ON A THEOREM OF H. HOPF

TAKIS SAKKALIS
Department of Mathematical Sciences
New Mexico State University
Las Cruces, New Mexico 88003
(Received February 1, 1989 and in revised form March 9, 1990)

Abstract. A simple proof of a theorem of H. Hopf [1], via Morse theory, is given.
Key Words and Phrases. Hypersurface, Morse function, critical point, Gauss map, degree.
1980 Ams Subject Classification Codes. 58E05, 55.

1. Introduction and the Theorem.

Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a smooth map, and let

$$
V=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbf{R}^{n} \mid f\left(x_{1}, \cdots, x_{n}\right)=0\right\} .
$$

Suppose V is compact and the gradient, ∇f, of f is nonzero on V. Then V in an $(n-1)$ dimensional real orientable hypersurface in \mathbf{R}^{n}. Let U be the unbounded component of $\mathbf{R}^{\boldsymbol{n}}-V$. We may suppose that $f>0$ on U, otherwise consider $-f$. We shall give V the following orientation. Let $v \in V$ and let v_{1}, \cdots, v_{n-1} be a positively oriented basis for the tangent space $T V_{v}$, regarded as a subspace of $T \mathbf{R}_{v}^{n}$. We say that V has the positive orientation at v if

$$
\operatorname{det}\left[\begin{array}{c}
\nabla f(v) \\
v_{1} \\
\vdots \\
v_{n-1}
\end{array}\right]>0
$$

V has the positive orientation, if it has the positive orientation at each of its points. Let S^{n-1} be the unit sphere in \mathbf{R}^{n}, along with its usual orientation. Consider the Gauss map $\eta: V \rightarrow S^{n-1}$ which assigns to each point of V, the unit normal vector $\nabla f /\|\nabla f\|$. Let d be the degree of η. For a real compact manifold W, let $\chi(W)$ denote its Euler characteristic. We can now state the theorem which relates d, with the Euler characteristic of certain hypersurfaces arising from f.

Theorem (Hopf [1]). Let f, V, d be as above. Then

$$
d= \begin{cases}\frac{\chi(V)}{2} & \text { if } n \text { is odd } \\ \chi(f \leq 0) & \text { if } n \text { is even }\end{cases}
$$

2. Preliminaries.

The main idea of the proof of the theorem is to apply Morse theory on V, using a convenient Morse function. According to a theorem of Sard, the set of critical values of η has measure zero in S^{n-1} [2]. Hence, after rotating the axis if necessary, we may assume that the points $(0, \cdots, 0, \pm 1)$ are not critical values of η. Let $\pi\left(x_{1}, \cdots, x_{n}\right)=x_{n}$ be the projection onto the last coordinate, and let $h=\left.\pi\right|_{V}$ be the height function on V. Let p be a critical point of h. At p we have:

$$
f=0, \quad \frac{\partial f}{\partial x_{i}}=0, \quad i=1, \cdots, n-1, \quad 1=\lambda \frac{\partial f}{\partial x_{n}}, \quad \lambda \in \mathbf{R}
$$

Lemma 2.1 [3]. With the above considerations, p is not a critical point of η, and p is a nondegenerate critical point of h.

Proof. We observe that $\eta(p)=(0, \cdots, 0, \pm 1)$, since $\frac{\partial f}{\partial x_{n}}(p) \neq 0$. Hence, p is not a critical point of η. In terms of local coordinates u_{1}, \cdots, u_{n-1} on V, this means that the matrix $\left[\frac{\partial \eta_{1}}{\partial u_{j}}\right], i, j<n$, is nonsingular at p. In fact, near p we can choose local coordinates u_{1}, \cdots, u_{n-1} so that $x_{1}=u_{1}, \cdots, x_{n-1}=u_{n-1}, x_{n}=h\left(u_{1}, \cdots, u_{n-1}\right)$. Then,

$$
\eta\left(u_{1}, \cdots, u_{n-1}\right)= \pm\left(\frac{\partial h}{\partial u_{1}}, \cdots, \frac{\partial h}{\partial u_{n-1}},-1\right) / \sqrt{1+\sum_{\jmath=1}^{n-1}\left(\frac{\partial h}{\partial u_{\jmath}}\right)^{2}}
$$

Hence, $\frac{\partial \eta_{i}}{\partial u_{j}}= \pm \frac{\partial^{2} h}{\partial u_{i} \partial u_{j}}$ at p. Therefore, the matrix $\left[\frac{\partial^{2} h}{\partial u_{i} \partial u_{j}}\right], i, j<n$, is nonsingular, which implies that p is a nondegenerate critical point of h.

