
Kamburov et al. BMC Bioinformatics 2012, 13:262
http://www.biomedcentral.com/1471-2105/13/262

METHODOLOGY ARTICLE Open Access

Cluster-based assessment of protein-protein
interaction confidence
Atanas Kamburov1*, Arndt Grossmann2, Ralf Herwig1 and Ulrich Stelzl2*

Abstract

Background: Protein-protein interaction networks are key to a systems-level understanding of cellular biology.
However, interaction data can contain a considerable fraction of false positives. Several methods have been proposed
to assess the confidence of individual interactions. Most of them require the integration of additional data like protein
expression and interaction homology information. While being certainly useful, such additional data are not always
available and may introduce additional bias and ambiguity.

Results: We propose a novel, network topology based interaction confidence assessment method called CAPPIC
(cluster-based assessment of protein-protein interaction confidence). It exploits the network’s inherent modular
architecture for assessing the confidence of individual interactions. Our method determines algorithmic parameters
intrinsically and does not require any parameter input or reference sets for confidence scoring.

Conclusions: On the basis of five yeast and two human physical interactome maps inferred using different
techniques, we show that CAPPIC reliably assesses interaction confidence and its performance compares well to other
approaches that are also based on network topology. The confidence score correlates with the agreement in
localization and biological process annotations of interacting proteins. Moreover, it corroborates experimental
evidence of physical interactions. Our method is not limited to physical interactome maps as we exemplify with a
large yeast genetic interaction network. An implementation of CAPPIC is available at http://intscore.molgen.mpg.de.

Background
Accurate interaction networks (interactomes) are funda-
mental to answering questions about how the biochemical
machinery of cells organizes matter, processes informa-
tion, and carries out transformations to perform specific
functions leading to various phenotypes. Toward this goal,
a number of experimental [1] and computational [2-4]
techniques have been devised and applied to map the
interactions of human proteins [5-8] and those of model
organisms such as yeast [9-12]. Despite their incomplete-
ness [13], current interactome maps already serve as a
basis for numerous methods aiming to elucidate bio-
logical processes in health and disease [14,15]. Current
interactome maps are contaminated with false positive
interactions that can make up a considerable portion of
the data [13,16-20]. These false positive interactions dim

*Correspondence: kamburov@molgen.mpg.de; stelzl@molgen.mpg.de
1Department of Vertebrate Genomics, Max Planck Institute for Molecular
Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
2Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics,
Ihnestr. 63-73, 14195 Berlin, Germany

the explanatory light of interaction networks and also
decrease the predictive value of methods using such data.
It is thus of primary importance to derive confidence val-
ues for individual interactions, which can serve to refine
current interactome maps or can be used as interac-
tion weights. For example, it has been shown recently
that the performance of complex detection approaches is
better in confidence-weighted protein-protein interaction
networks than in non-weighted networks [19,21].
Several approaches have been proposed for interaction

confidence assessment, many of which are reviewed in
[19,22,23]. Most of these methods integrate additional
data like interaction homology [17], co-expression of
genes encoding interacting proteins [17,24,25], or a com-
bination of these and other evidence features [26,27]. The
outcome from such methods depends on the additional
data sets. Others combine multiple topological features
with additional knowledge to achieve better predictions
[20,28]. Methods which are able to use network topology
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alone to predict interaction veracity [29-32] are the tools
of choice for interaction confidence assessment if other
types of data are limited or biased.
At various levels (globally as well as locally), the topol-

ogy of interaction networks encodes biological properties
which are largely independent of the biochemical function
of the individual members of the network [33,34]. This has
been demonstrated through analysis of global properties
exploiting topological features such as node degree [35]
or distance [36,37]. The biological importance of network
topology may be even more clear for local structures, as
in the case of specific wiring patterns of interaction part-
ners [34]. Likewise, modularity of interaction networks is
currently the most successful concept for addressing the
dynamics of cellular processes [8,38,39].
Goldberg and Roth [29] proposed a connectivity based

