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Abstract

Recently, Azam et al. introduced new spaces called the complex valued metric
spaces and established the existence of fixed point theorems under the contraction
condition. In this article, we extend and improve the condition of contraction of the
results of Azam et al. and also apply the main result to the unique common solution
of system of Urysohn integral equation.
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1. Introduction
Fixed point theory became one of the most interesting area of research in the last fifty

years for instance research about optimization problem, control theory, differential

equations, economics, and etc. The fixed point theorem, generally known as the

Banach contraction mapping principle, appeared in explicit form in Banach’s thesis in

1922 [1]. Since its simplicity and usefulness, it became a very popular tool in solving

many problems in mathematical analysis. Later, a number of articles in this field have

been dedicated to the improvement and generalization of the Banach’s contraction

mapping principle in several ways in many spaces (see [2-17]).

In the other hand, the study of metric spaces expressed the most important role to

many fields both in pure and applied science such as biology, medicine, physics, and

computer science (see [18,19]). Many authors generalized and extended the notion of a

metric spaces such as a vector-valued metric spaces of Perov [20], a G-metric spaces of

Mustafa and Sims [21], a cone metric spaces of Huang and Zhang [22], a modular

metric spaces of Chistyakov [23], and etc.

Recently, Azam et al. [24] first introduced the complex valued metric spaces which is

more general than well-know metric spaces and also gave common fixed point theo-

rems for mappings satisfying generalized contraction condition.

Theorem 1.1 (Azam et al. [24]). Let (X, d) be a complete complex valued metric

space and S, T :X ® X. If S and T satisfy

d(Sx,Ty) � λd(x, y) +
μd(x, Sx)d(y,Ty)

1 + d(x, y)
(1:1)
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for all x, y Î X, where l, μ are nonnegative reals with l + μ < 1. Then S and T have

a common fixed point.

The aim of this article is to extend and improve the conditions of contraction of this

theorem from the constant of contraction to some control functions and establish the

common fixed point theorems which are more general than the result of Azam et al.

[24] and also give the results for weakly compatible mappings in complex valued

metric spaces. As applications, we claim that the existence of common solution of sys-

tem of Urysohn integral equation by using our results.

2. Preliminaries
Let ℂ be the set of complex numbers and z1, z2 Î ℂ. Define a partial order ≾ on ℂ as

follows:

z1 � z2 if and only if Re(z1) ≤ Re(z2) and Im (z1) ≤ Im (z2)

that is z1 ≾ z2 if one of the following holds

(C1): Re(z1) = Re(z2) and Im(z1) = Im(z2);

(C2): Re(z1) < Re(z2) and Im(z1) = Im(z2);

(C3): Re(z1) = Re(z2) and Im(z1) <Im(z2);

(C4): Re(z1) < Re(z2) and Im(z1) < Im(z2).

In particular, we will write z1 ⋨ z2 if z1 ≠ z2 and one of (C2), (C3), and (C4) is satis-

fied and we will write z1 ≺ z2 if only (C4) is satisfied.

Remark 2.1. We obtained that the following statements hold:

(i) a, b Î ℝ and a ≤ b ⇒ az ≾ bz ∀z Î ℂ.

(ii) 0 ≾ z1 ⋨ z2 ⇒ |z1| < |z2|,

(iii) z1 ≾ z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 2.2 ([24]). Let X be a nonempty set. Suppose that the mapping d : X × X

® ℂ satisfies the following conditions:

(i) 0 ≾ d(x, y), for all x, y Î X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y Î X;

(iii) d(x, y) ≾ d(x, z) + d(z, y), for all x, y, z Î X.

Then d is called a complex valued metric on X and (X, d) is called a complex valued

metric space.

Example 2.3. Let X = ℂ. Define the mapping d : X × X ® ℂ by

d(z1, z2) = eik |z1 − z2| ,

where k Î ℝ. Then (X, d) is a complex valued metric space.

Definition 2.4 ([24]). Let (X, d) be a complex valued metric space.

(i) A point x Î X is called interior point of a set A ⊆ X whenever there exists 0 ≺ r

Î ℂ such that
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B(x, r) := {y ∈ X|d(x, y) ≺ r} ⊆ A.

