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Dissimilarity-Based Algorithms For Selecting 

Structurally Diverse Sets Of Compounds

PETER WILLETT
Krebs Institute for Biomolecular Research and Department of Information Studies, 

University of Sheffield, Western Bank, Sheffield S10 2TN, UK

ABSTRACT

This paper commences with a brief introduction to modern techniques for the computational 

analysis of molecular diversity and the design of combinatorial libraries.  It then reviews 

dissimilarity-based algorithms for the selection of structurally diverse sets of compounds in 

chemical databases.  Procedures are described for selecting a diverse subset of an entire 

database, and for selecting diverse combinatorial libraries using both reagent-based and 

product-based selection.

Key words: combinatorial chemistry, dissimilarity-based compound selection, library design, 

molecular diversity

1.   MOLECULAR DIVERSITY ANALYSIS

The pharmaceutical industry makes extensive use of highly sophisticated systems for the 

processing of chemical structure information (Ash et al., 1991).  A chemical structure diagram is 

represented by a graph, whose nodes and edges denote the atoms and the bonds, respectively, of a 

molecule; graph representations can also be used for the representation and searching of databases 

of 3D structures (Martin and Willett, 1998).  This representation enables a range of database 

searching facilities to be provided by means of graph isomorphism algorithms that provide an 

effective, and surprisingly efficient, way of identifying molecules from a database that satisfy 

user-defined structural queries, e.g., the retrieval of all molecules that contain a penicillin ring 

system or of those molecules that are most similar to a known drug.  These database-searching 

methods are now increasingly being used to support programmes in combinatorial chemistry

(Chaiken and Janda, 1996; DeWitt and Czarnik, 1997).  This is the name given to a body of 

techniques for the parallel synthesis and testing of sets of molecules, called combinatorial
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libraries, that contain large numbers (hundreds or thousands) of structurally related molecules.  

Such techniques are increasingly replacing the traditional approach to drug discovery, which 

involved a sequential mode of processing with molecules being synthesised and then tested for 

biological activity one molecule at a time.  

The need to ensure coverage of the largest possible expanse of chemical space in the search for 

bioactive molecules means that combinatorial approaches seek to maximise the diversity of the 

library, i.e., the degree of structural variation that is present within the set of product molecules 

resulting from a combinatorial synthesis.  There has thus been much interest in the development of 

computational tools for maximising chemical diversity, especially as the techniques that have been 

developed are also applicable to related tasks such as the identification of structural overlap in 

databases and the mapping of structural space (Dean and Lewis, 1999).

The concept of diversity is normally quantified using techniques derived from those developed for 

similarity searching in chemical databases (Downs and Willett, 1995).  Similarity searching 

involves comparing the set of structural descriptors that characterise a user-defined target structure 

(typically a molecule that has been shown previously to exhibit activity in a biological test) with 

the corresponding sets of descriptors for each of the database structures.  Each such comparison 

results in the calculation of a measure of inter-molecular structural similarity.  The similarity 

scores are sorted to give a ranked list in which the structures that the system judges to be most 

similar to the target structure, the nearest neighbours, are displayed first to the user.  Descriptors 

for similarity and diversity studies are reviewed by Brown (1997): thus far, the two most 

important types have been fragment substructures and physical properties.  In the former case, a 

molecule is checked for the presence of various atom- or bond-centred fragment substructures and 

their presence encoded in a bit-string vector, or fingerprint.  The similarity between a pair of 

molecules is then calculated by a simple comparison of their associated fingerprints; alternatively, 

a molecule can be characterised by calculating a set of physical properties that describe its 

topological, electronic, steric, lipophilic or geometric features.  Many coefficients are available for 

the calculation of inter-molecular similarities based on such descriptors (Willett et al., 1998)

Considerations of cost-effectiveness dictate that as few compounds as possible should be selected 

for synthesis and biological testing while still ensuring coverage of the full range of structural 

types that are present in a dataset.  There is a trivial algorithm available to identify the most 
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diverse n-compound subset of an N-compound database or library (where, typically, n << N), 

which involves generating each of the 

N
n N n

!
!( )!

possible subsets and then calculating their diversities using a diversity index (as discussed below).  

Such a procedure is computationally infeasible for large values of n and N (Kuo et al., 1993) and 

there has thus been much interest in alternative approaches for selecting diverse sets of molecules, 

with three principal methods having been described thus far: cluster-based selection, partition-

based selection and dissimilarity-based selection (Dean and Lewis, 1999). 