approach for interaction confidence assessment where the
number of common neighbors of a pair of predicted inter-
action partners counts in support of the interaction. They
defined interaction confidence as the level of enrichment
of common network neighbors of interacting proteins. It
is quantified by the hypergeometric distribution P-value
given the number of common neighbors and total network
neighbors of both interacting proteins. The underlying
principle of the approach has been established in sem-
inal studies demonstrating that biological networks are
marked with short interaction paths separating random
pairs of proteins in the network (small-world property),
and densely connected local neighborhoods (neighbor-
hood cohesiveness property) [40]. Real protein-protein
interactions are expected to meet the network cohesive-
ness property more frequently than false positives. More
recently, Kuchaiev and co-authors [32] proposed another
method that embeds interaction networks into a low-
dimensional Euclidean space based on network metrics
(shortest path length) and then calculates confidence of
interactions depending on the Euclidean distance between
proteins within that space. The basis of the approach is
the geometric graph model that was proposed to bet-
ter reflect biological networks than e.g. the small-world
model [41]. Although the biological basis of the geomet-
ric graph model remains elusive, the authors show that it
measures network distance more reliably. Both of these
topology based methods assign confidence as numerical
values to protein-protein interactions in a network and are
additionally able to predict new interaction candidates by
assigning confidence scores to non-interactions. However,
both methods have certain shortcomings. The method by
Goldberg and Roth is able to assess the confidence of those
interactions whose participants have common neighbors
only. Often, however, interacting proteins do not share
neighbors. The method of Kuchaiev et al. appears lim-
ited in that it requires fixing six free parameters. These
include algorithm-specific parameters as well as the prior

probability for interactions which depends on knowledge
about the interactome size.
Here, we propose CAPPIC (cluster-based assessment

of protein-protein interaction confidence) – a novel
approach that exploits the inherent modular structure
of interactomes for confidence assessment of protein-
protein interactions. Our method combines the basic
principles of the topology based methods described
above: high neighborhood interconnectedness of a couple
of proteins and short distance between them (the fea-
tures exploited by Goldberg and Roth and Kuchaiev et al.,
respectively) are indicators that both proteins participate
in the same module. We apply Markov clustering [42] to
the line graph [43] of an interaction network to dissect
it into modules of interactions. As demonstrated in [44],
this strategy can generate interaction clusters that signif-
icantly overlap with known biological pathways. Notably,
the interaction clusters overlap in their protein constitu-
tion. This is biologically more meaningful than clustering
the proteins into disjoint modules because pathways and
protein machineries are known to overlap [10,21]. The
rationale behind our approach is that proteins that are
specific to certain modules are expected to have more
interactions with proteins that are specific to the same
modules than with other proteins [39]. Intuitively, we
assign low confidence to interactions that disagree with
the modular structure of biological networks and high
confidence to those that comply with it. This rationale has
also been used as a basis of approaches for the detection
of binary interactions [10] or protein complexes [45] from
complex purification data or to reveal dynamic interaction
patterns during the human spliceosome cycle [8]. While
the aim of CAPPIC is to detect false positive interactions,
a different approach, which is however also based on the
principle of high link density within networkmodules, has
been proposed for identifying false negatives [46].
We applied our method to six large-scale interaction

networks from yeast to assess its performance and com-
pare it to previous topology-based methods (Table 1). The
six networks were fundamentally different with respect
to their biological and topological properties as they
have been generated using different techniques. These
included: 1) a network that was generated using the
protein-fragment complementation assay (PCA) technol-
ogy [12] (Tarassov-all); 2) a sub-network of Tarassov-
all obtained by the authors after applying several fil-
tering steps [12] (Tarassov-hq); 3) a combined network
of interactions found by yeast-two-hybrid (Y2H) screens
(Yu-Ito-Uetz) comprising the networks published by Yu
et al. [9], Ito et al. [47] and Uetz et al. [48] (the inte-
grated data set was retrieved from [9]); 4) a network of
interactions predicted by Collins et al. [49] from protein
complex data resulting from affinity purification assays
coupled to mass spectrometry (AP-MS) [10,11] (Collins),
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Table 1 Yeast interactomemaps used in this study for method evaluation

network property Tarassov-all Tarassov-hq Yu-Ito-Uetz Collins CPDB-yeast Costanzo

references [12] [12] [9] [49] [51] [52]

method PCA PCA Y2H AP-MS multiple genetic

node count 2238 (2293) 889 (1124) 1647 (2018) 1002 (1620) 6073 (6075) 4278 (4278)

link count 9360 (9646) 2407 (2770) 2518 (2930) 8313 (9064) 74332 (74333) 63927 (63927)

clustering 0.14 0.24 0.08 0.72 0.19 0.06

coefficient

links in 5861 (62%) 1761 (73%) 440 (17%) 8129 (97%) 63385 (85%) 47822 (74%)

triangles

mean shortest 3.7 5.6 5.6 5.5 2.7 2.9

path length

links with ≥ 3 546 (5%) 419 (17%) 598 (23%) 1635 (19%) 6324 (8%) 2546 (3%)

