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Abstract 

 There is a need among chemists for the ability to cluster large numbers of chemical 

structures based on the presence of common substructural templates.  This paper describes a 

simple algorithm for this task that is based on a line graph interpretation of the proximity 

graph and on a graph representation of 2D chemical structures.  This permits the use of a 

graph-theoretic similarity measure based on the maximum common edge subgraph to 

determine the appropriate substructural template needed by the algorithm. 

 

1. Introduction 

 The clustering of chemical structures based on pair-wise inter-molecular structural 

similarities is well studied and has become an effective research tool in chemical information 

management [1], with the pair-wise similarities being calculated using graph-based or 

feature-based measures [2].  One of the potential limitations of the pair-wise similarity 

approach, however, is that it is possible for collections of structures exhibiting a sufficient 

degree of pair-wise similarity to be clustered together, but whose commonality is far less 

when considered from the perspective of all of the structures in the cluster.  Conversely, it is 

also possible to have a collection of chemical structures which would be classified together 

by a chemist based on a perceived substructural commonality but are classified into multiple 

clusters by a pair-wise similarity algorithm dependent upon the variation in the non-

conserved portion of the chemical structures.  What is desired is a clustering procedure that 

attempts to enforce collective similarity in a cluster of chemical structures by preserving a 

sufficient degree of substructural commonality. 
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 In this paper, we introduce a technique based on a line graph interpretation of clustering 

which allows structures to be classified based on common substructural cores rather than 

exclusively using a pair-wise similarity score.  It is suggested that this approach may more 

adequately mirror a chemist’s notion of chemical structure similarity than do existing 

approaches to the calculation of structural similarity.  The algorithm also allows structures 

exhibiting multiple classes of activity to be assigned to multiple clusters; thereby, resolving 

the problem of overlapping clusters without arbitrarily disconnecting related clusters which 

can result in a loss of important information. 

2. Definitions 

All graphs referred to in the following text are assumed to be labeled and undirected.  For 

an introduction to graph related concepts and notation, the reader is referred to an 

introductory text on graph theory [3].  A graph G consists of a set of vertices V(G) and a set 

of edges E(G).  The vertices in G are connected by an edge if there exists an edge ek = (vi,vj) 

Î E(G) connecting the vertices vi and vj in G such that vi Î V(G) and vj Î V(G).  The vertex 

and edge labels are denoted as w(vi) and w(vi,vk), respectively.  The set of vertices adjacent to 

vertex vi is the neighborhood, N(vi), of vi. 

A line graph L(G) is a graph whose vertex set consists of the edge set of G; therefore, if 

(vi, vj) is an edge in G it is also a vertex in L(G).  A pair of vertices in L(G) are adjacent if the 

two corresponding edges in G are incident on each other [4].  A maximum common edge 

subgraph (MCES) is a subgraph consisting of the largest number of edges common to both 

G1 and G2.  Note that the MCES between two graphs is not necessarily connected or unique 

by definition.  To illustrate these concepts, Figure 1(a) depicts the MCES between two graphs 

G1 and G2, and Figure 1(b) illustrates the line graph L(G) of graph G. 
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Figure 1.  a) MCES between graphs G1 and G2  b) Line graph of graph G 

 

 



3. Line Graph Formulation 

 As mentioned previously, the proposed clustering method addresses the question of 

whether objects should be clustered together by considering information in addition to a 

simple pair-wise measure of similarity.  A convenient means with which to compare 

graphical objects is the MCES between each pair of graphs.  It has been shown that the 

MCES is directly related to the edit distance between graphs [5, 6], providing a convenient 

description of graph similarity.  Recently, an efficient MCES algorithm for the purpose of 

calculating graph similarity has been published [2, 7, 8].  In the clustering procedure 

proposed here, pairs of graph objects are clustered with other pairs, based on how similar the 

corresponding MCESs are to each other. 

Using the terminology of Matula [9], the input to a clustering algorithm can be 

represented by a proximity graph (Gp) where each vertex of the proximity graph corresponds 

to an object being clustered, and an edge between any two vertices of the proximity graph is 

weighted with the pair-wise similarity value between the two objects represented by the 

edge’s two endpoint vertices.  Rather than clustering the vertices of the proximity graph, our 

algorithm clusters its edges.  This is accomplished by performing the clustering on the line 

graph of the proximity graph, L(Gp), rather than the proximity graph itself.  Since each vertex 

of L(Gp) corresponds to an edge in the proximity graph, it is weighted with the MCES 

corresponding to the edge in the proximity graph.  An edge of L(Gp) is weighted with the 

similarity between each pair of MCESs (i.e., the MCES between two MCESs). 

