(t) d t, \quad \Delta f(x)=f(x+1)-f(x), \quad D f(x)=f^{\prime}(x) \tag{6}
\end{equation*}
$$

Then we see that (i) $D I=I D=\triangle$, (ii) $\Delta I=I \Delta$, (iii) $\Delta D=D \triangle$.
Let $\mathbb{P}_{n}=\{p(x) \in \mathbf{Q}(x) \mid \operatorname{deg} p(x) \leq n\}$ be the $(n+1)$-dimensional vector space over \mathbf{Q}. Probably, $\left\{1, x, \ldots, x^{n}\right\}$ is the most natural basis for this space. But $\left\{B_{0}^{(r)}(x), B_{1}^{(r)}(x), B_{2}^{(r)}(x)\right.$, $\left.\ldots, B_{n}^{(r)}(x)\right\}$ is also a good basis for the space \mathbb{P}_{n} for our purpose of arithmetical and combinatorial applications.
Let $p(x) \in \mathbb{P}_{n}$. Then $p(x)$ can be generated by $B_{0}^{(r)}(x), B_{1}^{(r)}(x), B_{2}^{(r)}(x), \ldots, B_{n}^{(r)}(x)$ as follows:

$$
p(x)=\sum_{k=0}^{n} a_{k} B_{k}^{(r)}(x) .
$$

In this paper, we develop methods for uniquely determining a_{k} from the information of $p(x)$. From those methods, we derive some interesting identities of higher-order Bernoulli polynomials.

2 Higher-order Bernoulli polynomials

For $r=0$, by (1), we get $B_{n}^{(0)}=x^{n}\left(n \in \mathbf{Z}_{+}\right)$. Let $p(x) \in \mathbb{P}_{n}$.
For a fixed $r \in \mathbf{Z}_{+}, p(x)$ can be generated by $B_{0}^{(r)}(x), B_{1}^{(r)}(x), B_{2}^{(r)}(x), \ldots, B_{n}^{(r)}(x)$ as follows:

$$
\begin{equation*}
p(x)=\sum_{k=0}^{n} a_{k} B_{k}^{(r)}(x) \tag{7}
\end{equation*}
$$

From (6) and (7), we can derive the following identities:

$$
\begin{align*}
I B_{n}^{(r)}(x) & =\int_{x}^{x+1} B_{n}^{(r)}(x) d x \\
& =\frac{1}{n+1}\left(B_{n+1}^{(r)}(x+1)-B_{n+1}^{(r)}(x)\right) . \tag{8}
\end{align*}
$$

By (5) and (8), we get

$$
\begin{equation*}
I B_{n}^{(r)}(x)=\frac{n+1}{n+1} B_{n}^{(r-1)}(x)=B_{n}^{(r-1)}(x) . \tag{9}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
\Delta B_{n}^{(r)}(x)=B_{n}^{(r)}(x+1)-B_{n}^{(r)}(x)=n B_{n-1}^{(r-1)}(x) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
D B_{n}^{(r)}(x)=n B_{n-1}^{(r)}(x) \tag{11}
\end{equation*}
$$

By (7) and (9), we get

$$
\begin{equation*}
I^{r} p(x)=\sum_{k=0}^{n} a_{k} B_{k}^{(0)}(x)=\sum_{k=0}^{n} a_{k} x^{k} . \tag{12}
\end{equation*}
$$

From (6) and (12), we note that

$$
\begin{equation*}
D^{k} I^{r} p(x)=\sum_{l=k}^{n} a_{l} \frac{l!}{(l-k)!} x^{l-k} . \tag{13}
\end{equation*}
$$

Thus, by (13) we get

$$
\begin{equation*}
D^{k} I^{r} p(0)=k!a_{k} . \tag{14}
\end{equation*}
$$

Hence, from (14) we have

$$
\begin{equation*}
a_{k}=\frac{D^{k} I^{r} p(0)}{k!} \tag{15}
\end{equation*}
$$

