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To construct the geometry in nonflat spaces in order to understand nature has great importance in terms of applied science. Finsler
geometry allows accurate modeling and describing ability for asymmetric structures in this application area. In this paper, two-
dimensional Finsler space metric function is obtained forWeibull distribution which is used in many applications in this area such
as wind speed modeling. The metric definition for two-parameter Weibull probability density function which has shape (𝑘) and
scale (𝑐) parameters in two-dimensional Finsler space is realized using a different approach by Finsler geometry. In addition, new
probability and cumulative probability density functions based on Finsler geometry are proposed which can be used in many real
world applications. For future studies, it is aimed at proposing more accurate models by using this novel approach than the models
which have two-parameter Weibull probability density function, especially used for determination of wind energy potential of a
region.

1. Introduction

Two-parameter Weibull function is one of the most used dis-
tribution functions for different purposes such as modeling,
reliability analysis, life time data analysis, and many applied
science areas such as mechanic, biosystem, nuclear, and
energy system engineering [1–6]. In the literature studies, it is
seen that two-parameter Weibull distribution is mainly used
for the determination ofwind energy potential in the different
regions in the world [7–14]. The reasons that the usage of
two-parameterWeibull distribution in this area are very good
fit to the wind distribution, flexible structure of distribution,
and having two-parameter. Also, after the determination of
parameters for an observation height, parameters can be
estimated for different height.

Before the installation of a wind energy conversion sys-
tem in a region, the wind speed potential of that region needs
to be determined and modeled. In line with this purpose,
the most important problem of modeling by two-parameter
Weibull distribution is accuracy estimation of parameters
associated with designing optimal model. In accordance
with this purpose, many different statistical and empirical

methods are developed in the literature [15–19]. Also, dif-
ferent function structures such as Rayleigh, Lognormal,
Gamma, and Burr are used for accurately modeling wind
speed in the literature [20–22]. Determination of a new
distribution function in order to develop correct and accurate
model structure has importance for wind speed modeling in
different regions and other real world application problems.

The fact that the wind speed and similar distributions
have a nonsymmetrical and unstable character brings along
many difficulties from the stand point of modeling. In this
context, Finsler geometry is a very strong tool than well-
knownRiemann geometry formodeling physical phenomena
that are genuinely asymmetric and/or nonisotropic [23–26].

Finsler metric function whose geodesics have two-
parameter family of curve in Finsler space is obtained byMat-
sumoto [27–29]. In this paper, Finslermetrics which are asso-
ciated with different 𝑛 parameters, defined in nonnegative
real numbers, are derived and they are obtained by Weibull
distribution function which has two-parameter curve family.
In addition, new probability and cumulative probability
density functions based on Finsler geometry are proposed
in this paper. Calculation of geodesics that have Finsler
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Figure 1: Probability and cumulative probability densities at 10m height for sample wind speed data.

metrics and novel two-parameter probability and cumulative
probability density functions is evaluated for chosen dif-
ferent nonnegative numbers, comparatively. Two-parameter
Weibull distribution function structure is presented with
an example in Section 2. Definition of Weibull distribution
that has two-parameter family of curve and Finsler metrics
that are obtained for two-parameter curve family are given
in Section 3. In the last section, Finsler metrics that have
two-parameter Weibull distribution function family of curve
and their geodesics are evaluated for nonnegative different𝑛 numbers, comparatively. Finally, conclusions are given in
Section 5.

2. Two-Parameter Weibull Distribution

Two-parameter Weibull distribution is used in many real
world applications. In this section, the structure of the two-
parameter Weibull distribution function will be discussed on
the real world problem such as the wind speed distribution
which has a nonlinear structure in the asymmetric platform.

Two-parameter Weibull distribution is one of the widely
used statistical methods in the modeling of wind speed data.
The Weibull distribution function is given by the following
[30–36]:

𝑓 (V) = 𝑘
𝑐 (

V
𝑐)
𝑘−1 𝑒−(V/𝑐)𝑘 , (1)

where 𝑓(V) is the frequency or probability of occurrence of
wind speed V, 𝑐 is theWeibull scale parameter with unit equal
to the wind speed unit (m/s), and 𝑘 is the unitless Weibull
shape parameter.The higher value of 𝑐 indicates that the wind

speed is higher, while the value of 𝑘 shows the wind stability
[37].

The cumulative Weibull distribution function 𝐹(V) gives
the probability of the wind speed exceeding the value V. It is
expressed by the following [38, 39]:

𝐹 (V) = 1 − 𝑒−(V/𝑐)𝑘 . (2)

Probability and cumulative probability density function with
sample wind speed data that is Bilecik region in Turkey are
shown in Figure 1 for two-parameter Weibull distribution in
which scale (𝑘) and shape (𝑐) parameters are calculated, 1.9416
and 2.5110, respectively, by maximum likelihood method.

3. Finsler Metrics for Two-Parameter
Family of Curves

In a two-dimensional space, a continuous function𝐹 : 𝑇𝑀 →[0,∞) is called a Finsler metric on a 𝐶∞ manifold 𝑀 if it
satisfies the following conditions.

