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Abstract
We introduce and study a new general split feasibility problem (GSFP) in a Hilbert
space. This problem generalizes the split feasibility problem (SFP). The GSFP extends
the SFP with a nonlinear continuous operator. We apply the preconditioning
methods to increase the efficiency of the CQ algorithm, two general preconditioning
CQ algorithms for solving the GSFP are presented. We also propose a new inexact
method to approximate the preconditioner. The convergence theorems are
established under the projections with respect to special norms. Some numerical
results illustrate the efficiency of the proposed methods.
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1 Introduction
As preconditioning methods can improve the condition number of the ill-posed system
matrix, the convergence rate of the iterative algorithm can also be improved []. In [, ],
a preconditioning method is applied to modify the projected Landweber algorithm for
solving a linear feasibility problem (LFP). The modified algorithm is

xn+ = PC
[
xn – τDA∗(Axn – b)

]
, n≥ ,

where τ ∈ (, /‖DA∗A‖), A : X → Y is a linear and continuous operator, ‖ · ‖ means
-norm, X and Y are Hilbert spaces and b ∈ Y is the datum of the problem, corrupted
by noise or experimental errors.
While under the nonlinear conditions, Auslender and Dafermos [, ] proposed an al-

gorithm to solve variational inequalities (VI),

xn+ = PS
[
xn – τnG–F(xn)

]
, n≥ , (.)

where PS is the projection operator onto S with respect to the norm ‖ · ‖G. Bertsekas and
Gafni [] and Marcotte and Wu [] improved it with variable symmetric positive defined
matrices Gn, Fukushima [] modified it by a relaxed projection method with half-space;
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then in [], Yang established the convergence of Auslender’s algorithm under the weak
co-coercivity of F .
Further, the general variational inequality problem (GVIP) has been investigated by

many authors (see [–]). It is to find u∗ ∈R
n such that g(u∗) ∈ K and

〈
F
(
u∗), g(u) – g

(
u∗)〉 ≥ , g(u) ∈ K ,

where K is a nonempty closed convex set in R
n, F , g : Rn → Rn are nonlinear operators. In

[], Santos and Scheimberg extended and applied (.) to solve the GVI.
However, a general split feasibility problem (GSFP) equals to a GVI, and precondition-

ing methods for solving the GSFP have not been studied. By introducing a convex mini-
mization problem, the split feasibility problem (SFP) is equivalent to a variational inequal-
ity problem (VIP), which involves a Lipschitz continuous and inversely strong monotone
(ism) operator, see [–]. Similarly, by the same way, in this paper we introduce that a
new GSFP equals to a GVI involving a Lipschitz continuous and co-coercive operator [,
–].
Otherwise, Mohammad and Abdul [] considered a general split feasibility in infinite-

dimensional real Hilbert spaces. It is to find x∗ such that

x∗ ∈
∞⋂
i=

Ci, Ax∗ ∈
∞⋂
j=

Qj,

where A : H → H is a bounded linear operator, {Ci}∞i= and {Qj}∞j= are the families of
nonempty closed convex subsets of H and H, respectively.
Let C and Q be nonempty closed convex subsets in real Hilbert spaces H and H, re-

spectively. We consider a general split feasibility problem which is different from the one
in []. Our GSFP is to find

x∗ ∈H, g
(
x∗) ∈ C such that Ag

(
x∗) ∈Q, (.)

where A :H →H is a bounded linear operator and g :H → C is a continuous operator.
We see that the SFP in [] and the GSFP in [] are particular cases of GSFP (.). It has
applications in many special fields such as signal decryption, demodulating the digital sig-
nal and noise processing, etc. In order to solve GSFP (.), two preconditioning algorithms
are developed in this paper following the iterative scheme

g(xn+) = PC
[
g(xn) – γDA∗(I – PQ)Ag(xn)

]
, n≥ ,

where the two general constraintsC andQ deal with projections with respect to the norms
corresponding to some symmetric positive definite matrices. Define the solution set of
(.) � = {x∗ ∈ H | Ag(x∗) ∈ Q}, as � is nonempty, and by virtue of the related G-co-
coercive operator, we can establish the convergence of the proposed algorithms.
The paper is organized as follows. Section  presents two useful propositions. In Sec-

tion , we define the algorithmswith fixed preconditioner, variable preconditioner, relaxed
projection and preconditioner approximation and analyze the convergence. Numerical re-
sults are reported in Section . Finally, Section  gives some concluding remarks.