Case 1. Let $r>n$. Then $r>k$ for all $k=0,1,2, \ldots, n$.
By (15), we get

$$
\begin{align*}
a_{k} & =\frac{1}{k!} D^{k} I^{k} I^{r-k} p(0)=\frac{1}{k!}(D I)^{k} I^{r-k} p(0) \\
& =\frac{1}{k!} \Delta^{k} I^{r-k} p(0)=\frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} I^{r-k} p(j) . \tag{16}
\end{align*}
$$

Case 2. Assume that $r \leq n$.
(i) For $0 \leq k \leq r$, by (15) we get

$$
\begin{equation*}
a_{k}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} I^{r-k} p(j) \tag{17}
\end{equation*}
$$

(ii) For $r \leq k \leq n$, by (15) we see that

$$
\begin{align*}
a_{k} & =\frac{1}{k!} D^{k-r} D^{r} I^{r} p(0)=\frac{1}{k!} D^{k-r}(D I)^{r} p(0)=\frac{1}{k!} D^{k-r} \Delta^{r} p(0) \\
& =\frac{1}{k!} \Delta^{r} D^{k-r} p(0)=\frac{1}{k!} \sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} D^{k-r} p(j) . \tag{18}
\end{align*}
$$

Therefore, by (7), (16), (17) and (18), we obtain the following theorem.

Theorem 1

(a) For $r>n$, we have

$$
p(x)=\sum_{k=0}^{n}\left(\sum_{j=0}^{k} \frac{1}{k!}(-1)^{k-j}\binom{k}{j} I^{r-k} p(j)\right) B_{k}^{(r)}(x) .
$$

(b) For $r \leq n$, we have

$$
\begin{aligned}
p(x)= & \sum_{k=0}^{r-1}\left(\sum_{j=0}^{k} \frac{1}{k!}(-1)^{k-j}\binom{k}{j} I^{r-k} p(j)\right) B_{k}^{(r)}(x) \\
& +\sum_{k=r}^{n}\left(\sum_{j=0}^{r} \frac{1}{k!}(-1)^{r-j} D^{k-r} p(j)\right) B_{k}^{(r)}(x) .
\end{aligned}
$$

Let us take $p(x)=x^{n} \in \mathbb{P}_{n}$. Then x^{n} can be expressed as a linear combination of $B_{0}^{(r)}, B_{1}^{(r)}, \ldots, B_{n}^{(r)}$. For $r>n$, we have

$$
\begin{equation*}
I^{r-k} x^{n}=\frac{n!}{(n+r-k)!} \sum_{l=0}^{r-k}(-1)^{r-k-l}\binom{r-k}{l}(x+l)^{n+r-k} \tag{19}
\end{equation*}
$$

Therefore, by Theorem 1 and (19), we obtain the following corollary.

Corollary 2 For $n, r \in \mathbf{Z}_{+}$with $r>n$, we have

$$
x^{n}=\sum_{k=0}^{n}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k}(-1)^{r-j-l} \frac{n!\binom{k}{j}\binom{r-k}{l}}{k!(n+r-k)!}(j+l)^{n+r-k}\right\} B_{k}^{(r)}(x) .
$$

Let us assume that $r, n \in \mathbf{Z}_{+}$with $r \leq n$. Observe that

$$
\begin{equation*}
D^{k-r} x^{n}=n(n-1) \cdots(n-k+r+1) x^{n-k+r}=\frac{n!}{(n-k+r)!} x^{n-k+r} . \tag{20}
\end{equation*}
$$

Thus, by Theorem 1 and (20), we obtain the following corollary.