Set $S=\eta^{-1}(0, \cdots,-1), N=\eta^{-1}(0, \cdots, 1)$. Then the above Lemma shows that h is a Morse function on V with critical set $S \cup N$. For $p \in S \cup N$, we denote by $i(p)$ the Morse index of h at p, which is equal to the number of negative eigenvalues, multiplicities counted, of the real symmetric matrix $\left[\frac{\partial^{2} h}{\partial u_{i} \partial u_{j}}\right][4]$.

Also, for $p \in S \cup N$ we define $\operatorname{sgn}(p)$ to be

$$
\operatorname{sgn}(p)= \begin{cases}1 & \text { if near } p, \eta \text { preserves the orientation } \\ -1 & \text { if near } p, \eta \text { reverses the orientation }\end{cases}
$$

In addition, if a is a real number, $a \neq 0$, we will denote its signature by $\operatorname{sign}(a)$.
REMARK 2.1. $2 d=\sum_{p \in S \cup N} \operatorname{sgn}(p), \quad \chi(V)=\sum_{p \in S \cup N}(-1)^{\mathfrak{t}(p)},[4]$.
We will now compute $\operatorname{sgn}(p)$, for $p \in S \cup N$. Let $G: U \rightarrow V$ be a local parametrization of V near p, defined by $G\left(x_{1}, \cdots, x_{n-1}\right)=\left(x_{1}, \cdots, x_{n-1}, h\left(x_{1}, \cdots, x_{n-1}\right)\right)$. Set $\bar{p}=\left(p_{1}, \cdots, p_{n-1}\right)$. Then,

$$
\operatorname{sgnd} G_{\bar{p}}=\operatorname{signdet}\left[\begin{array}{c}
\nabla f(p) \\
d G\left(\frac{\partial}{\partial x_{1}}\right) \\
\vdots \\
d G\left(\frac{\partial}{\partial x_{n-1}}\right)
\end{array}\right]=(-1)^{n-1} \operatorname{sign} \frac{\partial f}{\partial x_{n}}(p) .
$$

On the other hand, if $k: U_{1} \rightarrow S^{n-1}$ is a local parametrization of S^{n-1} near the point $\left(0, \cdots, 0, \frac{\partial f}{\partial x_{n}}(p) /\left|\frac{\partial f}{\partial x_{n}}(p)\right|\right)$, defined by $k\left(s_{1}, \cdots, s_{n-1}\right)=$ $\left(s_{1}, \cdots, s_{n-1}, \operatorname{sign} \frac{\partial f}{\partial x_{n}}(p) \sqrt{1-\sum s_{\jmath}^{2}}\right)$, then,

$$
\operatorname{sgn} d k_{0}=\operatorname{signdet}\left[\begin{array}{c}
\nabla f(p) \\
d k\left(\frac{\partial}{\partial s_{1}}\right) \\
\vdots \\
d k\left(\frac{\partial}{\partial s_{n-1}}\right)
\end{array}\right]=(-1)^{n-1} \operatorname{sign} \frac{\partial f}{\partial x_{n}}(p)
$$

Also, near $p, \eta=-\operatorname{sign} \frac{\partial f}{\partial x_{n}}(p) \frac{(\nabla h,-1)}{\sqrt{1+\sum\left(\frac{\partial h}{\partial u_{i}}\right)^{2}}}$. Hence,
$\operatorname{sgn}(p)=\operatorname{sgnd}\left(k^{-1} \circ \eta \circ G\right)(\bar{p})=\left(-\operatorname{sign} \frac{\partial f}{\partial x_{n}}(p)\right)^{n-1} \cdot \operatorname{sign} \operatorname{det}\left[\frac{\partial^{2} h}{\partial u_{1} \partial u_{j}}\right]$.

Lemma 2.2. For $p \in S \cup N, \operatorname{sgn}(p)=-\operatorname{sign} \operatorname{det} B H(f)(p)$, where $B H(f)=$ $\left[\begin{array}{cc}0 & \nabla(f) \\ \nabla^{t} f & H(f)\end{array}\right]$, is the Bordered Hessian matrix of f.
Proof. We have $f\left(u_{1}, \cdots, u_{n-1}, h\left(u_{1}, \cdots, u_{n-1}\right)\right)=0$, where $u_{1}, \cdots, u_{n-1}, h$, are as in Lemma 2.1. By differentiating the above identity twice, and evaluating at p, we get

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}+\frac{\partial f}{\partial x_{n}}(p) \frac{\partial^{2} h}{\partial u_{i} \partial u_{j}}=0, \quad 1 \leq i, j \leq n-1 . \tag{2.2}
\end{equation*}
$$

Using (2.1) we get $\operatorname{sgn}(p)=\left(-\operatorname{sign} \frac{\partial f}{\partial x_{n}}(p)\right)^{n-1} \cdot \operatorname{sign} \operatorname{det}\left[\frac{\partial^{2} h}{\partial u_{1}, \partial u_{j}}\right]=$ $\operatorname{sign} \operatorname{det}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]=-\operatorname{signdetBH}(f)(p)$.