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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2 Preliminaries
In what follows, we state some concepts and propositions.
The SFP is to find a point x∗ ∈ C such that Ax∗ ∈ Q, where A : H → H is a bounded

linear operator [].
Let G be a symmetric positive definite matrix, and set D = G–. Then the norm ‖ · ‖G

is defined by ‖x‖G = 〈x,Gx〉 for ∀x ∈ H . We denote by PC the projection operator onto C
with respect to the norm ‖ · ‖G [], i.e.,

PC(x) = argmin
y∈C

{‖x – y‖G
}
.

Let λmin and λmax be the minimum and the largest eigenvalues of G, respectively. Then
for the -norm ‖ · ‖ [, ], we have

λmin‖x‖ ≤ ‖x‖G ≤ λmax‖x‖, ∀x ∈H . (.)

Proposition . [, ] Let C be a nonempty closed convex subset in H , for ∀x, y ∈ H and
∀z ∈ C, the G-projection operator onto C has the following properties:

(i) 〈G(x – PCx), z – PC(x)〉 ≤ ;
(ii) ‖x± y‖G = ‖x‖G ± 〈x,Gy〉 + ‖y‖G ;
(iii) ‖PC(x) – PC(y)‖G ≤ ‖x – y‖G – ‖(PC(x) – x) – (PC(y) – y)‖G.

Let D̃ be a symmetric positive definite matrix, and ATD̃ = DAT . Then the norm ‖ · ‖D̃
is defined by ‖y‖D̃ = 〈y, D̃y〉 for ∀y ∈ H . We denote by PQ the projection operator onto Q
with respect to the norm ‖ · ‖D̃. According to the SFP, when GSFP (.) has no solution
(refer to [, , ]), we can define

fg(x) =


∥∥(I – PQ)Ag(x)

∥∥

and

f gD̃(x) =


∥∥Ag(x) – PQAg(x)

∥∥
D̃ =

〈
D̃

(
Ag(x) – PQAg(x)

)
,Ag(x) – PQAg(x)

〉
,

f gD̃(x) is also convex and continuously differentiable in H . Its gradient operator is

∇f gD(x) =DAT (I – PQ)Ag(x).

As D = I , we define

∇fg(x) = AT (I – PQ)Ag(x),

∇fg(x) is also Lipschitz continuous.

Proposition . If we consider the constrained minimization problem

min
{
f gD̃(x) | x ∈H s.t. g(x) ∈ C

}
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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its stationary point x∗ ∈ H satisfies
⎧⎨
⎩
x∗ ∈H , g(x∗) ∈ C such that

〈∇f gD(x∗), g(x) – g(x∗)〉 ≥ , ∀g(x) ∈ C,

which is a general variational inequality involving a Lipschitz continuous and G-co-
coercive operator.

Proof For ∀x, y ∈H , from (.) and Lemma . in [], we have
∥∥∇f gD(x) –∇f gD(y)

∥∥
G ≤ λmax(G)

∥∥∇f gD(x) –∇f gD(y)
∥∥

≤ λ
max(D)

λmin(D)
∥∥∇fg(x) –∇fg(y)

∥∥

≤ λ
max(D)

λmin(D)
L

∥∥g(x) – g(y)
∥∥

≤ λ
max(D)

λmin(D)
L

∥∥g(x) – g(y)
∥∥
G,

where L is the largest eigenvalue of ATA; therefore, the operator ∇f gD is Lipschitz contin-
uous,

〈∇f gD(x) –∇f gD(y), g(x) – g(y)
〉

≥ λmin(D)
〈∇fg(x) –∇fg(y), g(x) – g(y)

〉

≥ λmin(D)
L

∥∥∇fg(x) –∇fg(y)
∥∥

≥ λmin(D)
L · λmax(D)

∥∥∇fg(x) –∇fg(y)
∥∥
D

=
λmin(D)

L · λmax(D)
〈
D

(∇fg(x) –∇fg(y)
)
,GD

(∇fg(x) –∇fg(y)
)〉

=
λmin(D)

L · λmax(D)
∥∥∇f gD(x) –∇f gD(y)

∥∥
G.