(ii) A point x Î X is called a limit point of A whenever for every 0 ≺ r Î ℂ,

B(x, r) ∩ (A − X) �= ∅.

(iii) A subset A ⊆ X is called open whenever each element of A is an interior point

of A.

(iv) A subset A ⊆ X is called closed whenever each limit point of A belongs to A.

(v) A sub-basis for a Hausdorff topology τ on X is a family

F = {B(x, r)|x ∈ X and 0 ≺ r}.

Definition 2.5 ([24]). Let (X, d) be a complex valued metric space, {xn} be a

sequence in X and x Î X.

(i) If for every c Î ℂ, with 0 ≺ c there is N Î N such that for all n >N, d(xn, x) ≺ c,

then {xn} is said to be convergent, {xn} converges to x and x is the limit point of

{xn}. We denote this by lim
n→∞ xn = x or {xn} ® x as n ® ∞.

(ii) If for every c Î ℂ, with 0 ≺ c there is N Î N such that for all n >N, d(xn, xn+m)

≺ c, where m Î N, then {xn} is said to be Cauchy sequence.

(iii) If every Cauchy sequence in X is convergent, then (X, d) is said to be a com-

plete complex valued metric space.

Lemma 2.6 ([24]). Let (X, d) be a complex valued metric space and let {xn} be a

sequence in X. Then {xn} converges to x if and only if |d(xn, x)| ® 0 as n ® ∞.

Lemma 2.7 ([24]). Let (X, d) be a complex valued metric space and let {xn} be a

sequence in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| ® 0 as n ®
∞, where m Î N.

Here, we give some notions in fixed point theory.

Definition 2.8. Let S and T be self mappings of a nonempty set X.

(i) A point x Î X is said to be a fixed point of T if Tx = x.

(ii) A point x Î X is said to be a coincidence point of S and T if Sx = Tx and we

shall called w = Sx = Tx that a point of coincidence of S and T.

(iii) A point x Î X is said to be a common fixed point of S and T if x = Sx = Tx.

In 1976, Jungck [25] introduced concept of commuting mappings as follows:

Definition 2.9 ([25]). Let X be a non-empty set. The mappings S and T are commut-

ing if

TSx = STx

for all x Î X.
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Afterward, Sessa [26] introduced concept of weakly commuting mappings which are

more general than commuting mappings as follows:

Definition 2.10 ([26]). Let S and T be mappings from a metric space (X, d) into

itself. The mappings S and T are said to be weakly commuting if

d(STx,TSx) ≤ d(Sx,Tx)

for all x Î X.

In 1986, Jungck [27] introduced the more generalized commuting mappings in

metric spaces, called compatible mappings, which also are more general than the con-

cept of weakly commuting mappings as follows:

Definition 2.11 ([27]). Let S and T be mappings from a metric space (X, d) into

itself. The mapping S and T are said to be compatible if

lim
n→∞ d(STxn,TSxn) = 0

whenever {xn} is a sequence in X such that limn®∞ Sxn = limn®∞ Txn = z for some z

Î X.

Remark 2.12. In general, commuting mappings are weakly commuting and weakly

commuting mappings are compatible, but the converses are not necessarily true and

some examples can be found in [25,27-29].

In 1996, Jungck introduced the concept of weakly compatible mappings as follows:

Definition 2.13 ([30]). Let S and T be self mappings of a nonempty set X. The map-

ping S and T are weakly compatible if STx = TSx whenever Sx = Tx.

We can see an example to show that there exists weakly compatible mappings which

are not compatible mappings in metric spaces in Djoudi and Nisse [31].

The following lemma proved by Haghi et al. [32] is useful for our main results:

Lemma 2.14 ([32]). Let X be a nonempty set and T : X ® X be a function. Then

there exists a subset E ⊆ X such that T(E) = T(X) and T : E ® X is one-to-one.