Cluster analysis, or clustering, is the process of sub-dividing a group of objects (chemical 

molecules in the present context) into groups, or clusters, of objects that exhibit a high degree of 

both intra-cluster similarity and inter-cluster dissimilarity (Everitt, 1993; Sneath and Sokal, 1973).  

It is thus possible to obtain an overview of the range of structural types present within a dataset by 

selecting one, or some small number, of the molecules from each of the clusters resulting from the 

application of an appropriate clustering method to that dataset (Willett, 1987).  Cluster-based 

methods have been widely used for molecular diversity studies (Brown and Martin, 1996, 1997; 

Dunbar, 1997; Shemetulskis et al., 1995) but they are increasingly being supplanted by 

dissimilarity-based and partition-based approaches.

Partition-based compound selection requires the identification of a set of p characteristics, these

typically being molecular properties that would be expected to affect the ability of a small 

molecule to bind to a protein (Mason and Pickett, 1997).  The range of values for each such 

characteristic is divided into a set of sub-ranges.  The combinatorial product of all possible sub-

ranges then defines a p-dimensional grid of bins (or cells) that is referred to as a partition, and 

each molecule is assigned to the bin that matches that molecule’s set of characteristics.  A subset 

is obtained by selecting one (or some small number) of the molecules from each of the bins.  

Partition-based selection is very fast in operation, and has the advantage that it permits the rapid 

identification of those sections of structural space that are under-represented, or even

unrepresented, in a database (Pearlman and Smith, 1998).

Cluster-based and partition-based approaches identify a set of dissimilar molecules indirectly, 

since the approaches involve the identification of clusters or bins of similar molecules.  

Dissimilarity-based approaches, conversely, try to identify a set of dissimilar molecules in a 
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dataset directly, using some quantitative measure of dissimilarity (Lajiness, 1997).  This class of 

approaches is discussed in detail in subsequent sections of this paper.

The many selection techniques that are available has encouraged interest in comparative studies to 

ascertain which are the most effective.  Such studies are vitally important if one wishes to identify 

the best procedures, but they require some quantitative measure of effectiveness.  This has led to 

the development of several diversity indices, which provide a single-number quantification of the 

degree of structural variation within a dataset.  Examples of such approaches include a count of 

the number of bits that are set in the union of all of the fingerprints for a dataset (Martin et al.,

1995), the number of distinct substructures that can be generated from all of the molecules in a 

dataset (Bone and Villar, 1997), the fraction of the bins in a partition that contain some minimal 

number of molecules (Pickett et al., 1996), and the sum of the pairwise inter-molecular 

dissimilarities for a dataset (Turner et al., 1997).

Having provided a brief overview of the current status of computational tools for the analysis of 

molecular diversity, we now focus on dissimilarity-based methods for compound selection, 

illustrating the range of procedures that are available by reference to work carried out over the last 

three years in the University of Sheffield (Gardiner et al., 1998; Gillet et al., 1997, 1999; Holliday 

et al., 1995; Snarey et al., 1998).

2.   SELECTION OF COMPOUNDS FROM A DATABASE

The most obvious selection task is to identify a diverse subset of an entire database, this being 

most commonly done when there is a need to select some representative number of compounds 

from a company’s corporate database for testing in a novel bioassay; this requirement, indeed, 

provided the rationale for the very first work on systematic methods for compound selection, 

using cluster-based approaches, back in the mid-Eighties (Willett, 1987).  We have already noted 

that the identification of the n most diverse molecules in a dataset containing N molecules is 

generally infeasible for non-trivial values of n and N (but see Section 4 below for an exception to 

this general rule), and practicable approaches to dissimilarity-based compound selection hence 

involve approximate methods that are not guaranteed to result in the identification of the most 

dissimilar possible subset (see, e.g., Bawden, 1993; Clark, 1997; Hudson et al., 1996; Lajiness, 

1990, Marengo and Todeschini, 1992; Nilakantan et al., 1997; Pickett et al., 1998; Polinsky et al., 

1996); that said, there is evidence to suggest that the subsets identified are only marginally sub-
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optimal (Gillet et al., 1997).  Thus far, two major classes of algorithm have been described: 

maximum-dissimilarity algorithms and sphere-exclusion algorithms (Snarey et al., 1998)