Thus, the operator ∇f gD is co-coercive. �

3 Main results
In this section, we propose several modified CQ algorithms with preconditioning tech-
niques and prove the convergence.

3.1 General preconditioning CQ algorithm
In this part, we have our first algorithm with fixed stepsize and preconditioner to solve
GSFP (.). The algorithm is as follows.

Algorithm . Choose ∀x ∈ H such that g(x) ∈ C, and let xn ∈ H such that g(xn) ∈ C,
then we calculate xn+ such that

g(xn+) = PC
[
g(xn) – γ∇f gD(xn)

]
, n ≥ , (.)

where γ ∈ (, 
L·LD ), L and LD are the largest eigenvalues of ATA and D, respectively.

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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Now we establish the weak convergence of Algorithm ..

Theorem . Suppose that the operators g : H → C and g– : C → H are continuous. If
� = ∅, then the sequence {xn} generated by Algorithm . converges to the solution of GSFP
(.).

Proof Firstly, for ∀x∗ ∈ �, we have

g
(
x∗) = PC

[
g
(
x∗) – γ∇f gD

(
x∗)].

From (.), (iii), (ii) and the definition of ism, we have

∥∥g(xn+) – g
(
x∗)∥∥

G

=
∥∥PC

[
g(xn) – γ∇f gD(xn)

]
– PC

[
g
(
x∗) – γ∇f gD

(
x∗)]∥∥

G

≤ ∥∥g(xn) – g
(
x∗) – γ

[∇f gD(xn) –∇f gD
(
x∗)]∥∥

G

≤ ∥∥g(xn) – g
(
x∗)∥∥

G – γ
〈
g(xn) – g

(
x∗),∇fg(xn) –∇fg

(
x∗)〉

+ γ 〈∇f gD(xn) –∇f gD
(
x∗),∇fg(xn) –∇fg

(
x∗)〉

≤ ∥∥g(xn) – g
(
x∗)∥∥

G –
(
γ
L

– γ LD
)∥∥∇fg(xn) –∇fg

(
x∗)∥∥, (.)

as γ
L – γ LD > , which implies that the sequence {‖g(xn) – g(x∗)‖G}n∈N is monotonically

decreasing, then we can obtain that the sequence {‖g(xn) – g(x∗)‖G}n∈N is also convergent,
especially, the sequence {g(xn)}n∈N is bounded. Consequently, we get from (.)

lim
n→∞

∥∥∇fg(xn) –∇fg
(
x∗)∥∥ = lim

n→∞
∥∥∇fg(xn)

∥∥ = . (.)

Moreover, for each g(xn) ∈ C, from (iii) and (.), we have

∥∥g(xn+) – g(xn)
∥∥
G ≤ γ

∥∥∇fD(xn)
∥∥
G

≤ γLD
∥∥∇fg(xn)

∥∥
G ≤ γLD

√
λmax(G)

∥∥∇fg(xn)
∥∥.

Then by virtue of (.) we have

lim
n→∞

∥∥g(xn+) – g(xn)
∥∥
G = . (.)

Hence, there exists a subsequence {g(xj)}j∈N of {g(xn)}n∈N such that

lim
j→∞

∥∥g(xj+) – g(xj)
∥∥
G = .

