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MATHEMATICAL MODELLING OF POWER STATION PLANT

THE ROLE OF SIMULATION

Robertt G, Cheetham and Stephen A, Billings

Department of Electronic Engincering
University of Leceds
Leeds, LS2 9JT, UK.

The role of simulation in an exercise
aimed at identification and verification of

" mathematical models of the principal control -
loops of pulverised fuel mills feeding the

furnace of a large coal-fired power station
is described. Models of this type are an
essential precursor to decision of control
. strategy, controller design and optimization,
. and to development of monitoring and alarm
systems for operator assistance. Design of
the experimental program and choice of exci-
. tation sequence is described, together with
detection of the plant structure and estima-
. tion of the model coefficients.
. of a simulation incorporating a range of
plant constraints, including representation
of associated control systems,
and uses to which the simulation may be put
are reviewed.

. INTRODUCTION

. Nine pulverised fuel mills feed the fur-

nace of the 500 MW generator at the coal-
fired power station on which this identifica-
tion exercise was conducted. Coal enters at
a controlled rate via a conveyor and is

is discussed-*

Development .

-

ground within the body of the rotating mill.

by impact with steel balls.
through the mill under the influence of the
primary air (PA) fan, conveying lighter par-

Alr is forced’

ticles to the burners, whilst heavier parti-,

cles fall, recombine with the feed, and
undergo further grinding. Pulverised fuel
output, unobservable on a routine basis, is
regulated principally by adjustment of the PA
flow, which is in turn regulated by manipula-
tion of a vane enabling or inhibiting flow of
air to the PA fan.
controlled by the speed of the conveyor,
whilst & further,
the proportion of hot and cold air fed to the
mill to preserve a desired output temperature
for the air/fuel mixture.

Plant variables available for monitoring

independent vane controls:

Rate of raw coal feed is‘

and control are the pressure drop developed '

across the PA fan, termed the PA differential-

pressure (PAD), which is strongly related to
air flow, and the pressure drop across the
whole mill, the mill differential pressure
(MDP), which has a component related teo fuel
outlet flow. Also available are the current
driving the fan, the mill motor current, the
temperature of the air/fuel mixture leaving
the miil and the air inlet temperature.

I

I
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Inputs to the mill comprise the PA vane posi-
tion, the feeder speed and the tempering air
vane position. Mathematical models are

sought which include only physically exist- .

ing, accessible variables, which are rou-
tinely available for plant monitoring and
control.

PRELIMINARY MODELLING

A reduced-order state-variable system
model (Maples and Ghosh 1982; Cheetham et,
al, 1985) was simulated to assist in plant

familiarization and with development of the
experimental program. Normal operating
records were obtained by monitoring plant
output without injection of disturbances:
variables to be monitored during full experi-
ments were chosen from cross-correlation
analysis of the ensuing multi-channel data.

Actuator step tests were conducted in
the three principal control 1loops (primary
air, feeder, and outlet temperature) of which
models were sought.
vane positions, and feeder speed, were manu-
ally adjusted in a series of separate experi-
ments with the mill under test isolated from
the remainder of the plant, yet otherwise
operating routinely. Effects of step changes
in actuator positions were assessed using the

© state-variable model before being undertaken

in the power station. From the results of
the step tests, correlation analysis revealed
the major links between recorded variables.
A first-order model was fitted between each
pair of strongly-linked variables, and simu-
lated using a Runge-Kutta procedure, with the
gain, time-constant and time-delay fine-turned
using the simulation to minimise the sum-~of-
squares of errors between model outputs and
corresponding recorded plant data.