publications

downloaded from BioGRID [50]; 5) a comprehensive
physical interaction network from the interaction meta-
database ConsensusPathDB, release 6(yeast) [51] obtained
by the integration of multiple publicly accessible interac-
tion repositories (CPDB-yeast); and 6) a genetic interac-
tion map published by Costanzo et al. [52] obtained at
a stringent experimental cutoff (Costanzo). The physical
interaction networks constitute a representative bench-
mark since they result from different, major interaction
detection techniques: yeast-two-hybrid, protein-fragment
complementation, affinity purification, and integration of
interaction data obtained with different methods. We
applied our method additionally to the genetic interac-
tion map by Costanzo et al. to provide evidence that it is
not limited to physical interactome maps. To show that
CAPPIC’s performance was consistent across taxonomic
species, we also applied it to two human networks. The
first was obtained by merging the 15 largest, high-quality
human yeast-two-hybrid data sets including refs. [5-8]
(Additional file 1: Table S1) (Y2H-human). The second
network corresponded to the top 5% interactions from
a probabilistic binary data set generated by Mazloom et
al. [53] from mass spectrometry-based analysis of 3,290
immuno-precipitation experiments [54] (Mazloom). The
properties of the two human networks are summarized in
Additional file 2: Table S2.
An implementation of CAPPIC is available as a

web-based tool called IntScore at http://intscore.molgen.
mpg.de [55].

Results
Approach
Assessing protein interaction confidence by randomwalk
interaction clustering
Interaction data are usually modeled as graphs where
nodes represent proteins or genes and edges represent

interactions between them. For assessing the confidence
of every interaction in a network, we apply the follow-
ing strategy (illustrated in Figure 1). First, the interaction
graph is transformed into its line graph [43] where inter-
actions are represented by nodes, and proteins are rep-
resented by links that connect their interactions (step 1
in Figure 1). Second, we deploy Markov clustering – an
algorithm for network clustering through random walk
simulation [42] – on the line graph to dissect it into dis-
joint clusters of interactions (step 2 in Figure 1). In the
third and last step of the approach (step 3 in Figure 1), we
evaluate the distribution of interactions among the result-
ing clusters. It is a key point that interactions of a given
protein can be clustered together, or distributed among
multiple clusters. A protein is specific to a cluster if the
cluster is enriched in interactions of that protein. To quan-
tify this enrichment, we define the fidelity Fp,c of a protein
p to cluster c as the value of the cumulative hypergeo-
metric distribution function (Equation 1) given Lp,c, the
number of interactions of protein p in cluster c; Lp,·, the
total number of interactions of p (called the degree of p);
L·,c, the total number of interactions in c; and L·,·, the total
number of interactions in the network:

Fp,c = P(X ≤ Lp,c) =
Lp,c∑

k=0

(Lp,·
k

)(L·,·−Lp,·
L·,c−k

)

(L·,·
L·,c

) (1)

The value of the fidelity Fp,c lies between 0 and 1, with
values near or equal to 1 if a protein p is specific to cluster
c, i.e. if it has relatively many links in that cluster. For a
fixed Lp,c it holds that the smaller the cluster (smaller L·,c),
the greater the fidelity value. Finally, if all the links of two
proteins lie within a cluster, the fidelity is greater for the
protein with the higher degree.

http://intscore.molgen.mpg.de
http://intscore.molgen.mpg.de
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Figure 1 Outline of our interaction confidence assessment method. In the input interaction network (upper left picture), proteins are labeled
with letters (A, B, etc.) and interactions between them are represented by edges. In the first step of the approach, we create the line graph of the
given network where nodes represent interactions (labeled A–C, A–D, etc.) and edges represent shared interaction participants. In the second step,
we use Markov clustering on this line graph to dissect it into interaction clusters. The clustering granularity is optimized in a previous step of the
algorithm. Importantly, proteins can be part of more than one cluster. The relative number of interactions of a protein in a cluster determines how
specific a protein is to that cluster. In the third step, we calculate confidence values for every interaction based on how specific both proteins are to
the respective clusters. The thickness of interaction links in the lower left picture corresponds to the calculated interaction confidence values for this
example network.

We define interaction confidence as the product of the
fidelity values of both interacting proteins to the cluster c
which the interaction has been assigned to:

confidence(lp1,p2) = Fp1,c · Fp2,c (2)

Interactions get high confidence values if both proteins
are specific to the cluster containing the interaction, and
low confidence values when one or both of the proteins
are not specific to the cluster.