Thus, {g(xj)}j∈N is also bounded.
Let x̄ be an accumulation point of {xn}, then the subsequence of {xn}, {xj}j∈N → x̄ as

j → ∞. Because of the continuity of g , there exists an accumulation point g(x̄) ∈ C of the

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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sequence {g(xn)}n∈N; for the subsequence {g(xj)}j∈N , we have {g(xj)}j∈N → g(x̄) as j → ∞.
After that, from (.) we obtain

lim
j→∞

∥∥∇fg(xnj )
∥∥ =

∥∥∇fg(x̄)
∥∥ =

∥∥ATAg(x̄) –ATPQAg(x̄)
∥∥ = ,

that is, Ag(x̄) ∈Q.
We use x̄ in place of x∗ in (.) and obtain that {‖g(xn) – g(x̄)‖G} is convergent. Because

its subsequence {‖g(xnj ) – g(x̄)‖
G
} → , then we get that {g(xn)}n∈N converges to g(x̄) as

j → ∞. As well as g– is continuous, we finally have

lim
n→∞xn = x̄ ∈ �.

Therefore, x̄ is a solution of GSFP (.). �

From Algorithm . and Theorem . we can deduce the following results easily.

Corollary . If g = I , then GSFP (.) reduces to SFP, Algorithm . also reduces to a
preconditioning CQ (PCQ) algorithm for ∀x ∈H:

xn+ = PC
[
xn – γ∇fD(xn)

]
, n≥ , (.)

where γ ∈ (, 
L·LD ), L and LD are the largest eigenvalues of ATA and D, respectively. PC and

PQ are still the projection operators onto C and Q with respect to the norm ‖ · ‖D and ‖ · ‖D̃,
respectively.

Corollary . If g = I , D = I , D̃ = I , then GSFP reduces to SFP, then Algorithm . reduces
to the CQ algorithm proposed in [].

Corollary . If g = I , D̃ = I , PC and PQ are the projections onto C and Q with respect to
the norm ‖ · ‖, set F(xn) =DAT (I – PQ)ADxn, (.) transforms into the algorithm in []

xn+ = PC
[
xn – γ F(xn)

]
, n≥ ,

where γ ∈ (, L ), L = ‖DAT‖. Then the GSFP reduces to the extended split feasibility prob-
lem (ESFP) in [].

3.2 An algorithmwith variable projection metric
The algorithms above can speed the convergence of CQ algorithm, but the stepsize and
preconditioner are fixed. In this subsection, we extend the results in [] and construct
an iterative scheme with variable stepsize and preconditioner Dn from one iteration to
the next. As a key role, Dn will change arbitrarily or following some rules to achieve the
convergence progress and better results.
Let Dn and D̃n be two symmetric positive definite matrices for n = , , , . . . . Denote

by PC and PQ the projections onto C and Q with respect to the norm ‖ · ‖Dn and ‖ · ‖D̃n ,
respectively. Let χ be a set of symmetric positive definite matrices, we have the following
algorithm.

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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Algorithm . Choose ∀x ∈H such that g(x) ∈ C, and let xn ∈ H such that g(xn) ∈ C;
for ∀Dn ∈ χ , we compute xn+ such that

g(xn+) = PC
[
g(xn) – γnDn∇fg(xn)

]
, n≥ , (.)

where γn ∈ (, 
L·MD

), L is the largest eigenvalue of ATA, MD is the minimum value of all
the largest eigenvalue values LDn to matrices Dn.

Remark . Define dn = ‖g(xn+)– g(xn)‖Gn , then for the next iteration,Dn+ is either cho-
sen arbitrarily from χ or equivalent to Dn. It is conditional on whether dn has decreased
or not. More particularly, we define a scalar d̄n with initial value d̄ =∞. Having chosen a
scalar α ∈ (, ) at the nth iteration, then d̄n+ is calculated by

d̄n+ =

⎧⎨
⎩

αd̄n, if dn ≤ d̄n;

d̄n, if dn > d̄n,

then we select

Dn+ =

⎧⎨
⎩

∀D ∈ χ , if d̄n+ < d̄n;

Dn, if d̄n+ = d̄n.

Theorem . If � = ∅, then the sequence {xn} generated by Algorithm . converges to the
solution of GSFP (.).

Proof To obtain variable Dn at each iteration and keep the convergence of Algorithm .,
dn must be a descending behavior for n = , , , . . . . We first show that

lim
n→∞

dn = . (.)