The basic maximum-dissimilarity algorithm for selecting a size-n Subset from a size-N Dataset is 

shown in Figure 1.  This algorithm, which was first described by Kennard and Stone (1969) and 

which was applied to compound selection by Lajiness (1990) and Bawden (1993), permits many 

variants depending upon the precise implementation of Steps 1 and 3.  Possible mechanisms for 

the choice of the initial compound in Step 1 include: choosing a compound at random; choosing 

that compound that is most dissimilar to the other compounds in Dataset; or choosing that 

compound that is nearest to the centre (in some sense) of Dataset, inter alia.  Step 3 in the figure 

requires a quantitative definition of the dissimilarity between a single compound in Dataset and 

the group of compounds that comprise Subset, so that the most dissimilar molecule can be 

identified in each iteration of the algorithm.  

There are several ways in which “most dissimilar” can be defined, with each definition resulting 

in a different version of the algorithm and hence in the selection of a different subset (Holliday 

and Willett, 1996) (in just the same way as different clustering methods result from the use of 

different similarity criteria in hierarchic agglomerative clustering (Lance and Williams, 1967).  

Examples of such definitions include MaxSum (Pickett et al., 1998) and MaxMin (Polinsky et al.,

1996).  Let DIS(A,B) be the dissimilarity between two molecules, or sets of molecules, A and B.

Consider a single compound, J, taken from Dataset and the m compounds that form the current 

membership of Subset at some stage in the selection process; then the dissimilarity between J and 

Subset, DIS(J, Subset), is given by 

DIS J K( , ) and minimum DIS J K{ ( , )}

in the case of the MaxSum and MaxMin definitions, respectively, with K (1 K m) ranging over 

all of the m molecules in Subset at that point.  The molecule chosen for addition to Subset is then 

that with the largest value of DIS(J, Subset).

Insert Figure 1 about here

The basic maximum dissimilarity algorithm shown in Figure 1 has an expected time complexity of 

O(n²N); as n is normally some small fraction of N (such as 1% or 5%), this represents a running 

time that is cubic in N, which makes it extremely demanding of computational resources if 

Dataset is at all large.  Holliday et al. (1995) described a MaxSum selection algorithm with a time 
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complexity of O(nN), using an equivalence that had been developed for the rapid implementation 

of hierarchic agglomerative document clustering using the group-average clustering method 

(Voorhees, 1986).  However, an analysis of the MaxSum definition by Agrafiotis and Lobanov 

(1999) suggested that it could result in subsets containing groups of closely-related molecules, and 

this limitation was subsequently demonstrated by Snarey et al. (1998) in a comparison of several 

different methods for dissimilarity-based compound selection.  Although not as fast in practice as 

MaxSum, MaxMin can also be implemented with an O(nN) algorithm (Higgs et al., 1997; 

Polinsky et al., 1996) and the comparative evaluation of Snarey et al. (1998) showed it to be more 

effective than MaxSum in identifying database subsets exhibiting a range of biological activities; 

accordingly, it is probably the method of choice for this class of selection algorithms. 

A further variant of the basic approach shown in Figure 1 is to specify a threshold dissimilarity, t,

and then to reject the molecule selected in Step 2 if it has a dissimilarity less than t with any of the 

compounds already in Subset.  The inclusion of such a threshold results in a maximum 

dissimilarity algorithm that is not too far removed from the basic sphere-exclusion approach 

described by Hudson et al. (1996).  Here, a threshold t is set, which can be thought of as the radius 

of a hypersphere in multi-dimensional chemistry space.  A compound is selected, either at random 

or using some rational basis, for inclusion in Subset and the algorithm then excludes from further 

consideration all those other compounds within the sphere centred on that selected compound, as 

shown in Figure 2.  Many variants are again possible, depending upon the manner in which Stage 

2 is implemented.  Thus, one can choose that molecule that is most dissimilar to the existing 

Subset, in which case different results will be obtained (as with the maximum dissimilarity 

algorithms) depending upon the dissimilarity definition that is adopted.  Alternatively, a 

compound can be selected at random, as in the MDISS (DiverseSolutions, 1996) and DIVPIK 

(Nilakantan et al., 1997) programs, this resulting in an exceptionally fast, but non-deterministic, 

algorithm.  Several examples of sphere-exclusion algorithms were evaluated by Snarey et al.