Corollary 3 For $n, r \in \mathbf{Z}_{+}$with $r \leq n$, we have

$$
\begin{aligned}
x^{n}= & \sum_{k=0}^{r-1}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k}(-1)^{r-j-l} \frac{n!\binom{k}{j}\binom{r-k}{l}}{k!(n+r-k)!}(j+l)^{n+r-k}\right\} B_{k}^{(r)}(x) \\
& \left.+\sum_{k=r}^{n}\left\{\sum_{j=0}^{r}(-1)^{r-j} \frac{n!\binom{r}{j}}{k!(n+r-k)!}\right)^{n+r-k}\right\} B_{k}^{(r)}(x) .
\end{aligned}
$$

Let us take $p(x)=B_{n}^{(s)}(x) \in \mathbb{P}_{n}\left(s \in \mathbf{Z}_{+}\right)$. Then $p(x)$ can be generated by $\left\{B_{0}^{(r)}(x), B_{1}^{(r)}(x)\right.$, $\left.\ldots, B_{n}^{(r)}(x)\right\}$ as follows:

$$
\begin{equation*}
B_{n}^{(s)}(x)=\sum_{k=0}^{n} a_{k} B_{k}^{(r)}(x) . \tag{21}
\end{equation*}
$$

For $r>n$, we have

$$
\begin{equation*}
I^{r-k} B_{n}^{(s)}(x)=B_{n}^{(s-r+k)}(x) . \tag{22}
\end{equation*}
$$

Thus, by Theorem 1 and (22), we obtain the following theorem.

Theorem 4 For $r, n, s \in \mathbf{Z}_{+}$with $r>n$, we have

$$
B_{n}^{(s)}(x)=\sum_{k=0}^{n}\left\{\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k!}\binom{k}{j} B_{n}^{(s+k-r)}(j)\right\} B_{k}^{(r)}(x) .
$$

In particular, for $r=s$, we have

$$
\begin{align*}
B_{n}^{(r)}(x) & =0 B_{0}^{(r)}(x)+0 B_{1}^{(r)}(x)+\cdots+0 B_{n-1}^{(r)}(x)+1 B_{n}^{(r)}(x) \\
& =\sum_{k=0}^{n}\left\{\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k!}\binom{k}{j} B_{n}^{(k)}(j)\right\} B_{k}^{(r)}(x) . \tag{23}
\end{align*}
$$

By comparing coefficients on the both sides of (23), we get

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k!}\binom{k}{j} B_{n}^{(k)}(j)=\delta_{k n}, \quad \text { for } 0 \leq k \leq n \tag{24}
\end{equation*}
$$

Therefore, by (24), we obtain the following corollary.

Corollary 5

(a) For $n, k \in \mathbf{Z}_{+}$with $0 \leq k \leq n-1$, we have

$$
\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} B_{n}^{(k)}(j)=0
$$

(b) In particular, $k=n$, we get

$$
\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} B_{n}^{(n)}(j)=n!.
$$

Let us assume that $r \leq n$ in (21). Then we have

$$
\begin{equation*}
D^{k-r} B_{n}^{(s)}(x)=n(n-1) \cdots(n-k+r+1) B_{n+r-k}^{(s)}(x)=\frac{n!}{(n-k+r!)} B_{n+r-k}^{(s)}(x) . \tag{25}
\end{equation*}
$$

Therefore, by Theorem 1, (21) and (25), we obtain the following theorem.
Theorem 6 For $r, n \in \mathbf{Z}_{+}$with $r \leq n$, we have

$$
\begin{aligned}
B_{n}^{(s)}(x)= & \sum_{k=0}^{n-1}\left\{\sum_{j=0}^{k}(-1)^{k-j} \frac{1}{k!}\binom{k}{j} B_{n}^{(s+k-r)}(j)\right\} B_{k}^{(r)}(x) \\
& +\sum_{k=r}^{n}\left\{\sum_{j=0}^{r}(-1)^{r-j} \frac{n!\binom{r}{j}}{k!(n+r-k)!} B_{n+r-k}^{(s)}(j)\right\} B_{k}^{(r)}(x) .
\end{aligned}
$$

Let $p(x)=E_{n}^{(s)}(x)\left(s \in \mathbf{Z}_{+}\right)$be Euler polynomials of order s. Then $E_{n}^{(s)}$ can be expressed as a linear combination of $B_{0}^{(r)}(x), B_{1}^{(r)}(x), \ldots, B_{n}^{(r)}(x)$.