As an example of how the line graph approach  may better identify chemical series, a data 

set of 550 structures containing some well-defined series as well as numerous unrelated 

compounds was clustered in two ways: using the well-known Ward’s clustering method with 

the Kelley validation index [10]; and using the heuristic line graph-based algorithm proposed 

in this paper.  The Kelley validation index for a particular clustering at level l  is calculated 

using: 
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where n is the number of objects being clustered, lk  is the number of clusters, ld  is the 

average similarity of all clusters, and }min{d  and }max{d  are the minimum and maximum 

of ld  over all clustering levels, respectively. 

The 18 melatonin structures contained in the data set were all correctly clustered into a 

single series by the line graph-based algorithm, whereas, the Ward’s/Kelley approach 



separated the series into six different clusters.  In addition, the series of 10 bioflavanoid 

analogues and 5 steroid analogues were properly clustered into two distinct clusters by the 

line graph method, but the Ward’s/Kelley approach clustered the bioflavanoids into three 

different clusters and the steroids into two clusters.  The data set also contained three distinct 

opiate series: phenylpiperidines (9 compounds), phenylheptylamines (5 compounds), and 

phenanthrenes (12 compounds).  The proposed line graph procedure clustered the  

phenylpiperidines into two clusters, the phenylheptylamines into a single cluster, and the 

phenanthrenes into a single cluster.  The Ward’s/Kelley method clustered the 

phenylpiperidines into six clusters, the phenylheptylamines into a single cluster, and the 

phenanthrenes into two clusters. 

 Although the proposed line graph approach to clustering may better reflect the desired 

description of chemical graph similarity desired by many chemists (by focusing on how 

chemicals are similar in addition to the magnitude of that similarity), any line graph-based 

formulation suffers a potentially significant limitation.  Since a proximity graph consisting of 

N vertices can contain O(N2) edges, L(Gp) can contain O(N2) vertices and O(N4) edges, with 

the result that the line graph approach can become computationally infeasible for large N.  

Hence, the proposed line graph algorithm employs several simplifying heuristics in an 

attempt to preserve the desirable characteristics of the line graph formulation while 

significantly reducing the computational burden in practice. 

 

4. Algorithm 

 The output of the proposed algorithm is “fuzzy” in the sense that an object being 

clustered can appear in more than one cluster.  This is a potentially desirable feature in a 

clustering algorithm when dealing with possibly overlapping clusters. 

The proposed algorithm is given in the following series of steps: 

Step 1:  Calculate Proximity Graph Similarity Values 

Calculate the MCES-based similarity between each pair of chemical graphs being 

clustered [2, 8] and establish a minimum similarity threshold, pGS , for which the edge 

corresponding to any pair-wise similarity value not meeting the threshold value is deleted 

from the proximity graph (Gp).  This has the effect of significantly reducing the number of 

edges in Gp (i.e., vertices in L(Gp)) and should not detrimentally affect the clustering results 

as chemical structures exhibiting similar biological activity tend to exhibit similar graph-

based similarity [2, 11].  Each edge in the proximity graph is therefore weighted with the 



corresponding MCES-based similarity value if it exceeds the threshold value; otherwise, no 

edge exists.   

Step 2:  Determine Connected Components 

Next, Gp is separated into connected components (i.e., disconnected subgraphs) since 

deleting edges not exceeding threshold similarity pGS  may disconnect the proximity graph.  

This is a simple O(N2) operation [12]. 

Step 3: Generate Sub-Cluster Sequences  

This step is performed for each connected component of Gp.  Generate a sub-cluster 

sequence for each connected component by separating the neighborhood of each vertex vi in 

each component using the following procedure:  For each vertex ( )m
i pv V GÎ , where m

pG  

denotes the mth component of the proximity graph Gp, separate the edges of the neighborhood 

of vi present in the mth component, denoted ( )m
iN v , into sub-clusters by calculating the 

similarity between pairs of edges in ( )m
iN v  and dividing the set of edges based on these 

calculated similarities.  The nth sub-cluster generated for the mth component will be denoted 

by m
nC . 