Optimal clustering granularity is reliably determined through
partial network rewiring
The interaction confidence scores calculated by CAPPIC
are dependent on the granularity of the interaction clus-
tering. It has been previously shown that modules in many
complex networks, including protein interaction maps,
are organized in a hierarchical manner [56]. Accordingly,
interaction clustering can yield protein complexes, cel-
lular machineries, pathways, or higher-order biological
processes depending on the clustering granularity. To
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estimate the clustering granularity for a network that will
result in the best discrimination between true and false
interactions, we first randomly rewire a small part of
the links in that network to generate a false interaction
set. In the rewiring procedure, pairs of interactions are
selected at random and two of the proteins are swapped
so that no real interaction is reconstituted and the net-
work stays connected. This way, two false interactions
are generated for two real ones while the degree of each
protein is preserved. Then, we calculate interaction con-
fidence values of the resulting partially rewired network
as described above using different inflation values. The
inflation parameter of the Markov clustering algorithm
essentially controls clustering granularity [42]. For every
inflation value, we quantify the significance of the dif-
ference between confidence score distributions of the
rewired and the remaining non-rewired links. This is done
with the Wilcoxon rank-sum test under the alternative
hypothesis that the confidence scores of the non-rewired
links are greater than the confidence scores of the rewired
links. The inflation value minimizing the Wilcoxon test
P-value is considered optimal.
Experiments have shown that randomly rewiring 3%

of the links in the granularity estimation procedure
described above is a good choice because this yields a false
interaction set of reasonable size while keeping most of
the network intact. If the set of false interactions obtained
through random rewiring is too small, the granularity
estimation will lack statistical power, while if too many
interactions are rewired, the network’s original modular
structure will be altered which will affect the granularity
estimate. For all networks CAPPIC was applied on, ran-
dom rewiring of 1%, 3%, 5%, or 10% of the interactions
yielded very similar optimal granularity estimates.
Our granularity estimation strategy builds upon the

assumption that the optimal granularity value inferred
from a partially rewired network instance (where both
false positive and false negative rates are increased com-
pared to the real network) is transferable to the real net-
work. We aimed to scrutinize this reasoning and verified
for all reference networks that 1) the estimated optimal
granularity was rather independent of the random choice
of links for rewiring; and 2) that interaction clusters were
similar for the intact and the partially rewired networks
clustered with the same inflation value (see Additional file
3: Supplementary Text).

True positive interactions are assigned higher confidence
than false positives
Wemeasured the performance of CAPPIC and compared
it to previously proposed network topology based inter-
action confidence assessment methods using five yeast
physical interaction networks and one genetic interac-
tome map, covering major interaction inference methods

(Table 1). We first constructed positive (literature inter-
actions) and negative (random links) link sets and then
evaluated the methods using receiver operating charac-
teristic (ROC) analysis. The positive set for each network
consisted of interactions that are reported multiple times
in the literature (ranging from 3% to 23% for the six refer-
ence networks, Table 1), since such interactions have been
shown to be on average more reliable [13,16]. The nega-
tive interaction set consisted of links that resulted from
a random rewiring of a small sub-set (3%) of the interac-
tions in the respective network. Interactions from the par-
tially rewired instance, ranked with decreasing confidence
value were compared successively against the positive and
negative benchmark sets to determine the true positive
and false positive rates at each step. In general, CAPPIC
assigned higher confidence to true interactions than false
interactions (Figure 2). The area under the ROC curve
(AUC), which quantifies the confidence ranking perfor-
mance, was as high as 94% for the Collins network. For this
data set, at a fixed specificity of 80% our method reached
95% sensitivity. On the other extreme, none of the meth-
ods in the analysis showed convincing performance on
the combined Y2H network Yu-Ito-Uetz. In this example,
Goldberg and Roth’s method successfully classified inter-
actions whose proteins shared network neighbors; how-
ever, such interactions comprised only 17% of Yu-Ito-Uetz
(see ‘X’-mark on the green line in Figure 2 and row “links
in triangles” in Table 1) while the rest of the interacting
protein pairs did not share network neighbors. Goldberg
and Roth’s method outperformed CAPPIC on the CPDB-
yeast and Costanzo networks, whereas the method by
Kuchaiev et al. did not discriminate (for unclear reasons)
between true and false interactions better than random in
these two cases. Generally, it performed worse than CAP-
PIC and Goldberg and Roth’s method on all networks.
Based on the results for all six networks, we conclude that
the method of Goldberg and Roth is able to correctly iden-
tify a subset of high-confidence interactions, but will not
provide predictions for interactions not involved in trian-
gles. On the other hand, themethod by Kuchaiev et al. and
our approach generate confidence scores for the complete
data set, which is often desired when the aim is to assess
the confidence of all interactions (e.g. for weighting a non-
weighted network) or to filter out a relatively small sub-set
of low-confidence interactions. It should be noted that in
order to define a reliable negative link set, we destroyed
some real interactions (increasing the false negative rate)
and simultaneously introduced the same number of false
positive interactions into the network. Thus, the AUC val-
ues reported here probably slightly underestimate the real
performance.
In the case of well-studied organisms such as yeast, data

on protein complexes can be used to define the positive
interaction sets alternatively to literature evidence as used
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Figure 2 ROC analysis measuring the performance of CAPPIC in comparison to the methods by Goldberg and Roth and Kuchaiev et al.
False positive rate (1-specificity) is plotted against true positive rate (sensitivity) for each of the six reference networks. Since the definition of a
negative interaction set in the performance assessment involves a random process, the ROC plots summarize the outcome of 100 runs. Plots show
the average ROC curves (thick lines), their standard error bands (dotted lines), as well as the mean area under the ROC curve (AUC) of all runs. The
‘X’-marks on the green ROC curves correspond to the fraction of true/false interactions whose proteins share network neighbors and are thus scored
by Goldberg and Roth’s method.