Assume that $r, n \in \mathbf{Z}_{+}$with $r>n$.
By (6), we get

$$
\begin{align*}
I^{r-k} E_{n}^{(s)}(x) & =\frac{1}{(n+1) \cdots(n+r-k)} \sum_{l=0}^{r-k}(-1)^{r-k-l}\binom{r-k}{l} E_{n+r-k}^{(s)}(x+l) \\
& =\frac{n!}{(n+r-k)!} \sum_{l=0}^{r-k}(-1)^{r-k-l}\binom{r-k}{l} E_{n+r-k}^{(s)}(x+l) . \tag{26}
\end{align*}
$$

Therefore, by Theorem 1 and (26), we obtain the following theorem.

Theorem 7 For $r, n \in \mathbf{Z}_{+}$with $r>n$, we have

$$
E_{n}^{(s)}(x)=\sum_{k=0}^{n}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k}(-1)^{r-j-l} \frac{n!\binom{k}{j}\binom{r-k}{l}}{k!(n+r-k)!} E_{n+r-k}^{(s)}(j+l)\right\} B_{k}^{(r)}(x) .
$$

For $r, n \in \mathbf{Z}_{+}$with $r \leq n$, we have

$$
\begin{equation*}
D^{k-r} E_{n}^{(s)}(x)=n(n-1) \cdots(n-k+r+1) E_{n-k+r}^{(s)}(x) . \tag{27}
\end{equation*}
$$

By Theorem 1 and (27), we obtain the following theorem.

Theorem 8 For $r, n \in \mathbf{Z}_{+}$with $r \leq n$, we have

$$
\begin{aligned}
E_{n}^{(s)}(x)= & \sum_{k=0}^{r-1}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k}(-1)^{r-j-l} \frac{n!\binom{k}{j}\binom{r-k}{l}}{k!(n+r-k)!} E_{n+r-k}^{(s)}(j+l)\right\} B_{k}^{(r)}(x) \\
& +\sum_{k=r}^{n}\left\{\sum_{j=0}^{r}(-1)^{r-j} \frac{n!\binom{r}{k}}{k!(n+r-k)!} E_{n+r-k}^{(s)}(j)\right\} B_{k}^{(r)}(x) .
\end{aligned}
$$

Remarks (a) For $r \leq 0$, by (40) we get

$$
I^{r} x^{n}=\frac{n!}{(n+r)!} \sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j}(x+j)^{n+r}=\frac{1}{\binom{n+r}{r}} \frac{1}{r!} \sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}(x+j)^{n+r} .
$$

Thus, for $x=0$, we have

$$
\begin{equation*}
\left.I^{r} x^{n}\right|_{x=0}=\frac{n!}{(n+r)!} \sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} j^{n+r}=\frac{1}{\binom{n+r}{r}} \frac{1}{r!} \Delta^{r} 0^{n+r}=\frac{S(n+r, r)}{\binom{n+r}{r}} \tag{28}
\end{equation*}
$$

where $S(n, r)$ is the Stirling number of the second kind.
(b) Assume

$$
\begin{equation*}
\sum_{k=0}^{n} \alpha_{k} x^{k}=\sum_{k=0}^{n} a_{k} B_{k}^{(r)}(x) \quad(r \geq 0) \tag{29}
\end{equation*}
$$

Applying I^{t} on both sides $(t \geq 0)$, we get

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} B_{k}^{(r-t)}(x)=\sum_{k=0}^{n} \alpha_{k} I^{t} x^{k}=\sum_{k=0}^{n} \frac{\alpha_{k}}{\binom{\alpha+t}{t}} \frac{1}{t!} \sum_{j=0}^{t}(-1)^{(t-j)}\binom{t}{j}(x+j)^{k+t} \tag{30}
\end{equation*}
$$