(1998), who found that they were broadly comparable in performance to the MaxMin maximum 

dissimilarity algorithm.

Insert Figure 2 about here

The close relationship that exists between these two classes of algorithm has recently been 

highlighted by Clark (1997), who describes a program called OptiSim (for Optimizable K-

Dissimilarity Selection) that is summarised in Figure 3 and that makes use of an intermediate pool 
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of selected compounds, here called Subsample.  An inspection of this figure shows that the mode 

of processing is determined by the value of K (the size of Subsample) that is specified, with values 

of K equal to 1 and to N corresponding to (versions of) sphere-exclusion and maximum 

dissimilarity, respectively.  Clark presents a detailed discussion of how the choice of K affects the 

behaviour of the algorithm and the trade-offs that are to be expected between what he describes as 

the representativeness of subsets generated by sphere-exclusion methods and the diversity of 

subsets generated by maximum-dissimilarity methods; a further discussion of these characteristics 

is provided by Clark and Langton (1998).  

Insert Figure 3 about here

In concluding this section, it is perhaps worth noting that the use of any selection procedure 

should be preceded by the application of a filtering mechanism to ensure the removal from further 

consideration of those molecules that exhibit some sort of undesirable characteristic (Walters et 

al., 1998).  Examples of such characteristics include: the presence in a molecule of highly reactive 

or toxic substructures that have been catalogued in a corporate “badlist” of undesirable fragments 

(Lajiness, 1997); and restrictions on the values of properties such as the molecular weight, the 

octanol-water partition coefficient, and the numbers of rotatable bonds and chiral centres (Lipinski 

et al., 1997).  Similar comments apply to the library design procedures discussed in the following 

sections of this paper.  

3.   REAGENT-BASED DESIGN OF COMBINATORIAL LIBRARIES

Thus far, we have considered dissimilarity-based algorithms for identifying a subset of an entire 

database; however, the rapid development of combinatorial chemistry methods has spurred the 

development of selection tools for designing combinatorial libraries.  Consider the simple amide 

reaction shown below, in which a primary amine is coupled with a carboxylic acid:

R1 NH2 HO
O

R2 NH R2

O
R1+

Databases of commercially available compounds, such as the Available Chemicals Directory, will 

reveal literally thousands of amines and acids (the R1 and R2, respectively) that might be used for 

this reaction: it is thus possible, in principle at least, to create a combinatorial library containing 

millions of amides if all of the possible reactions were to be carried out.  The similar property 

principle (Johnson and Maggiora, 1990) states that structurally similar molecules are expected to 
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exhibit similar properties and activities; thus, if many of the products in the reaction above are 

similar to each other, there is little novel structure-activity information to be gained from their 

synthesis.  Accordingly, it should be possible to increase the cost-effectiveness of lead-discovery 

programmes by synthesising just a subset of the entire combinatorial library, subject to that subset 

encompassing the full range of structural types present in that library.  One normally differentiates 

between a combinatorial library, which is the one that is actually synthesised and tested, and a 

virtual library, which is the library that would be obtained by the exhaustive enumeration of all of 

the possible products.  Typically, a virtual library exists only as a computer data structure, from 

which the actual combinatorial library is chosen with some selection algorithm (Cramer et al., 

1998).  

There are two basic approaches to the design of structurally diverse combinatorial libraries.  The 

initial approach, first described in detail by Martin et al. (1995), takes as its basis the assumption 

that if it is possible to identify maximally diverse (or, more realistically, near maximally diverse) 

sets of reactants, then their use will result in the generation of a maximally diverse combinatorial 

library of products when the reactants are combined in a combinatorial synthesis.  This reagent-

based approach is computationally attractive, as it means that the selection algorithm need only be 

applied to the individual sets of reagents, and it rapidly established itself as the method of choice 

for designing combinatorial libraries.  For example, assume that there are 1000 acids and 1000 

amines available within a company’s corporate files, and that there is the capacity to synthesise 

and test 10,000 amides; then these amides can be achieved by selecting 100 structurally diverse 

acids and 100 structurally diverse amines.  Analysis of the full virtual library, conversely, would 

require consideration of all 1,000,000 possible amide products, and this second, product-based

approach thus received little attention until recently (as discussed further in Section 4 of this 

paper).  