above. We used two complex-based positive sets from
yeast complexes obtained from CYC2008 [57] and from
ref. [58]. The performance of CAPPIC (and often of the
reference methods) was better with the complex-based
compared to the literature-based positive set for almost
all networks (Additional file 4: Figure S1). For example,
the AUC for CAPPIC increased from 82% to 87-89% for
CPDB-yeast and from 66% to 70-72% for Costanzo when
the literature-based positive reference set was replaced
by a complex-based one; improvements by 1-2% AUC
were also observed for the Tarassov-all, Tarassov-hq and
Collins networks (Additional file 4: Figure S1 versus
Figure 2 in the Main text). However, despite the bet-
ter performance with complex-based positive reference
sets, such sets are not well-suited for measuring the
performance on networks obtained by techniques such
as yeast-two-hybrid [9]. This could be the reason for
the slight decrease in performance (by 1-2% AUC) on
the Yu-Ito-Uetz yeast-two-hybrid network compared to a

literature-based positive set (Additional file 4: Figure S1
versus Figure 2 in the Main text). Moreover, the complex-
based performance estimate may be positively biased
since protein complexes in the reference data may have
been defined at least partially on the basis of the analysed
interaction networks.

Cluster based confidence scores corroborate experimental
interaction evidence
To compare confidence values calculated by CAPPIC with
experiment-based interaction scores, we exploited the fact
that some of the interactions in Tarassov-all have been
designated high-quality by the authors based on experi-
mental interaction intensity [12]. We tested whether our
method assigned significantly higher confidence scores to
high-quality interactions than to the rest of the interac-
tions in Tarassov-all. As shown in Figure 3, the confidence
score distributions of both interaction sub-sets were dif-
ferent. Using the Wilcoxon rank-sum test we confirmed
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Figure 3 Histogram of confidence scores for interactions in
Tarassov-all calculated by our method. The normalized histograms
of interaction confidence scores are shown for the complete
Tarassov-all network, as well as for its high-quality (Tarassov-hq) and
non-high-quality parts. WRST: Wilcoxon rank sum test of the
difference between confidence score distributions of both network
parts. Note that the Y-axis is interrupted to better show the
differences between the three data sets.

that confidence values were greater for high-quality inter-
actions than for the rest of the links in Tarassov-all
(P-value < 3 ∗ 10−10). The high agreement between clus-
ter based interaction confidence scores and experimen-
tal interaction weight for the Tarassov-all network was
corroborated by a significant Spearman rank correlation
between both (ρ = 0.3, p-value < 10−5).

High-confidence interactions are more consistent in
biological process and cellular compartment annotation
Interacting proteins are expected to participate in related
biological processes and to be co-localized in compart-
ments of the cell [59]. Therefore, Gene Ontology (GO)
[60] annotations of interacting proteins agree more often
than expected by chance. We utilized the semantic simi-
larity of GO biological process and cellular compartment
annotations of proteins predicted to interact as a per-
formance measure of our approach. If confidence values
reflect the veracity of discovered interactions, we expect
interactions with higher confidence score to have a higher
average semantic similarity of the proteins’ GO anno-
tations. To test this, we ranked interactions from each
reference network by confidence score and arranged them

into five equal sized bins. The average GO semantic simi-
larity (GOSemSim) values for interacting proteins in each
bin are plotted in Figure 4. The GOSemSim generally cor-
related with interaction confidence. In several extreme
cases (e.g. Costanzo), the average GOSemSim of low-
confidence interactions was barely distinguishable from
the average GOSemSim of random protein pairs (dashed
horizontal lines), while the higher-confidence interactions
reached average GOSemSim far above the average value
of all interactions in the respective network (continuous
horizontal lines). These results suggest that there aremore
false links among the lower-confidence interactions than
among the higher-confidence ones.
Furthermore, if low-confidence interactions are

removed from interaction clusters, the latter become
more consistent regarding the pathway annotations of the
contained proteins (see Additional file 3: Supplementary
Text). Our approach can thus be used to obtain more
refined functional modules in interaction data sets.