From (28) and (30), we have

$$
\sum_{k=0}^{n} a_{k} B_{k}^{(r-t)}=\sum_{k=0}^{n} \frac{\alpha_{k}}{\binom{\alpha+t}{t}} S(k+t, t) .
$$

Remark Let us define two operators d, \tilde{d} as follows:

$$
\begin{equation*}
d=e^{-D}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} D^{n}, \quad \tilde{d}=e^{D}=\sum_{n=0}^{\infty} \frac{D^{n}}{n!} . \tag{31}
\end{equation*}
$$

From (31), we note that

$$
\begin{align*}
& \tilde{d} x^{n}=\sum_{l=0}^{n}\binom{n}{l} x^{n-l}=(x+1)^{n}, \tag{32}\\
& d x^{n}=\sum_{l=0}^{n}\binom{n}{l}(-1)^{l} x^{n-l}=(x-1)^{n} .
\end{align*}
$$

Thus, by (31) and (32), we get

$$
\begin{equation*}
\tilde{d} B_{n}^{(r)}(x)=B_{n}^{(r)}(x+1), \quad d B_{n}^{(r)}(x)=B_{n}^{(r)}(x-1) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{d} E_{n}^{(r)}(x)=E_{n}^{(r)}(x+1), \quad d E_{n}^{(r)}(x)=E_{n}^{(r)}(x-1) \tag{34}
\end{equation*}
$$

3 Further remarks

For any $r_{0}, r_{1}, \ldots, r_{n} \in \mathbf{Z}_{+},\left\{B_{0}^{\left(r_{0}\right)}(x), B_{1}^{\left(r_{1}\right)}(x), \ldots, B_{0}^{\left(r_{n}\right)}(x)\right\}$ forms a basis for \mathbb{P}_{n}. Let $r=$ $\max \left\{r_{i} \mid i=0,1,2, \ldots, n\right\}$. Let $p(x) \in \mathbb{P}_{n}$. Then $p(x)$ can be expressed as a linear combination of $B_{0}^{\left(r_{0}\right)}(x), B_{1}^{\left(r_{1}\right)}(x), \ldots, B_{n}^{\left(r_{n}\right)}(x)$ as follows:

$$
\begin{equation*}
p(x)=a_{0} B_{0}^{\left(r_{0}\right)}(x)+a_{1} B_{1}^{\left(r_{1}\right)}(x)+\cdots+a_{n} B_{n}^{\left(r_{n}\right)}(x)=\sum_{l=0}^{n} a_{l} B_{l}^{\left(r_{l}\right)}(x) . \tag{35}
\end{equation*}
$$

Thus, by (6) and (35), we get

$$
\begin{align*}
I^{r} p(x) & =\sum_{l=0}^{n} a_{l} I^{r} B_{l}^{\left(r_{l}\right)}(x) \\
& =\sum_{l=0}^{n} a_{l} I^{r-r_{l}} I^{r_{l}} B_{l}^{\left(r_{l}\right)}(x)=\sum_{l=0}^{n} a_{l} I^{r-r_{l}} B_{l}^{(0)}(x) \\
& =\sum_{l=0}^{n} a_{l} I^{r-r_{l}} x^{l} . \tag{36}
\end{align*}
$$

Now, for each $k=0,1,2, \ldots, n$, by (36) we get

$$
\begin{align*}
D^{k} I^{r} p(x) & =\sum_{l=0}^{n} a_{l} D^{k} I^{r-r_{l}} x^{l}=\sum_{l=0}^{n} a_{l} I^{r-r_{l}}\left(D^{k} x^{l}\right) \\
& =\sum_{l=k}^{n} a_{l} I^{r-r_{l}}\left(\frac{l!}{(l-k)!} x^{l-k}\right)=\sum_{l=k}^{n} \frac{a_{l} l!}{(l-k)!} I^{r-r_{l}} x^{l-k} . \tag{37}
\end{align*}
$$