3. Main results
Theorem 3.1. Let (X, d) be a complete complex valued metric space and S, T : X ® X.

If there exists a mapping Λ, Ξ : X ® [0,1) such that for all x, y Î X:

(i): Λ(Sx) ≤ Λ(x) and Ξ(Sx) ≤ Ξ(x);

(ii): Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x);

(iii): (Λ + Ξ)(x) < 1;

(iv): d(Sx,Ty) � �(x)d(x, y) +
�(x)d(x, Sx)d(y,Ty)

1 + d(x, y)
.

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since S(X) ⊆ X and T(X) ⊆ X, we can con-

struct the sequence {xk} in X such that

x2k+1 = Sx2k and x2k+2 = Tx2k+1 (3:1)
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for all k ≥ 0. From hypothesis and (3.1) we get

d(x2k+1, x2k+2) = d(Sx2k,Tx2k+1)

� �(x2k)d(x2k, x2k+1) +
�(x2k)d(x2k, Sx2k)d(x2k+1,Tx2k+1)

1 + d(x2k, x2k+1)

= �(x2k)d(x2k, x2k+1) +
�(x2k)d(x2k, x2k+1)d(x2k+1, x2k+2)

1 + d(x2k, x2k+1)

= �(x2k)d(x2k, x2k+1) + �(x2k)d(x2k+1, x2k+2)
(

d(x2k, x2k+1)
1 + d(x2k, x2k+1)

)

� �(x2k)d(x2k, x2k+1) + �(x2k)d(x2k+1, x2k+2)

= �(Tx2k−1)d(x2k, x2k+1) + �(Tx2k−1)d(x2k+1, x2k+2)

� �(x2k−1)d(x2k, x2k+1) + �(x2k−1)d(x2k+1, x2k+2)

= �(Sx2k−2)d(x2k, x2k+1) + �(Sx2k−2)d(x2k+1, x2k+2)

� �(x2k−2)d(x2k, x2k+1) + �(x2k−2)d(x2k+1, x2k+2)

...

� �(x0)d(x2k, x2k+1) + �(x0)d(x2k+1, x2k+2),

(3:2)

which is implies that

d(x2k+1, x2k+2) �
(

�(x0)
1 − �(x0)

)
d(x2k, x2k+1). (3:3)

Similarly, we get

d(x2k+2, x2k+3) = d(x2k+3, x2k+2)

= d(Sx2k+2,Tx2k+1)

� �(x2k+2)d(x2k+2, x2k+1) +
�(x2k+2)d(x2k+2, Sx2k+2)d(x2k+1,Tx2k+1)

1 + d(x2k+2, x2k+1)

= �(x2k+2)d(x2k+2, x2k+1) +
�(x2k+2)d(x2k+2, x2k+3)d(x2k+1, x2k+2)

1 + d(x2k+1, x2k+2)

= �(x2k+2)d(x2k+2, x2k+1) + �(x2k+2)d(x2k+2, x2k+3)
(

d(x2k+2, x2k+1)
1 + d(x2k+1, x2k+2)

)

� �(x2n+2)d(x2k+2, x2k+1) + �(x2k+2)d(x2k+2, x2k+3)

= �(Tx2k+1)d(x2k+2, x2k+1) + �(Tx2k+1)d(x2k+2, x2k+3)

� �(x2n+1)d(x2k+2, x2k+1) + �(x2k+1)d(x2k+2, x2k+3)

= �(Sx2k)d(x2k+2, x2k+1) + �(Sx2k)d(x2k+2, x2k+3)

� �(x2k)d(x2k+2, x2k+1) + �(x2k)d(x2k+2, x2k+3)

...

� �(x0)d(x2k+2, x2k+1) + �(x0)d(x2k+2, x2k+3)

= �(x0)d(x2k+1, x2k+2) + �(x0)d(x2k+2, x2k+3),

(3:4)

which is implies that

d(x2k+2, x2k+3) �
(

�(x0)
1 − �(x0)

)
d(x2k+1, x2k+2). (3:5)
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Now, we set α :=
�(x0)

1 − �(x0)
, it follows that

d(xn, xn+1) � αd(xn−1, xn)

� α2d(xn−2, xn−1)

...