Any of the selection algorithms described above can be used for reagent-based selection, with the 

need for structural diversity increasingly being complemented by consideration of the 

physicochemical properties of the molecules involved (Martin and Critchlow, 1999).  Here, we 

describe a maximum dissimilarity selection algorithm that has been designed for reagent-based 

selection and that has the ability to find all possible subsets that satisfy an external diversity 

criterion, rather than just the single subset that is the output of most other algorithms that have 

been designed for this purpose.  The starting point for the work was a detailed verification of the 

similar property principle carried out by Brown and Martin (1996, 1997).  Given a molecule, I, of 
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known activity, Brown and Martin show that there is a high a priori probability that any near 

neighbour of I will also be active, where a near neighbour is deemed to be one that has a Tanimoto 

similarity of at least 0.85 when I and each of the other molecules in a database are characterised 

by Tripos UNITY 2D fingerprints.  While it is most unlikely that this precise value provides the 

best cut-off for all possible types of biological activity, it does provide a very simple basis for 

dissimilarity-based compound-selection, by applying a (dis)similarity threshold in Step 3 of 

Figure 1 to ensure that no two molecules in Subset will be strongly similar to each other.  The 

algorithm of Gardiner et al. (1998) is designed to identify all such subsets that satisfy this 

dissimilarity criterion.

Let M be an N N dissimilarity matrix in which M(I,J) contains the dissimilarity between the I-th 

and J-th compounds in a dataset containing N compounds (typically this dataset will be all of the 

available reagents of some particular type, e.g., all of the primary amines in the Available 

Chemicals Directory or in a company’s corporate database).  A subset-selection graph, G, is 

created from M by applying a threshold dissimilarity, t, and then setting each element M(I,J) to 

one (or zero) depending upon whether it is greater than (or not greater than) the threshold.  The 

complete set of subsets satisfying the dissimilarity criterion is then the set of cliques of size n (i.e.,

containing n vertices) in G, where a clique is a subgraph in which every vertex is connected to 

every other vertex and which is not contained in any larger subgraph with this property.  Clique 

detection is known to be NP-complete, except in the case of special types of graph, and the 

observation that diverse-subset selection and clique detection are equivalent is of little practical 

use unless it is possible to identify clique-detection algorithms that are sufficiently rapid in 

execution to permit the processing of subset-selection graphs of non-trivial size.  Algorithms for 

clique-detection in graphs have been extensively studied (Pardalos and Xue, 1994).  Gardiner et 

al. report a comparison of several such algorithms when applied to the processing of subset-

selection graphs, and suggest that one due to Babel (1991) is sufficiently fast to enable the 

procedure to be applied to the selection of reagents for combinatorial synthesis.  Once all of the 

subsets have been generated by the procedure, which is summarised in Figure 4, a further filtering 

step (based on criteria such as cost, physicochemical-parameter or diversity-index values or other 

characteristics such as those discussed at the end of Section 2), can be employed to identify the 

particular subset that will be chosen for use in some application (Gardiner et al., 1998).

Insert Figure 4 about here
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4.   PRODUCT-BASED DESIGN OF COMBINATORIAL LIBRARIES

Consider a combinatorial library, c, that is synthesised from reactants contained in two reactant 

pools, r1 and r2, of sizes n1 and n2, respectively (in the following, we consider only dimer 

libraries for the purpose of simplicity but the analysis can be extended to reactions that involve a 

greater number of reactants). These two reactant pools have previously been selected as 

representing diverse subsets of two larger potential-reactant pools, R1 and R2, of sizes N1 and N2,

respectively, using some subset-selection algorithm.  Let V be the corresponding virtual library,

i.e., the fully enumerated combinatorial library that would have been generated from all possible 

combinations of R1 and R2 if the subset-selection procedure had not been used.  Thus, c and V

contain n1n2 and N1N2 dimers, respectively.  The assumption underlying reagent-based selection 

is that the library c will be as diverse as a library obtained by employing the same subset-selection 

procedure that was used to create the reactant pools r1 and r2, (i.e., that was used to identify the 

n1 most dissimilar molecules in R1 and the n2 most dissimilar molecules in R2) to identify the 

most dissimilar n1n2-molecule library from amongst the N1N2 molecules in V.  This subset is 

referred to subsequently as library L.