Let us take $x=0$ in (37). Then, by (28) and (37), we get

$$
\begin{align*}
D^{k} I^{r} p(0) & =\sum_{l=k}^{n} \frac{l!a_{l}}{(l-k)!} \times \frac{S\left(l-k+r-r_{l}, r-r_{l}\right)}{\binom{l-k+r-r_{l}}{r-r_{l}}} \\
& =\sum_{l=k}^{n} \frac{a_{l}\left(r-r_{l}\right)!l!}{(l-k)!} S\left(l-k+r-r_{l}, r-r_{l}\right) \tag{38}
\end{align*}
$$

Case 1. For $r>n$, we have

$$
\begin{align*}
D^{k} I^{r} p(0) & =D^{k} I^{k} I^{r-k} p(0)=(D I)^{k} I^{r-k} p(0)=\Delta^{k} I^{r-k} p(0) \\
& =\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} I^{r-k} p(j) . \tag{39}
\end{align*}
$$

Case 2. Let $r \leq n$.
(i) For $0 \leq k<r$, we have

$$
\begin{equation*}
D^{k} I^{r} p(0)=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} I^{r-k} p(j) . \tag{40}
\end{equation*}
$$

(ii) For $r \leq k \leq n$, we have

$$
\begin{align*}
D^{k} I^{r} p(0) & =D^{k-r} D^{r} I^{r} p(0)=D^{k-r}(D I)^{r} p(0)=D^{k-r} \Delta^{r} p(0) \\
& =\Delta^{r} D^{k-r} p(0)=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} D^{k-r} p(j) . \tag{41}
\end{align*}
$$

Thus, by (38), (39), (40) and (41), we can determine $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. ${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements

This paper is supported in part by the Research Grant of Kwangwoon University in 2013.

References

1. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions. Natl. Bur. of Standards, Washington (1964)
2. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math - Jang'jun Math. Soc. 22(3), 399-406 (2012)
3. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 18(2), 133-143 (2011)
4. Gould, HW: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79, 44-51 (1972)
5. Kim, T: Symmetry p-adic invariant integral on \mathbb{Z}_{p} for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 14(12), 1267-1277 (2008)
6. Kim, DS, Kim, T, Kim, YH, Dolgy, DV: A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials. Adv. Stud. Contemp. Math - Jang'jun Math. Soc. 22(3), 379-389 (2012)
7. Kim, DS, Kim, T: Euler basis, identities, and their applications. Int. J. Math. Math. Sci. 2012, Article ID 343981 (2012). doi:10.1155/2012/343981
8. Kim, DS, Kim, T: Bernoulli basis and the product of several Bernoulli polynomials. Int. J. Math. Math. Sci. 2012, Article ID 463659 (2012). doi:10.1155/2012/463659
9. Kim, T: Sums of products of q-Bernoulli numbers. Arch. Math. 76(3), 190-195 (2001)
10. Kim, T, Adiga, C: Sums of products of generalized Bernoulli numbers. Int. Math. J. 5(1), 1-7 (2004)
11. Kim, T: Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \mathbb{Z}_{p}. Russ. J. Math. Phys. 16(1), 93-96 (2009)
12. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
13. Kim, T: Some formulae for the q-Bernstein polynomials and q-deformed binomial distributions. J. Comput. Anal. Appl. 14(5), 917-933 (2012)
14. Petojević, A: New sums of products of Bernoulli numbers. Integral Transforms Spec. Funct. 19(1-2), 105-114 (2008)
15. Rim, S-H, Jeong, J: On the modified q-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math Jang'jun Math. Soc. 22(1), 93-98 (2012)
16. Ryoo, CS: Some relations between twisted q-Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math Jang'jun Math. Soc. 21(2), 217-223 (2011)
17. Kim, T: An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on \mathbb{Z}_{p}. Rocky Mt. J. Math. 41(1), 239-247 (2011)

doi:10.1186/1029-242X-2013-111

Cite this article as: Kim and Kim: A note on higher-order Bernoulli polynomials. Journal of Inequalities and Applications 2013 2013:111.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