� αnd(x0, x1)

(3:6)

for all n Î N. Now, for any positive integer m and n with m > n, we have

d(xn, xm) � d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

� αnd(x0, x1) + αn+1d(x0, x1) + · · · + αm−1d(x0, x1)

= (αn + αn+1 + · · · + αm−1)d(x0, x1)

�
(

αn

1 − α

)
d(x0, x1).

(3:7)

Therefore,

∣∣d(xn, xm)∣∣ ≤
(

αn

1 − α

) ∣∣d(x0, x1)∣∣ . (3:8)

Since a Î [0,1), if we taking limit as m, n ® 0, then |d(xn, xm)| ® 0, which implies

that {xn} is a Cauchy sequence. By completeness of X, there exists a point z Î X such

that xk ® z as k ® ∞. Next, we claim that Sz = z. By the notion of a complex valued

metric d, we have

d(z, Sz) � d(z, x2k+2) + d(x2k+2, Sz)

= d(z, x2k+2) + d(Tx2k+1, Sz)

= d(z, x2k+2) + d(Sz,Tx2k+1)

� d(x2k+2, z) + �(z)d(z, x2k+1) +
�(z)d(z, Sz)d(x2k+1,Tx2k+1)

1 + d(z, x2k+1)

= d(x2k+2, z) + �(z)d(z, x2k+1) +
�(z)d(z, Sz)d(x2k+1, x2k+2)

1 + d(z, x2k+1)
,

(3:9)

which implies that

∣∣d(z, Sz)∣∣ ≤ ∣∣d(x2k+2, z)∣∣ + �(z)
∣∣d(z, x2k+1)∣∣ + �(z)

∣∣d(x2k+1, x2k+2)∣∣ ∣∣d(z, Sz)∣∣
1 +

∣∣d(z, x2k+1)∣∣ .(3:10)

Taking k ® ∞, we have |d(z, Sz)| = 0, which implies that d(z, Sz) = 0. Thus, we get z

= Sz. It follows similarly that z = Tz. Therefore, z is a common fixed point of S and T.

Finally, we show that z is a unique common fixed point of S and T. Assume that

there exists another common fixed point z1 that is z1 = Sz1 = Tz1. It follows from

d(z, z1) = d(Sz,Tz1)

� �(z)d(z, z1) +
�(z)d(z, Sz)d(z1,Tz1)

1 + d(z, z1)

= �(z)d(z, z1),

(3:11)

that |d(z, z1)| ≤ Λ(z)|d(z, z1)|.
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Since Λ(z) Î [0, 1), we have |d(z, z1)| = 0. Therefore, we have z = z1 and thus z is a

unique common fixed point of S and T.

Corollary 3.2. [[24], Theorem 4] Let (X, d) be a complete complex valued metric

space and S, T : X ® X. If S and T satisfy

d(Sx,Ty) � λd(x, y) +
μd(x, Sx)d(y,Ty)

1 + d(x, y)
(3:12)

for all x, y Î X, where l, μ are nonnegative reals with l + μ < 1. Then S and T have

a unique common fixed point.

Proof. We can prove this result by applying Theorem 3.1 by setting Λ(x) = l and

Ξ(x) = μ.

Corollary 3.3. Let (X, d) be a complete complex valued metric space and T : X ® X.

If there exists a mapping Λ, Ξ : X ® [0,1) such that for all x, y Î X:

(i): Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x);

(ii): (Λ + Ξ) (x) < 1;

(iii): d(Tx,Ty) � �(x)d(x, y) +
�(x)d(x,Tx)d(y,Ty)

1 + d(x, y)
.

Then T has a unique fixed point.

Proof. We can prove this result by applying Theorem 3.1 with S = T.

Corollary 3.4. [[24], Corollary 5] Let (X, d) be a complete complex valued metric

space and T : X ® X. If T satisfies

d(Tx,Ty) � λd(x, y) +
μd(x,Tx)d(y,Ty)

1 + d(x, y)
(3:13)

for all x, y Î X, where l, μ are nonnegative reals with l + μ < 1. Then T has a

unique fixed point.

Proof. We can prove this result by applying Corollary 3.3 with Λ(x) = l and Ξ(x) = μ.

Theorem 3.5. Let (X, d) be a complete complex valued metric space and T : X ® X.