Since the similarity between each neighborhood edge is defined using the MCES between 

two MCESs, the choice of similarity coefficient is important.  Suppose an edge in ( )m
iN v  

corresponds to an MCES between two chemical graphs which are almost identical and 

another edge in ( )m
iN v  corresponds to an MCES between one of these two chemical graphs 

and a third chemical graph.  The two MCESs represented by the two edges in ( )m
iN v  may in 

fact both contain the same substructural template characterizing the perceived 

pharmacological activity, but since the MCES between the two almost identical chemical 

graphs can be substantially larger than the other MCES, a similarity coefficient which 

considers the size of each MCES equally may not adequately describe the desired description 

of similarity between the two pairs of compounds. 

To avoid this potential limitation, it is suggested that the asymmetric similarity coefficient 

be used to calculate the similarity between neighborhood edges.  This is 

,, / min{ , }ij ik ij ikij ikS G G G= ,  

where |Gij| and |Gik| are the sizes of the MCESs between the pairs of chemical graphs (Gi, Gj) 

and (Gi, Gk) in the proximity graph, respectively, and |Gij,ik| is the size of the MCES between 

the MCESs Gij and Gik.  Two edges in ( )m
iN v  are assigned to the same sub-cluster using a 



greedy procedure if the value of Sij,ik exceeds a specified intra-cluster similarity value, Sa.  

Given M connected components in the proximity graph, this process will result in M distinct 

sub-cluster sequences being generated. 
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Figure 2.  MCES Similarity Example 

Figure 2 illustrates this scenario.  First we define |G| as +)(GV  

( )( ) )(11 GEnG
p ×-×-× ab  where |V(G)| and |E(G)| are the number of atoms and bonds in the 

chemical graph, respectively.  The variable G
pn  represents the number of unconnected 

subgraph components in graph G containing p or more edges.  If all subgraphs have fewer 

than p edges, then G
pn  will be assumed to be the total number of subgraph components.  The 

constant b  reflects the additional weight assigned to matched bond pairs with respect to 



compatible atoms, and the constant a  is a penalty score for each unconnected component 

present in G.  In previous studies, we have found values of  p=3, = 0.05a , and 2.0b =  seem 

to be effective in discerning chemical similarity [2]. 

 It can be seen in Figure 2(a) that all of the graphs (G1, G2, and G3) are related by a 

xanthine substructural moiety.  Both G1 and G2 are very similar, and the MCES (G12) is hence 

very large.  However, when G1 is compared to G3, the G13 is much smaller than G12 even 

though all three chemical graphs under consideration are xanthine-based compounds. 

Figure 2(b) demonstrates the comparison between MCES graphs G12 and G13.  Using the 

asymmetric coefficient to compute the degree of similarity based on G12,13 yields 

S12,13=44/min{65,44}=1, strongly indicating that G12 and G13 should be grouped together 

(indicating, indeed, that G13 is a subgraph of G12).  However, using the Tanimoto coefficient 

which is given as ( )ikijikijikijikij GGGGS ,,, / -+=  yields 68.0)444465/(4413,12 =-+=S  

which is significantly lower. 

Step 4: Merge Sub-Clusters  

The final clustering of Gp is achieved by merging each sub-cluster sequence into full 

cluster(s).  In this procedure, each of the m sub-cluster sequences is considered individually.  

The size of each sub-cluster, m
nC , in a particular sub-cluster sequence is determined by 

summing the number of distinct vertices preserved when the edges contained in each sub-

cluster are projected onto the proximity graph (i.e., the number of unique chemical graphs 

represented in each sub-cluster).  The sub-clusters in each sequence are then sorted in order 

of decreasing value of m
nC . 

A greedy procedure is then used to merge the sub-clusters in each sequence using the 

property that the current cluster and a sub-cluster are merged into a larger cluster if the 

similarity value based on the number of structures in common exceeds a threshold value, Sb.  

For instance, if the cluster and the sub-cluster contain 6 and 4 unique structures, respectively, 

and they have 3 structures in common, then the asymmetric coefficient yields a similarity 

S=3/min{6,4}=0.75.  If 0.75 > Sb, then the cluster and sub-cluster would be merged into a 

single cluster.  The number of clusters resulting from the merging procedure will be greater 

than or equal to M. 