. Ensuing preliminary models were used in
choice of excitation sequence for the main
experimental program. It is desirable to
conduct experiments whilst the plant operates
routinely, both for economic reasons and to
generate representative data on which model-~
ling may be based. Input sequences are
sought which maximise information whilst
minimising plant disturbance, fulfill sta-

tistical constraints on admissible inputs, :

and which require a relatively short experi-
ment time without specialist equipment.
Pseudo-Random Binary Sequence (PRBS) excita=-
tion is selected as the best available means;
the sequence is generated by an on-site mini-
computer and applied to the plant to perturb

(1 —

PA and tempering air.



actuator positions via modified versions of
the existing station control software, whilst
the minicomputer records sixteen variables
simultaneously using, custom~designed

. software. Choice of ° PRBS parameters,

sequence length, bit interval and amplitude
are chosen on the basis of the first-order
preliminary models: specifically, the PRBS
bit dinterval is chosen to give a flat
spectral-density over the system bandwidth,

. and the sequence length is chosen to exceed
. the plant settling time; amplitude of the
. perturbation is chosen in accordance with

operating constraints and may be modified
on-line. PRBS experiments and parameters are

. described in Cheetham and Billings, 1986.

All PRBS sequences to be generated on-site
were applied to the reduced-order simulation

.and their effects gauged, demonstrating the

maximum anticipated disturbance to output
variables. Considerable precautions were
taken to avoid overlarge plant disturbances,
and safeguards were built into the software,
which was extensively tested before the

. experimental program commenced.,

. ANALYSIS OF PRBS DATA

Sections of data containing around 500

" data points were selected for the identifica=-

tion exercise, free from extraneous distur-
bances, without drift in the mean levels, and

which exhibited the lowest levels of plant,

neise. In this study one such data set is
used to identify the model, another indepen-

. dent set is retained for verification; mean

levels were subtracted from all data

’ sequences and trends were removed, Variables

included in the model are chosen on the basis

. of advance plant intuition, preliminary

experimentation and modelling, together with
significance testing. Fig. 1 shows the
cross-~correlation functions between PA vane
position, the perturbed variable, and three
available plant signals: strong correlation
is noted with PA differential pressure (PAD),
fan current and mill differential pressure
(MDP), whilst 1low correlation is detectec
between PA vane position and outlet tempera-
ture. On the basis of a series of such
tests, PAD, MDP and fan current are selected
for inclusion in the model of the PA loop.
In the temperature and feeder loops similar
tests are conducted, with the significant
variables similarly selected for inclusion.

Three outputs are thus principally
affected by perturbation of the PA vane posi-
tion, and tests reveal that the outputs are
strongly correlated, regquiring a multivari-
able model. The system is decomposed into
three strongly-interacting sub-systems, the
output of each being one of the principally
affected variables. Inputs to each sub-
system comprise the overall plant input, PA
vane position, together with the outputs of
the other two sub-systems. 1In this way the
multivariable system is represented by iden-
tifiable component sub-systems, comprised
solely of accessible, physically existing
plant wvariables, containing a manageable
number of coefficients.

Recursive Least-Squares (RLS) (Goodwin &
Payne, 1977) was first employed to identify
each sub-system, but examination of the ensu-
ing modelling errors reveals that the esti-
mates contain bias. Recourse was made to
Recursive Extended Least-Squares {RELS)
(Ljung & Soderstrom, 1983) where a system and
noise model are fitted to the experimental
data with computational efficiency; in this
case a fifteenth-order noise model was fit-
ted. The order of polynomial required to
represent the relationships between variables
is selected by successively increasing the
order until the sum of squares of modellinc
errors ceases to be significantly reduced by
each increase. Time-delays between related
sequences are determined by examination of
cross~correlation functions.

Following decision of model structure,
RELS was used to identify a multiple-input
single-output 1linear difference equation
model of each sub-system  in each of the con-
trol loops, a total of nine multiple-input
single-output sub-systems. An example of the
outcome of the modelling exercise conducted.,
within the PA loop is presented in Fig. 2:
the three model outputs are compared with the'
corresponding experimental data, revealinc
close agreement. If all information con-
tained in the plant output is not captured by
the model, the sequence of modelling errors
will be correlated: examination of Fig. 3, in
which the auto-correlation function (ACF) of
each error sequence is plotted, reveals no
correlation in this case. Parameter esti-
mates are demonstrated to be unbiased by
examination of the CCF between inputs and
errors, and between the error sequences of
each sub-system. Extracts from the CCF plots
are presented in Fig. 4, showing no correla-
tion. .