If there exists a mapping Λ, Ξ : X ® [0,1) such that for all x, y Î X and for some n Î
N:

(i): Λ(Tn x) ≤ Λ(x) and Ξ(Tn x) ≤ Ξ(x);

(ii): (Λ + Ξ) (x) < 1;

(iii): d(Tnx,Tny) � �(x)d(x, y) +
�(x)d(x,Tnx)d(y,Tny)

1 + d(x, y)
.

Then T has a unique fixed point.

Proof. From Corollary 3.3, we get Tn has a unique fixed point z. It follows from

Tn(Tz) = T(Tnz) = Tz

that Tz is a fixed point of Tn. Therefore Tz = z by the uniqueness of a fixed point of

Tn and then z is also a fixed point of T. Since the fixed point of T is also fixed point

of Tn, the fixed point of T is unique.
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Corollary 3.6. [[24], Corollary 6] Let (X, d) be a complete complex valued metric

space and S, T : X ® X. If T satisfy

d(Tnx,Tny) � λd(x, y) +
μd(x,Tnx)d(y,Tny)

1 + d(x, y)
(3:14)

for all x, y Î X for some n Î N, where l, μ are nonnegative reals with l + μ < 1.

Then T has a unique fixed point.

Proof. We can prove this result by applying Theorem 3.5 with Λ(x) = l and Ξ(x) = μ.

Next, we prove a common fixed point theorem for weakly compatible mappings in

complex valued metric spaces.

Theorem 3.7. Let (X, d) be a complex valued metric space, S, T : X ® X such that T

(X) ⊆ S(X) and S(X) is complete. If there exists two mappings Λ, Ξ : X ® [0,1) such

that for all x, y Î X:

(i): Λ(Tx) ≤ Λ(Sx) and Ξ(Tx) ≤ Ξ(Sx);

(ii): (Λ + Ξ) (Sx) < 1;

(iii): d(Tx,Ty) � �(Sx)d(Sx, Sy) +
�(Sx)d(Sx,Tx)d(Sy,Ty)

1 + d(Sx, Sy)
.

Then S and T have a unique point of coincidence in X. Moreover, if S and T are

weakly compatible, then S and T have a unique common fixed point in X.

Proof. By Lemma 2.14, there exists E ⊆ X such that S(E) = S(X) and S : E ® X is

one-to-one. Since

T(E) ⊆ T(X) ⊆ S(X) = S(E),

we can define a mapping Θ : S(E) ® S(E) by

�(Sx) = Tx. (3:15)

Since S is one-to-one on E, then Θ is well-defined. From (i) and (3.15), we have

�(�(Sx)) ≤ �(Sx) and �(�(Sx)) ≤ �(Sx). (3:16)

From (iii) and (3.15), we get

d(�(Sx),�(Sy)) � �(Sx)d(Sx, Sy) +
�(Sx)d(Sx,�(Sx))d(Sy,�(Sy))

1 + d(Sx, Sy)
(3:17)

for all Sx, Sy Î S(E). From S(E) = S(X) is complete and (3.16) and (3.17) are holds,

we use Corollary 3.3 with a mapping Θ, then there exists a unique fixed point z Î S(X)

such that Θz = z. Since z Î S(X), we have z = Sw for some w Î X. So Θ(Sw) = Sw that

is Tw = Sw. Therefore, T and S have a unique point of coincidence.

Next, we claim that S and T have a common fixed point. Since S and T are weakly

compatible and z = Tw = Sw, we get

Sz = STw = TSw = Tz.

Hence Sz = Tz is a point of coincidence of S and T. Since z is the only point of coin-

cidence of S and T, we get z = Sz = Tz which implies that z is a common fixed point

of S and T.
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Finally, we show that z is a unique common fixed point of S and T. Assume that t be

another common fixed point that is

t = St = Tt.

Thus t is also a point of coincidence of S and T. However, we know that z is a

unique point of coincidence of S and T. Therefore, we get t = z that is z is a unique

common fixed point of S and T.

4. Applications
In this section, we apply Theorem 3.1 to the existence of common solution of the sys-

tem of Urysohn integral equations.