Remark 2.2. If n is even, then $\chi(V)=0$.
Proof. We have $\chi(V)=\sum_{p \in S}(-1)^{i(p)}+\sum_{p \in N}(-1)^{i(p)}$. But if $p \in S$ then $\operatorname{sgn}(p)=(-1)^{i(p)}$, while if $p \in N, \operatorname{sgn}(p)=(-1)(-1)^{i(p)}$. Hence,

$$
\chi(V)=\sum_{p \in S} \operatorname{sgn}(p)-\sum_{p \in N} \operatorname{sgn}(p)=d-d=0 .
$$

3. Proof of the Theorem. Case i. n is odd. We observe from (2.1), that $\operatorname{sgn}(p)=\operatorname{sign} \operatorname{det}\left[\frac{\partial^{2} h}{\partial u_{i} \partial u_{j}}\right]=(-1)^{i(p)}$. Hence, by Remark 2. 1,

$$
\chi(V)=\sum_{p \in S \cup N}(-1)^{2(p)}=\sum_{p \in S \cup N} \operatorname{sgn}(p)=2 d .
$$

Case ii. n is even. Then, let us consider $V^{-}=\{f \leq 0\}$. This is a compact orientable manifold with boundary V. Consider the double covering W of V^{-}, ramified along V, which is defined by

$$
W=\left\{\left(x_{1}, \cdots, x_{n}, x_{n+1}\right) \in \mathbf{R}^{n+1} \mid f\left(x_{1}, \cdots, x_{n}\right)+x_{n+1}^{2}=0\right\} .
$$

W is a compact n-dimensional nonsingular hypersurface and $\chi(W)=2 \chi\left(V^{-}\right)-\chi(V)=$ $=2 \chi\left(V^{-}\right)$, since n is even. We orient W as we oriented V. On W we consider the height function \bar{h}, where $\bar{h}=\left.\bar{\pi}\right|_{W}, \bar{\pi}\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=x_{n}$. Let $\bar{\eta}: W \rightarrow S^{n}$ be the Gauss map, and let \bar{d} be its degree. Regard \mathbf{R}^{n}, S, N as subsets of \mathbf{R}^{n+1}.

As in Lemma 2.1, we have that if $p \in S \cup N$, then p is a nondegenerate critical point of \bar{h}. In fact, $S \cup N$ is the critical set of \bar{h}, and the points ($0, \cdots, 0, \pm 1,0$) are not critical values of \bar{h}. Let now $p \in S \cup N$. p is viewed as a critical point of both h and \bar{h}, and also as a noncritical point of η and $\bar{\eta}$. Denote by $\overline{\operatorname{sgn}}(p)$, the $\operatorname{sgn}(p)$ viewed as a noncritical point of $\bar{\eta}$. We have:

$$
\operatorname{sgn}(p)=(-1) \operatorname{signdet}\left[\begin{array}{cc}
0 & \nabla f \\
\nabla^{t} f & H(f)
\end{array}\right]=(-1) \operatorname{sign} \operatorname{det}\left[\begin{array}{ccc}
0 & \nabla f & 0 \\
\nabla^{\boldsymbol{t}} f & H(f) & 0 \\
0 & 0 & 2
\end{array}\right]=\overline{\operatorname{sgn}(p)} .
$$

Hence, $d=\bar{d}=\frac{\chi(W)}{2}=\chi\left(V^{-}\right)=\chi(f \leq 0)$. The proof of the theorem is now complete.

References

1. Hopf, H. Über die Curvatura integra geschlossener Hyperffächen, Mathematische Annalen 95, (1925-26), 340-365.
2. SARD, A. The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-897.
3. Milnor, J. On the Betti numbers of real varieties, P. AMS $1 \underline{15}$ (1964), 275-280.
4. Milnor, J. Morse Theory, Annals of Math. Studies, Princeton University Press, \# 51.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