Indeed if (.) is not true, we have limn→∞ dn > , then Dn must have changed a finite
number of times, we set that this number is κ ∈ N . Therefore, let x∗ ∈ � be a solution of
GSFP, refer to (.) and for n > κ , we have

∥∥g(xn+) – g
(
x∗)∥∥

Gκ
≤ ∥∥g(xn) – g

(
x∗)∥∥

Gκ

–
(
γκ

L
– γ 

κ LDκ

)∥∥∇fg(xn) –∇fg
(
x∗)∥∥,

as MD = min{LDn | n = , , . . .κ}, γκ

L – γ 
κ LDκ > . Then, following the proof of Theo-

rem ., we also get

lim
n→∞

∥∥∇fg(xn)
∥∥ =  (.)

and

lim
n→∞dn = lim

n→∞
∥∥g(xn+) – g(xn)

∥∥
Gκ

= . (.)

Equation (.) contradicts the above hypothesis, so (.) is true.

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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By using (.) and (iii), for the nth iteration, we have

dn =
∥∥g(xn+) – g(xn)

∥∥
Gn

≥ 

∥∥g(xn) – PC

[
g(xn)

]∥∥
Gn

–
∥∥g(xn+) – PC

[
g(xn)

]∥∥
Gn

=


∥∥g(xn) – PC

[
g(xn)

]∥∥
Gn

–
∥∥PC

[
g(xn) – γnDn∇fg(xn)

]
– PC

[
g(xn)

]∥∥
Gn

≥ 

∥∥g(xn) – PC

[
g(xn)

]∥∥
Gn

– γnLDn

∥∥∇fg(xn)
∥∥
Gn
,

where γnLDn > . Then from (.) and (.) we know that

lim
n→∞

∥∥∇fg(xn)
∥∥
Gn

= lim
n→∞

∥∥AT (I – PQ)Ag(xn)
∥∥
Gn

= ,

so Ag(xn) ∈Q. By virtue of (.), we also have

lim
n

∥∥g(xn) – PC
[
g(xn)

]∥∥ = .

This means that at least a subsequence of {g(xn)}n∈N converges to a solution of g(x̄) ∈ �.
Similar to the argumentation of accumulation in the proof of Theorem ., we know that
{xn} converges to a solution of GSFP. �

3.3 Somemethods for execution
In Algorithms . and ., there still exists difficulty to implement the projections PC and
PQ with respect to the defined norms, especially when C and Q are general closed convex
sets. According to the relaxed method in [, , ], we consider the above algorithm in
which the closed convex subsets C and Q are the following particular formula:

C =
{
g(x) ∈H | c(g(x)) ≤ 

}
and Q =

{
Ag(x) ∈H | q(Ag(x)) ≤ 

}
,

where c :H →R and q :H →R are convex functions. Cn and Qn are given as

Cn =
{
g(x) ∈ H | c(g(xn)) + 〈

ξn, g(x) – g(xn)
〉 ≤ 

}
,

Qn =
{
Ag(x) ∈H | q(Ag(xn)) + 〈

ηn,Ag(x) –Ag(xn)
〉 ≤ 

}
,

where ξn ∈ ∂c(g(xn)), ηn ∈ ∂q(Ag(xn)).
Here, we also replace PC and PQ by PCn and PQn . However, in this paper, take Algo-

rithm . for example, the projections are with respect to the norms corresponding to Gn

and D̃n, we should use the following methods to calculate them. For ∀z ∈H and ∀y ∈H,

PCn (z) =

⎧⎨
⎩
z –Dn

c[g(xn)]+〈Dnξn ,z–g(xn)〉
‖ξn‖Dn

ξn, if c[g(xn)] + 〈Dnξn, z – g(xn)〉 > ;

z, otherwise

and

PQn (y) =

⎧⎨
⎩
y – D̃n

q[Ag(xn)]+〈D̃nηn ,y–Ag(xn)〉
‖ηn‖

D̃n
ηn, if q[Ag(xn)] + 〈D̃nηn, y –Ag(xn)〉 > ;

y, otherwise.