The validity of this assumption was challenged by Gillet et al. (1997), who took three published 

combinatorial syntheses, generated libraries by both of the procedures described above, and then 

calculated the diversities of the two libraries using the diversity index described by Turner et al.

(1997): in all cases, the library L had a diversity that was greater than that of the library c.  Thus, 

the greater effort involved in generating L, which involves the analysis of N1 N2 product 

molecules as against the analysis of the N1+N2 reactant molecules required to generate c, results in 

an increase in the diversity of the final library.  However, while L is a library, it is not a 

combinatorial library in that it contains a maximally diverse set of independent product molecules, 

rather than a set that can be synthesised using a combinatorial reaction.  

The synthetic inefficiency that can result from performing selection at the product level is 

illustrated in Figure 5(a), in which a virtual library, V, built from two reactant pools is represented 

by a 9 9 matrix.  The rows of the matrix represent the N1 reactants (x1...x9) available in pool R1,

and the columns of the matrix represent the N2 reactants (y1...y9) in pool R2.  The N1N2 elements 

of the matrix then represent the full combinatorial library, V, that would result from reacting all 
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the reactants in R1 with all the reactants in R2.  Assume that we wish L to contain the nine most 

diverse compounds from C.  Then a selection algorithm can select compounds from anywhere 

within the matrix: for example, the resulting library might correspond to the shaded elements, as 

shown: such a “cherrypicking” approach is, of course, analogous to that employed when selecting 

individual compounds from a full database, as discussed in Section 3.  The potential synthetic 

inefficiency of this approach is highlighted by the fact that thirteen reactants are required to build 

the nine-member library (viz six reactants - x3, x4, x5, x6, x7 and x8 - from pool R1 and seven 

reactants - y1, y2, y4, y6, y7, y8 and y9 - from pool R2), rather than the three from each pool 

required to build a nine-member subset that is a combinatorial library.

A nine-member subset of V that does represent a true combinatorial library can be selected by 

intersecting three rows of the matrix with three columns: for example, a 3 3 library built from 

reactants x3, x6 and x8 reacted with reactants y2, y4 and y5 is shown by the shaded elements of the 

matrix in Figure 5(b).  Finding the optimal library then requires consideration of all possible n1n2-

member sets of products obtained by reacting combinations of n1 reagents selected from R1 and 

n2 reagents selected from R2.  We have devised a genetic algorithm (GA) for this demanding 

search problem, with each chromosome in the population representing one possible combinatorial 

library.  For an n1n2-member library, a chromosome consists of two parts: the first part represents 

the n1 reactants selected from pool R1 (i.e., the rows of the matrix) and the second part represents 

the n2 reactants selected from pool R2 (i.e., the columns of the matrix).  The fitness of a 

chromosome is obtained by constructing the n1n2-member combinatorial library represented by it, 

and then calculating the diversity of this library using a diversity index.  The index used here was 

the mean pairwise dissimilarity (specifically the complement of the Tanimoto coefficient) when 

averaged over all the pairs of molecules in a size-n1n2 library, the molecules being represented by 

molecular fingerprints.  This index is discussed by Pickett et al. (1998) and Turner et al. (1997) 

and was used here since it can be calculated very rapidly, a pre-requisite for use in a GA-based 

application where very large numbers of fitness values may need to be calculated.  The GA 

operators are applied to maximise the average diversity and hence to identify the maximally 

diverse library.  

Insert Figure 5 about here



12

Experiments with several published combinatorial library designs showed that the diversities of 

the libraries resulting from the GA’s product-based selection were consistently greater than the 

diversities of the corresponding libraries resulting from conventional reagent-based selection 

(Gillet et al., 1997).  As well as being effective in operation, the algorithm is also surprisingly 

efficient given the size of the search-space that needs to be explored, with the selection of 40 40

reagent pools from a 160,000-member virtual library requiring approximately 20 minutes for a C 

program running on a Silicon Graphics R10000 processor.  In addition to choosing a structurally 

diverse combinatorial library, the SELECT program of Gillet et al. (1999) also ensures that the 

constituent molecules exhibit “drug-like” properties.  This is achieved by means of a multi-

objective fitness function of the form

wD(D) + wC(C) + wf1 f1 + wf2 f2…

where the first term describes the diversity of the library that is being designed, as in the basic 

version of the GA described previously.  The second term is designed to force the library to be 

different from some existing reference collection; for example, it may be desirable to ensure that 

the library is maximally dissimilar from a library that has already been synthesised and tested.  