Theorem 4.1. Let X = C([a, b], ℝn), where [a, b] ⊆ ℝ+ and d : X × X ® ℂ is define

by

d(x, y) = max
t∈[a,b]

∥∥x(t) − y(t)
∥∥

∞
√
1 + a2eitan

−1a.

Consider the Urysohn integral equations

x(t) =

b∫
a

K1(t, s, x(s))ds + g(t), (4:1)

x(t) =

b∫
a

K2(t, s, x(s))ds + h(t), (4:2)

where t Î [a, b] ⊂ ℝ and x, g, h Î X.

Suppose that K1, K2: [a, b] × [a, b] × ℝn ® ℝn are such that Fx, Gx Î X for all x Î
X, where

Fx(t) =

b∫
a

K1(t, s, x(s))ds

and

Gx(t) =

b∫
a

K2(t, s, x(s))ds

for all t Î [a, b].

If there exists two mappings Λ,Ξ : X ® [0,1) such that for all x, y Î X the following

holds:

(i) Λ(Fx + g) ≤ Λ(x) and Ξ(Fx + g) ≤ Ξ(x);

(ii) Λ(Gx + h) ≤ Λ(x) and Ξ(Gx + h) ≤ Ξ(x);

(iii) (Λ + Ξ)(x) < 1;

(iv)
∥∥Fx(t) − Gy(t) + g(t) − h(t)

∥∥
∞

√
1 + a2eitan

−1a � �(x)A(x, y)(t)+�(x)B(x, y)(t) ,

where A(x, y)(t) =
∥∥x(t) − y(t)

∥∥
∞

√
1 + a2eitan

−1a ,
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B(x, y)(t) =

∥∥Fx(t) + g(t) − x(t)
∥∥

∞
∥∥Gy(t) + h(t) − y(t)

∥∥
∞

1 + d(x, y)

√
1 + a2eitan

−1a,

then the system of integral Equations (4.1) and (4.2) have a unique common solution.

Proof. It is easily to check that (X, d) is a complex valued metric space. Define two

mappings S, T : X × X ® X by Sx = Fx + g and Tx = Gx + h. Then

d(Sx,Ty) = max
t∈[a,b]

∥∥Fx(t) − Gy(t) + g(t) − h(t)
∥∥

∞
√
1 + a2eitan

−1a,

d(x, Sx) = max
t∈[a,b]

∥∥Fx(t) + g(t) − x(t)
∥∥

∞
√
1 + a2eitan

−1a

and

d(y,Ty) = max
t∈[a,b]

∥∥Gy(t) + h(t) − y(t)
∥∥

∞
√
1 + a2eitan

−1a.

It is easily seen that for all x, y Î X, we have

(i) Λ(Sx) ≤ Λ(x) and Ξ(Sx) ≤ Ξ(x);

(ii) Λ(Tx) ≤ Λ(x) and Ξ(Tx) ≤ Ξ(x);

(iii) d(Sx,Ty) � �(x)d(x, y) +
�(x)d(x, Sx)d(y,Ty)

1 + d(x, y)
.

By Theorem 3.1, we get S and T have a common fixed point. Thus there exists a

unique point x Î X such that x = Sx = Tx. Now, we have

x = Sx = Fx + g

and

x = Tx = Gx + h

that is

x(t) =

b∫
a

K1(t, s, x(s))ds + g(t)

and

x(t) =

b∫
a

K2(t, s, x(s))ds + h(t).

Therefore, we can conclude that the Urysohn integral (4.1) and (4.2) have a unique

com mon fixed point

5. Conclusion
In this article, we modified and generalized a contraction mapping of Azam et al. [24]

and proved some fixed point and common fixed point theorems for new generalization

contraction mappings in a complex valued metric space. Although, Theorem 1.1 of

Azam et al. [24] is an essential tool in the complex valued metric space to claim the

existence of common fixed points of some mappings. However, it is the most
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interesting to define such mappings Λ and Ξ as another auxiliary tool to claim the

existence of a fixed point. In fact, all the main results in this article are some of

choices for solving problems in a complex valued metric space. Our results may be the

motivation to other authors for extending and improving these results to be suitable

tools for their applications.
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