To illustrate how ordering the sub-clusters in order of non-increasing values of m
nC , a 

simple test was performed on a set of 358 compounds of various activities.  The threshold 

values used in the analysis for SGP, Sa, and Sb were 0.7, 0.9, and 0.6, respectively, with SGP 



being determined using the Tanimoto similarity coefficient.  Two different clustering 

simulations were performed.  One was run using the suggested ordering of sub-clusters, and 

the other was run using random selection.  Each resultant clustering was then compared to a 

manually constructed clustering of the same data set using the Jaccard cluster similarity 

coefficient [13] which ranges from 0 to 1 with 1 indicating the two clustering are identical.  

The suggested ordering resulted in a Jaccard coefficient value of 0.61, whereas, the random 

selection resulted in a Jaccard value of 0.55, indicating a slight advantage for the suggested 

ordering. 

5. Pseudo-Code 

The algorithm is given more succinctly in pseudo-code below. 
Input: Set of N graphs, similarity thresholds SGp, Sa, and Sb 
Output: Set of final clusters A 
Procedure Line Graph Cluster() 
{ 
 Generate the proximity graph (Gp) using an MCES similarity. 
 Prune the edges in Gp not exceeding SGp. 
 Separate Gp into M connected components. 
 Generate Sub-Cluster Sequences. 
 Merge Sub-Clusters into cluster subgraphs.  
} 
 
Input: Set of M connected components in Gp 
Output: Set of M sub-cluster sequences mC  
Procedure Generate Sub-Cluster Sequences() 
{ 
 For each connected component m

p pG GÎ  
 { 
  Set n:=1. 
  For each vertex vi m

pGÎ  
  { 
   Identify ( )m

iN v , the neighborhood of vi in m
pG . 

   Set P:=E( ( )m
iN v ). 

Sort the edges in P in order of non-increasing similarity. 
While P ¹ Æ  do 

   { 
    Set :mnC =Æ. 
    Select the first unclustered edge ek in P. 
    Assign ek to sub-cluster m

nC  (i.e., m
nC := m

nC Uek). 
    Remove ek from P (i.e., P:=P\ek).   
    While ]and)[( ajkjj SSPee ³Î$  do 
    {     

Select the first unclustered edge ej in P with an MCES 
asymmetric similarity ajk SS ³ . 

     Set m
nC := m

nC Uej. 
     Set P:=P\ej. 
    } 
    Set n:=n+1.  



   } 
  } 
 } 
} 
 
Input: Set of M sub-cluster sequences mC  
Output: Set of final clusters A 
Procedure Merge Sub-Clusters() 
{ 
 Set i:=1. 
 For each sub-cluster sequence mC  
 { 

Sort the sub-clusters m
nC  of mC  in order of decreasing value of m

nC . 
  While mC ¹ Æ  do 
  { 
   Set Ai:=Æ . 
   Select first unclustered sub-cluster m

nC  in mC . 
   Assign m

nC  to cluster Ai (i.e., Ai:=Ai U m
nC ). 

   Remove m
nC  from mC  (i.e., mC := mC \ m

nC ). 
   While ]|[)( bCA

mm
n

m
n SSCCC m

ni
³Î$  do 

   { 
    Select the first unclustered sub-cluster m

nC  in mC | 
    bCA

SS m
ni

³ . 

    Set Ai:= Ai U
m
nC . 

    Set mC := mC \ m
nC . 

   } 
   Set i:=i+1. 
  } 
  Set i:=i+1. 
 } 
} 

The algorithmic complexity of the proposed algorithm in the average case is difficult to 

determine.  In practice, it has been found that the MCES comparison is the time-limiting step, 

and the time for clustering is dominated by the number of necessary MCES comparisons 

rather than the number of clustering specific operations. 
6. Conclusion 

 In this paper, we have addressed the clustering of chemical structures represented as 

graphs based on the concept of a common substructural core using a novel line graph 

approach.  The technique has been presented in terms of a graph-based similarity measure 

involving the MCES between two structures represented as chemical graphs although it is 

equally applicable for use with a feature-based similarity method such as chemical 

fingerprints where the bits in common between the two fingerprints are used in lieu of the 

MCES.  Since a naïve implementation of the line graph approach is computationally 

demanding, a heuristic algorithm has been proposed that employs three user-specified 



similarity threshold parameters to reduce the number of comparisons necessary to form the 

final clustering. 