The remaining terms in the fitness function relate to physical properties of molecules that are 

thought to affect their ability to function as a drug (such as the molecular weight, the numbers of 

rotatable bonds, hydrogen donors and acceptors, and the octanol/water partition coefficient) and 

that can be calculated sufficiently rapid for the processing of libraries of realistic size.  A physical 

property of the library is optimised by comparing the distribution of its values in the library with 

the distribution of values of the same property in some reference collection (for which we use the 

World Drugs Index database of known drugs).  The various w terms act as weights that reflect the 

relative importance of each of the various components of the fitness function, thus allowing the 

designer to control the sorts of library that are produced (Gillet et al., 1999). 

Other types of combinatorial search algorithm can, of course, be used to explore library space, and 

there have been several reports of the use of simulated annealing (SA) for library design.  In this 

work, molecules are represented by principal components derived from calculated physical 

properties (topological and information content indices, and electronic, hydrophobic and steric 

descriptors) (Hassan et al., 1996) or by low-dimensionality autocorrelation vectors describing the 

distribution of the electrostatic potential over the van der Waals’ surface of a molecule (Agrafiotis, 

1997), and the scoring function for the SA uses one of several different inter-molecular distance 

functions in the resulting descriptor space.  Another example of the use of SA as a searching tool 

is provided by the HARPick program (Good and Lewis, 1997).  Here, a molecule is characterised 
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by its constituent three-point pharmacophores, these being generated from an approximate 3D 

structure, and the diversity of a set of molecules, such as a putative combinatorial library, is given 

by a function based on the number of distinct pharmacophores present in that particular library.  

As with SELECT, the scoring function encompasses not just structural diversity but also a 

physicochemical property.  Specifically, an attempt is made to ensure an approximately even 

distribution of a library’s members across three properties that provide a crude, but rapidly 

computable, measure of molecular shape: these are the number of heavy atoms in a molecule, the 

largest triangle perimeter for any of the three-point pharmacophores in that molecule, and the 

largest triangle area for any of these pharmacophores.  

5.   CONCLUSIONS

Computational methods for the processing of chemical structure information have been used to 

support drug-discovery programmes for more than three decades; however, the introduction of 

combinatorial approaches to drug discovery has now focused the industry’s interest on tools that 

can analyse and control the floods of chemical and biological data resulting from such approaches.  

In this paper, we have reviewed some of the techniques that have been developed for selecting 

diverse sets of compounds from chemical structure databases, both real (as with corporate 

structure files or files of available synthetic reagents) and virtual (as with fully enumerated 

combinatorial libraries), illustrating the techniques by focusing upon methods for dissimilarity-

based selection that have been developed in our laboratory in Sheffield.  

Although the techniques discussed here, and many others that have been reviewed elsewhere 

(Dean and Lewis, 1999), provide effective and efficient means of selecting compounds there is 

still much scope for further work.  A very simple, but important, task is that of comparing the 

many available methods to find those that are most suitable, both in terms of efficiency and 

effectiveness.  Such studies are now appearing in the literature (Brown and Martin, 1996, 1997; 

Matter, 1997; Patterson et al., 1996) but only that by Snarey et al. (1998) has provided a detailed 

analysis of some of the dissimilarity-based selection methods considered in this paper.  More 

importantly, the full value of methods for analysis molecular diversity will only be obtained when 

they are linked to other, existing approaches to computer-aided molecular design, such as ligand 

docking, pharmacophore mapping and quantitative structure-activity relationships (Martin and 

Willett, 1998): the merits of such linked approaches are well illustrated by very recent work on the 
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docking of combinatorial libraries (Jones et al., 1999; Kick et al., 1997), and we can expect many 

further such reports in the next few years. 
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1. Initialise Subset by transferring a compound from Dataset.

2. Calculate the dissimilarity between each remaining compound in Dataset and the 

compounds in Subset.