SIMULATION

Together with similar identified models
of the temperature and feeder loops, the PA
model described in the preceding section was
simulated using the Advanced Continuous Simu-
lation Language (ACSL). Each discrete-tinme
loop model operates at a different sampling
rate and each is represented by an ACSL
DISCRETE block, with outputs appearing in
more than one model summed within a separate
fast-running block. The model equations are
written using normalised variables; conver-
sion to and from plant variables, in
engineering units, is performed using ACSL
macros; starting conditions for the simula-
tion are taken to be those setting model out-
puts to the mean levels observed during the
experiment. Models identified on the basis
of PRBS tests describe the relationships
between actuator positions and plant outputs;
the operation :of the actuator, linking the
controller-generated input signal and the
actuator position used as model input, is
represented in each case by a first-order
model with an experimentally-~determined gain
and time-constant. Constraints on actuator
position, and rate of movement, are incor-
porated, together with representation of
actuator backlash and deadzone.



Relevant sections of the existing plant
control software have been reproduced as
closely as possible in the simulation. Mac-
ros fulfill the functions of software com-
mands and utilities, rendering the simulation
subject to constraints similar to those
occurring in the plant. Real-time control
problems are represented by macros, using
combinations of functions available with the
ACSL system, supplemented by custom-written
functions, including the effects of measure-
ment and quantization noise, propagation
- delays between interacting modules, actuator
constraint, look-ahead-to~limit checks,
facilities for avoidance of actuator wind-up
and provision for contingency action by one
controller if another loop is inactive or in
constraint. Simulated controllers, with an
incremental three-term (PID) configuration,
operate with the same sampling intervals
(relative to the plant), and with the same
coefficients, as those employed in practice.

Actuator step tests conducted on the
simulation reveal close agreement with the
preliminary experiments conducted on plant,
in terms of deduced gains and time-constants.

" - An exanple of a step~-change in PA desired

value is shown by Fig. 5: plant noise,
effects of actuator constraint and effects on
" variables in other loops may be noted; a wide
range of effects on both software
hardware can be studied both graphically and
by printing out detailed numerical data at
user-selected data intervals.

The simulation has been employed in con-
troller design, in that a state-space
equivalent representation has been con-
structed and used as a basis for optimal con-
trol (Cheetham & Wilson, 1986). State and
control weightings in the quadratic criterion
are initially chosen according to plant
intuition and fine-tuned by experiments on
the simulation; the latter contains represen-
tations of non-linearities and real-time con-
straints not included in the state-space
model.

Strategies for plant monitoring and con-
trol may also be developed and optimized
using such simulations. Interest has been
shown by industrial partners in development
and testing of intelligent alarm systems for
operator assistance, supplementing existing
systems. As a precursor to this work a
self~tuning predictor has been implemented on
the simulation, Fig. 6; PA vane position and
PA differential pressure are taken as system
input and output respectively. A linear
difference equation is recursively fitted and
used to predict system outputs. Significant
departure of measured output from prediction,
or sudden changes in estimated coefficients,
is taken as an indication of fault condition.

CONCLUSTION

hn exercise has been described in which
simulation is not only the end product, but
is used extensively at several intermediate
stages. Preliminary simulations have been
used to develop and verify a comprehensive

experimental program which was subsequently
conducted in a large coal-fired power station
during routine operation. Multivariable
plant models have been identified and veri-
fied on the basis of the experimental data
and simulated using ACSL. Representations of
associated control systems, and of problems
inherent in real-time control, have been
included in the simulation which has been
used in controller design and testing, and as
the basis for development of monitoring and
alarm systems, including use of a self-tuning
predictor.
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