The performance of CAPPIC is consistent between yeast
and human networks
To exemplify that the performance of CAPPIC is con-
sistent for different taxonomic species, we also applied
it to two human networks: Y2H-human (Additional
file 1: Table S1) and Mazloom [53]. Figure 5 shows
the corresponding ROC plots summarizing the perfor-
mance of CAPPIC and of the reference methods (anal-
ogous to Figure 2), as well as the GO semantic sim-
ilarity as a function of the CAPPIC score (analogous
to Figure 4) for these networks. Notably, the perfor-
mance of CAPPIC on the Y2H-human and Mazloom
human networks was very similar to the performance
on the yeast counterparts obtained by analogous tech-
niques (Yu-Ito-Uetz and Collins yeast networks, respec-
tively). For example, CAPPIC achieved 90% AUC on the
Mazloom network and 62% AUC on the much sparser
yeast-two-hybrid network, outperforming the reference
methods in both cases (Figure 5). In the case of the
Mazloom network, we also measured the agreement
between CAPPIC scores and interaction ranks that were
based on evidence from 3,290 co-immunoprecipitation
experiments [53]. The CAPPIC scores were calculated
independently of the ranks or the confidence values
assigned in the original study. The Spearman correla-
tion coefficient between interaction ranks and CAPPIC
scores was ρ = −0.34 (p-value < 10−5). The corre-
lation is negative since interactions with smaller ranks
tend to get higher CAPPIC scores. As in the case of
the yeast Tarassov-all network described above (that
has been obtained by protein-fragment complementation
assay), CAPPIC corroborates independent interaction evi-
dence also for this human immuno-precipitation based
network.
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Figure 4 Correlation of CAPPIC interaction confidence with semantic similarity of Gene Ontology co-annotations. Interactions from every
network are ranked by confidence and divided into five equal sized bins (X-axis); for each bin, the average semantic similarity of GO biological
process (blue) and cellular component (green) annotations of interacting proteins is shown (Y-axis). Additionally, the pale continuous lines
correspond to the mean GO semantic similarity over the complete network rather than the separate bins. The dashed lines reflect the average GO
semantic similarity of random pairs of proteins from the network.

Figure 5 Performance of CAPPIC on human networks. A) and C): ROC plots for Y2H-human and Mazloom, correspondingly (for details, see
Figure 2 legend); B) and D): correlation of CAPPIC scores with GO semantic similarity for Y2H-human and Mazloom, correspondingly (for details, see
Figure 4 legend).
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Discussion
Network topology-based approaches are motivated by
the fact that the structure of interaction networks is
not random but reflects biological functionality [33,34].
Modularity is a topological property that is inherent to
protein-protein interaction networks [10,39,56]. We pro-
pose a novel method (CAPPIC) to assess the confidence of
individual protein interactions in an interaction network.
Our method exploits network modularity alone for esti-
mating the confidence of interactions and does not require
any additional knowledge about the interacting proteins
or the techniques used to generate the data. We demon-
strate the power of CAPPIC in discriminating between
true and false interactions on the basis of five physical pro-
tein interaction networks and one genetic interaction map
from yeast, as well as two distinct interaction data sets
from human.
CAPPIC compares well to previous topology-based

approaches by Goldberg and Roth and Kuchaiev et al.
in assigning continuous confidence scores to all interac-
tions in a given physical interaction network. The method
of Goldberg and Roth is dependent on shared network
neighbors of interacting proteins; however, many inter-
acting proteins do not share neighbors. As a result, many
interactions are scored with a confidence value of zero.
However, integrative approaches operating on networks
usually take probabilistic rather than binary data as input.
Thus, the goal of confidence assessment is often to assign
a continuous score to all interactions rather than to fil-
ter for a small subset. In particular, all proteins with a
single interaction partner are disregarded by Goldberg
and Roth’s method, albeit these single protein associa-
tions could give important clues about the function of
these proteins. Both methods, Kuchaiev et al. and CAP-
PIC, are able to assign continuous scores also to such
interactions. In contrast to the method of Kuchaiev et al.,
CAPPIC does not require any parameter input. The only
parameter that influences the resulting confidence scores
– clustering granularity – is optimized internally for each
individual input network. Our results have shown that
the number of clusters obtained at the optimal granular-
ity tends to be small for all reference networks, ranging
from 10 to 50 clusters (see Additional file 5: Figure S2
and Figure ST1 in Additional file 3: Supplementary Text).
This alleviated our initial concerns that interactions exe-
cuting essential crosstalks between related pathways could
be assigned low confidence. Because the optimal granu-
larity tends to be very coarse, closely related pathways will
probably not be separated but clustered together.
CAPPIC should be applicable for weighting any binary