In preliminary testing of the proposed algorithm, it has been found that values of SGp, Sa 

and Sb in the ranges (0.7-0.75), (0.8-0.85), and (0.6-0.7), respectively, seem to work well, 

although further testing is required to establish whether the optimal values fall within these 

ranges. The SGp values assume that the Tanimoto coefficient is used and that p=3, = 0.05a , 

and 2.0b = .  The Sa range is based on the asymmetric coefficient with a  equal to zero (i.e., 

no fragmentation penalty), and the Sb range is also based on the asymmetric coefficient. 

Initial time comparisons indicate that the proposed algorithm is approximately 20% to 

50% slower than Ward’s/Kelley clustering on data sets ranging from a few hundred to over a 

thousand compounds with the time difference decreasing as the data set size increases for 

MCES-based similarity calculations.  The time difference is due to the sub-cluster sequence 

generation procedure used in the proposed algorithm.  Having described this algorithm in 

detail, it now remains to compare its effectiveness for the clustering of chemical structures 

when compared with existing approaches and to establish the optimal values for the threshold 

parameters: this work will be reported shortly. 

Aside from the proposed clustering algorithm, the line graph interpretation of clustering 

introduced in this paper may prove to be useful in future clustering applications using 

existing or specifically tailored algorithms. 

Acknowledgments 

We thank the following: Pfizer (Ann Arbor) for funding; John Blankley, Alain Calvet, 

Eric Gifford, Christine Humblet, and Sherry Marcy for helpful advice and support.  The 

Krebs Institute for Biomolecular Research is a designated centre of the Biotechnology and 

Biological Sciences Research Council. 

References 

1. P. Willett, Similarity and Clustering in Chemical Information Systems, Research Studies 

Press, (1987). 

2. J. Raymond and P. Willett, Effectiveness of Graph-Based and Fingerprint-Based 

Similarity Measures for Virtual Screening of 2D Chemical Structure Databases, J. 

Comput.-Aided Mol. Des., in the press.  

3. R. Diestel, Graph Theory, Springer-Verlag, (2000). 

4. A. van Rooij and H. Wilf, The Interchange Graph of a Finite Graph, Acta Math. Hungar., 

16 (1965), 263-269. 



5. H. Bunke, On a Relation Between Graph Edit Distance and Maximum Common 

Subgraph, Patt. Recog. Lett., 18 (1997), 689-694. 

6. G. Chartrand, F. Saba and H. Zou, Edge Rotation and Distance Between Graphs, Cas. 

Pest. Mat., 110 (1985), 87-91. 

7. J. Raymond, E. Gardiner and P. Willett, Heuristics for Rapid Similarity Searching of 

Chemical Graphs Using a Maximum Common Edge Subgraph Algorithm, J. Chem. Inf. 

Comput. Sci., 42 (2002), 305-316. 

8. J. Raymond, E. Gardiner and P. Willett, RASCAL:  Calculation of Graph Similarity 

Using Maximum Common Edge Subgraphs, Comput. J., in the press.  

9. D.W. Matula, Graph Theoretic Techniques for Cluster Analysis Algorithms, in: 

Classification and Clustering, J. Van Ryzin, Ed., Academic Press (1977), 95-129. 

10. D.J. Wild and C.J. Blankley, Comparison of 2D Fingerprint Types and Hierarchy Level 

Selection Methods for Structural Grouping Using Ward’s Clustering, J. Chem. Inf. 

Comput. Sci., 40 (2000), 155-162. 

11. M. Johnson, Relating Metrics, Lines and Variables Defined on Graphs to Problems in 

Medicinal Chemistry, in: Graph Theory and Its Applications to Algorithms and Computer 

Science, Y. Alavi, et al., Ed., J. Wiley & Sons (1985), 457-470. 

12. E. Allburn, Graph Decomposition: Imposing Order on Chaos, Dr. Dobbs J., 16 (1991), 

88,90-2,94-6,118-20,122,124. 

13. G.W. Milligan, A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster 

Analysis, Psychometrika, 46 (1980), 187-199. 


	Front Page Cover
	A Line Graph Algorithm for Clustering Chemical Structures Based on Common Substructural Cores Accepted