http://www.journalofinequalitiesandapplications.com/content/2014/1/435
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Set z = g(xn) – γnDn∇fg(xn), y = Ag(xn), let x̄ ∈ H be an accumulation of {xn}n∈N. From
the proof above, it is easy to deduce that

lim
n→∞ c

[
g(xn)

]
+

〈
Dnξn, z – g(xn)

〉
= c

[
g(x̄)

] ≤ ,

lim
n→∞q

[
Ag(xn)

]
+

〈
D̃nηn, y –Ag(xn)

〉
= q

[
Ag(x̄)

] ≤ .

Therefore, g(x̄) ∈ C ⊆ Cn,Ag(x̄) ∈Q ⊆Qn, with the projections PCn and PQn , x̄ is a solution
of GSFP.
Next, we present a new approximation method to estimate γn and Dn in Algorithm ..
If � = ∅, for ∀x∗ ∈ � and n≥ , such that

Dn∇fg
(
x∗) =DnATAg

(
x∗) –DnATPQnAg

(
x∗) = ,

under the ideal condition, if DnATA ≈ I , the solution is done, but unfortunately, (ATA)–

cannot be calculated directly when A is a large matrix in practice. As

ATAg
(
x∗) = ATPQnAg

(
x∗) = λg

(
x∗),

where λ is an eigenvalue of ATA. Let D = I , for the nth iteration, we have the next j × j
approximation of Dn+

Djj
n+ =

⎧⎨
⎩

[g(xn)]j
[ATPQnAg(xn)]j

, if [g(xn)]j =  and [ATPQnAg(xn)]j = ;

Djj
n, otherwise,

where j = , , . . . . So, at the nth iteration, let lDn be the minimum eigenvalue of Dn, take
MDn ≈ min{LDk | k = , , . . . ,n}, Ln ≈ max{(lDk )

– | k = , , . . . ,n}, the variable stepsize is
approximated by

γn =
ρn

Ln ·MDn
, ρn ∈ (, ),n = , , . . . .

4 Numerical results
We consider the following problem from [] in a finite dimensional Hilbert space:
Let C = {x ∈ H | c(x) ≤ }, where c(x) = –x + x + · · · + xN , and Q = {y ∈ H | q(y) ≤ },

where q(y) = y + y + · · · + yM – . AM×N is a random matrix where every element of A is
in (, ) satisfying � = ∅. Let x be a random vector in H where every element of x is in
(, ).
We set ‖xn+ – xn‖ ≤ ε as the stop rule, and let N = , M = , g = I , D̃n = I , for n ≥ .

Using the methods in Section ., we compare Algorithm . with the relaxed CQ algo-
rithm (RCQ) in [], with different ε and initial values. The results can be seen in Table .
We see that the proposed methods in this paper behave better.

5 Concluding remarks
In this paper, we have discussed a new general split feasibility problem, which is related to
the general variational inequalities involving a co-coercive operator. By using the G-norm
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Table 1 The comparison between the results of preconditioning and relaxed CQ algorithms

ε Algorithms n CPU (s) c(x) q(y)

0.01 RCQ 16 0.0112 –0.1665 57.1092
3.2 22 0.0049 –0.1333 1.2636

0.001 RCQ 200 0.0216 –0.2684 1.2708
3.2 13 0.0039 –0.0770 3.5300E–02

0.0001 RCQ 360 0.0295 –0.1039 1.0710E–01
3.2 60 0.0081 –0.0479 1.4900E–02

0.00001 RCQ 464 0.0363 –0.2561 7.5000E–03
3.2 21 0.0043 –0.0566 3.3809E–04

method, variable modulus method and relaxed method, two modified projection algo-
rithms for solving the GSFP and some approximate methods for algorithm executing have
been presented. The numerical results show that by preconditioning method, the conver-
gence speed of CQ algorithm can be improved, but the way to obtain variable stepsize in
the paper is inexact. To continue to improve it or combine it with the methods in [] and
[] is another interesting subject.
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