3. Transfer to Subset that compound from Dataset that is most dissimilar to Subset.

4. Return to Step 2 if there are less than n compounds in Subset.

Fig. 1.  General maximum-dissimilarity algorithm

1. Define a threshold dissimilarity, t.

2. Transfer a compound, J, from Dataset to Subset.

3. Remove from Dataset all compounds having a dissimilarity with J of less than t.

4. Return to Step 2 if there are compounds remaining in Dataset.

Fig. 2. General sphere-exclusion algorithm

1. Define a threshold dissimilarity, t.

2. Initialise Subset by transferring a compound, J, from Dataset.

3. Select a compound, J, from Dataset.  If it has a dissimilarity less than t with any 

compound in Subset then remove it from Dataset; otherwise add it to Subsample.

4. Repeat Step 3 until Subsample contains K molecules.  

5. Transfer to Subset that compound from Subsample that is most dissimilar to Subset.

Return the remaining members of Subsample to Dataset.

6. Return to Step 3 if there are less than n compounds in Subset.

Fig. 3.  OptiSim algorithm (Clark, 1997).

1. Define a threshold dissimilarity, t.

2. Generate an N N dissimilarity matrix in which M(I,J) contains the dissimilarity 

between molecules I and J.

3. Generate a graph, G, from M by setting each element M(I,J) to one (or zero) if it is 

greater than (or not greater than) t.

4. Use a clique-detection algorithm to identify the set of size-n cliques in G.

Fig. 4. Clique-based processing to identify all subsets meeting a dissimilarity criterion
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y1 y2 y3 y4 y5 y6 y7 y8 y9

x1 x1 y1 x1 y2 x1 y3 x1 y4 x1 y5 x1 y6 x1 y7 x1 y8 x1 y9

x2 x2 y1 x2 y2 x2 y3 x2 y4 x2 y5 x2 y6 x2 y7 x2 y8 x2 y9

x3 x3 y1 x3 y2 x3 y3 x3 y4 x3 y5 x3 y6 x3 y7 x3 y8 x3 y9

x4 x4 y1 x4 y2 x4 y3 x4 y4 x4 y5 x4 y6 x4 y7 x4 y8 x4 y9

x5 x5 y1 x5 y2 x5 y3 x5 y4 x5 y5 x5 y6 x5 y7 x5 y8 x5 y9

x6 x6 y1 x6 y2 x6 y3 x6 y4 x6 y5 x6 y6 x6 y7 x6 y8 x6 y9

x7 x7 y1 x7 y2 x7 y3 x7 y4 x7 y5 x7 y6 x7 y7 x7 y8 x7 y9

x8 x8 y1 x8 y2 x8 y3 x8 y4 x8 y5 x8 y6 x8 y7 x8 y8 x8 y9

x9 x9 y1 x9 y2 x9 y3 x9 y4 x9 y5 x9 y6 x9 y7 x9 y8 x9 y9

(a)

y1 y2 y3 y4 y5 y6 y7 y8 y9

x1 x1 y1 x1 y2 x1 y3 x1 y4 x1 y5 x1 y6 x1 y7 x1 y8 x1 y9

x2 x2 y1 x2 y2 x2 y3 x2 y4 x2 y5 x2 y6 x2 y7 x2 y8 x2 y9

x3 x3 y1 x3 y2 x3 y3 x3 y4 x3 y5 x3 y6 x3 y7 x3 y8 x3 y9

x4 x4 y1 x4 y2 x4 y3 x4 y4 x4 y5 x4 y6 x4 y7 x4 y8 x4 y9

x5 x5 y1 x5 y2 x5 y3 x5 y4 x5 y5 x5 y6 x5 y7 x5 y8 x5 y9

x6 x6 y1 x6 y2 x6 y3 x6 y4 x6 y5 x6 y6 x6 y7 x6 y8 x6 y9

x7 x7 y1 x7 y2 x7 y3 x7 y4 x7 y5 x7 y6 x7 y7 x7 y8 x7 y9

x8 x8 y1 x8 y2 x8 y3 x8 y4 x8 y5 x8 y6 x8 y7 x8 y8 x8 y9

x9 x9 y1 x9 y2 x9 y3 x9 y4 x9 y5 x9 y6 x9 y7 x9 y8 x9 y9

(b)

Fig. 5. A fully enumerated, dimer library (V) represented by a 9 9 matrix.  In (a) the shaded 

elements represent an example of a subset library, L, that contains the nine most diverse
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compounds and that was chosen by applying a selection algorithm to V.  In (b) the n1n2 subset of 

V is also a combinatorial library that can be selected by intersecting n1 rows with n2 columns.  
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