network with an inherent modular structure (for exam-
ples, see [61]). Notably, it does not consider the technique
used to generate the network (unlike other approaches
that integrate a fixed, subjective judgment on the

reliability of different techniques, e.g. ref. [62]). CAPPIC
fails to generate reliable confidence scores in cases where
modularity is not pronounced, i.e. if many of the real links
within biological modules (complexes, pathways, etc.) are
missing. This is probably the case with the Yu-Ito-Uetz
and Y2H-human reference networks: here, the topologi-
cal signal that our method exploits seems to be weaker
and it achieves only 60-62% AUC. Absence of modularity
in this example is evidenced by the relatively low clus-
tering coefficient [40] of 0.08 which is nine times lower
than that of the Collins network where CAPPIC achieves
94% AUC and six times lower than that of the Mazloom
network (90% AUC). Moreover, the Yu-Ito-Uetz data set
is the sparsest of all yeast reference networks (Table 1).
To conclude, results on all example networks suggest that
CAPPIC is well suited to score datasets with moderate to
high interaction density.
Unlike the reference methods, CAPPIC is able to

accommodate experimental evidence weights of interac-
tions. Interaction detection techniques often associate
such weights with predicted interactions, reflecting for
example the number of times an interaction is observed
in repetitions of a yeast-two-hybrid experiment [7,9,13]
or the reporter intensity value in the case of a protein-
fragment complementation assay [12]. If available, such
weights can be exploited by our method in its ran-
dom walk based interaction clustering step. This can
improve the interaction clustering result and conse-
quently increase the performance of confidence assess-
ment. However, since we set out to estimate the per-
formance of CAPPIC in comparison to other methods
that cannot accommodate interaction weights, we did
not make use of this advantage in this work and con-
sidered all interactions equal. Moreover, the ability to
incorporate experimental interaction weights helps to
avoid interaction data pre-filtering, commonly executed
to derive binary interaction networks (where pairs of pro-
teins either interact or not). Such filtering of probabilistic
interaction data is inherently associated with data loss.
Similarly, it is a common practice to remove interaction
hubs in a dataset to improve its quality (e.g., ref. [6]). As
exemplified in Additional file 6: Figure S3 for the yeast
hubs PHO85 (a Cyclin-dependent kinase; 467 interac-
tions) and UBC7 (an E2 ubiquitin ligase; 622 interactions)
in the CPDB-yeast network, CAPPIC assigns on average
lower scores to interactions of hubs. However, a consid-
erable fraction of their interactions scores highly: 29%
of the interactions of PHO85 and 25% of the interac-
tions of UBC7 are assigned higher CAPPIC scores than
the median score of the complete network. This sug-
gests that a complete removal of hubs from the network
could unnecessarily remove high-quality protein-protein
interactions and emphasizes the utility of confidence
scoring.
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Our approach can be combined with other lines of inter-
action evidence like other topological features, protein
co-expression, or interaction homology to achieve even
better scoring performance [22]. While the aggregation of
different features holds the promise of even more reliable
interaction confidence assessment, it depends on refer-
ence interaction sets. At present, even for yeast the con-
struction of an appropriate reference set is still a daunting
task [9].

Conclusions
Since biological interaction networks contain false posi-
tives, assessing the confidence of individual interactions in
order to weight or filter interaction data is a crucial step
that should precede network-based inferences. Here we
propose a network topology based method called CAP-
PIC that estimates interaction confidence by exploiting
the network’s inherent modularity. CAPPIC requires no
reference interaction sets or parameter settings. Based
on five large-scale physical interaction networks from
yeast, we show that our method compares well to other
topology-based approaches. Confidence scores calculated
with CAPPIC also correlate well with the Gene Ontology
co-annotation of interacting proteins, and corroborate
experimental evidence of physical interactions. CAPPIC is
limited neither to physical interactome maps nor to yeast
networks as it also performs well on a large yeast genetic
interaction network and on two human protein-protein
interaction data sets.

Methods
Application of Markov clustering algorithm
To cluster a network of interactions, we use the original
implementation of the Markov clustering algorithm (ver-
sion 10-201 downloaded from http://www.micans.org/
mcl/sec software.html). The inflation scan which aims to
optimize clustering granularity is carried out in two steps:
a coarse scan with step size of 0.1 within a fixed range I ∈
[ 1.1, 2.0] (where I is theMarkov clustering inflation value)
is followed by a fine scan with step size of 0.025 around
the optimal inflation value resulting from the coarse scan
±0.1. In general, the inflation parameter takes values from
the interval I ∈ (1.0, 30.0] with higher values resulting
in finer granularity. In all our experiments, the optimal
inflation estimate was far below 2.0 (see Figure ST1 in
Additional file 3: Supplementary Text), motivating the
choice of this value as an upper boundary of the inflation
scan.

Receiver operating characteristic analysis
To conduct ROC analysis, we constructed true and false
interaction sets. The positive set comprised interactions
published in at least three papers in total. An excep-
tion was made for the Costanzo network because of the

scarcity of genetic interaction data: the positive set in this
case consisted of interactions that are also reported in
[63]. Literature evidences were retrieved with the inter-
action evidence mining ConsensusPathDB plugin [64].
The negative interaction set was constructed by randomly
rewiring 3% of the interactions in the respective network.
For each partially rewired network, we ranked interac-
tions according to confidence as calculated with CAPPIC
and reference methods and created receiver operating
characteristic (ROC) curves. The performance of a given
confidence assessment method in ranking positive inter-
actions higher than negative ones was quantified with the
area under the ROC curve (AUC). TheAUC is around 50%
if a method does not perform better than random inter-
action ranking, and is closer to 100% the better it ranks
positive interactions higher than negative ones. Since the
constitution of the negative and positive sets involves a
random process (that is, the random selection of interac-
tions for rewiring), we repeated the procedure 100 times
and averaged ROC results.

Application of reference methods
We set the number of yeast genes to 6,000 in the method
by Goldberg and Roth. The parameters of the method
by Kuchaiev et al. (implemented as Matlab scripts down-
loaded from http://www.kuchaev.com/Denoising) were
set as follows: priorEdge=0.002945 (which results when
the estimated yeast interactome size of 53,000 interac-
tions [65] is divided by the number of all possible pro-
tein pairs, 6,000 choose 2); priorNonEdge=1-priorEdge;
dim=5 (default); d=3 (default); learnSetSize=min(5,000
or half the number of interactions); delta=1.0; and
stopEps=0.01 (default). In the case of Costanzo, dim=3
because the program (run on a standard AMD X2 5600+
machine with 8GB of RAM running Matlab version
7.10.0.499 under Linux) did not return results within five
days for a higher number of dimensions.

Assessing semantic similarity of Gene Ontology
annotations
For each network, we obtained the GO semantic similar-
ity of biological process and cellular component annota-
tions of interacting proteins using the method proposed
by Resnik [66] implemented in the software package
GOSemSim version 1.8.0 [67]. GO annotations inferred
from physical interaction (GO evidence code ‘IPI’) were
excluded from the semantic similarity calculation to avoid
circularity. For each network, interactions were ranked by
increasing confidence score and divided into five equal
sized bins. The mean semantic similarity values for inter-
acting proteins within each bin were calculated. Addi-
tionally, the mean GO semantic similarity for random
pairs of proteins from the respective network was assessed
by completely rewiring the networks while preserving

http://www.micans.org/mcl/sec_software.html
http://www.micans.org/mcl/sec_software.html
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each protein’s degree and then calculating the mean
GO semantic similarity of links in those randomized
networks.

Additional files

Additional file 1: Table S1.Interaction data sets merged to construct the
Y2H-human network.The table lists the studies that contribute
yeast-two-hybrid interactions for the merged Y2H-human network. The file
is in XLS format and is viewable e.g. with LibreOffice or Microsoft Excel.

Additional file 2: Table S2. Properties of the Y2H-human and Mazloom
networks. The table shows the properties of the human networks used in
the analysis (analogous to Table 1 in the main text). The file is in XLS format
and is viewable e.g. with LibreOffice or Microsoft Excel.

Additional file 3: Supplementary Text. This file contains additional text
and figures demonstrating the validity of the partial random rewiring
approach for clustering parameter optimization, as well as text and figures
showing that CAPPIC scores can be used for interaction cluster de-noising.
The file is in PDF format and is viewable e.g. with Adobe Reader.

Additional file 4: Figure S1. ROC plots with complex-based positive
reference sets. Receiver operating characteristic analysis results for the
yeast reference networks where complex-based positive reference sets
have been used. Complexes were obtained from ref. [57] (A) and from ref.
[58] (B). The figure is otherwise analogous to Figure 2.

Additional file 5: Figure S2. Cluster number and sizes for the yeast
reference networks clustered with the optimal granularity. Yeast reference
networks were clustered at the optimal inflation value into 10-50
interaction clusters. Here, the cluster sizes in terms of number of
interactions (blue line, left-hand-side Y-axis) and number of genes/proteins
(green line, right-hand-side Y-axis) per cluster are plotted.

Additional file 6: Figure S3. Distribution of CAPPIC scores for the hubs
PHO85 and UBC7 in comparison to the whole data set.
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