(i) 𝐹(𝑥, 𝑦; 𝑥̇, 𝑦̇) is 𝐶∞ on 𝑇𝑀 \ {0}.
(ii) 𝐹(𝑥, 𝑦; 𝜆𝑥̇, 𝜆𝑦̇) = 𝜆𝐹(𝑥, 𝑦; 𝑥̇, 𝑦̇), 𝜆 > 0.
(iii) 𝑔𝑖𝑗(𝑥, 𝑦; 𝑥̇, 𝑦̇), the fundamental metric tensor, is posi-

tively defined, where (𝑥, 𝑦) denotes the coordinates of𝑝 ∈ 𝑀 and (𝑥, 𝑦; 𝑥̇, 𝑦̇) denotes the local coordinates
of (𝑥̇, 𝑦̇) ∈ 𝑇𝑝𝑀 [40, 41].

On the purpose of determination of Finsler metrics and their
geodesics in two-dimensional Finsler space belonging to two-
parameter Weibull distribution that has scale (𝑘) and shape
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(𝑐) parameters calculations are made as follows based on
Matsumoto article [28].

Two-parameter family of curves

𝑦 = 𝑓 (𝑥; 𝑎, 𝑏) (3)

is given in (3). Let us take the family of 𝐶(𝑎, 𝑏) curve that is
given with this equation in 𝑥𝑦-plane. Our primary aim is to
show how to find the 𝐹2 = (R2, 𝐿(𝑥, 𝑦; 𝑥̇, 𝑦̇) two-dimensional
Finsler space. Darboux’s method for solving of this problem
has been discussed in our study.

First, from (3) we get

𝑧 (= 𝑦󸀠) = 𝑓𝑥 (𝑥; 𝑎, 𝑏) , (4)

and solution of 𝑎 and 𝑏 as function of 𝑥, 𝑦, and 𝑧 from (3) and
(4) is as follows:

𝑎 = 𝛼 (𝑥, 𝑦, 𝑧) ,
𝑏 = 𝛽 (𝑥, 𝑦, 𝑧) . (5)

Then,

𝑧󸀠 = 𝑓𝑥𝑥 (𝑥; 𝛼, 𝛽) = 𝑢 (𝑥, 𝑦, 𝑧) (6)

is the second-order differential equation of 𝑦 which charac-
terizes 𝐶(𝑎, 𝑏) two-parameter curve family.

We will use (𝑥, 𝑦) ve (𝑥̇, 𝑦̇) = (𝑝, 𝑞) instead of (𝑥1, 𝑥2)
and (𝑦1, 𝑦2), respectively, in 𝐹2 Finsler space. Accordingly,
differential of the arc length of the 𝐶(𝑎, 𝑏) curve is

𝑑𝑠 = 𝐿 (𝑥, 𝑦; 𝑥̇, 𝑦̇) 𝑑𝑡,
(𝑥̇, 𝑦̇) = (𝑑𝑥𝑑𝑡 ,

𝑑𝑦
𝑑𝑡 ) .

(7)

Assuming 𝑥̇ > 0, 𝑑𝑠 = 𝐿(𝑥, 𝑦; 1, 𝑦̇/𝑥̇)𝑥̇𝑑𝑡. Using 𝑦󸀠 = 𝑑𝑦/𝑑𝑥,
𝑑𝑠 = 𝐴 (𝑥, 𝑦, 𝑦󸀠) 𝑑𝑥 (8)

is obtained. From here

𝐴(𝑥, 𝑦, 𝑦󸀠) = 𝐿 (𝑥, 𝑦; 1, 𝑦󸀠) (9)

is acquired. Inversely, this can be written.

𝐿 (𝑥, 𝑦; 𝑥̇, 𝑦̇) = 𝐴(𝑥, 𝑦, 𝑦̇𝑥̇) 𝑥̇. (10)

Geodesic is curve that minimized 𝑠 = ∫𝑡
𝑡0
𝐿(𝑥, 𝑦; 𝑥̇, 𝑦̇)𝑑𝑡

length integral that it is calculated along a curve and obtained
from Euler equations in (11).

𝑥̈𝑖 + 2𝐺𝑖 (𝑥, 𝑦; 𝑥̇, 𝑦̇) = 0. (11)

Defined in (11), spray coefficients are given as follows:

𝐺𝑖 (𝑥, 𝑦; 𝑥̇, 𝑦̇) = 1
2𝑔𝑖𝑙 {

𝜕2𝐹
𝜕𝑥𝑗𝜕𝑦𝑙𝑦𝑗 −

𝜕𝐹
𝜕𝑥𝑙} , (12)

where 𝐹(𝑥, 𝑦; 𝑥̇, 𝑦̇) = 𝐿2(𝑥, 𝑦; 𝑥̇, 𝑦̇)/2 refers to Finsler metric.

Euler equations are rewritten in Rashevsky form as
follows:

𝐴𝑧𝑧𝑦󸀠󸀠 + 𝐴𝑦𝑧𝑦󸀠 + 𝐴𝑧𝑧 − 𝐴𝑦 = 0, 𝑧 = 𝑦󸀠. (13)

Here, defined in (9),𝐴(𝑥, 𝑦, 𝑧) is associatedwith fundamental
function.

According to Darboux’s theorem definition of the basic
metric [27],

𝐴 (𝑥, 𝑦, 𝑧) = ∫𝑧
0
(𝑧 − 𝑡)𝐻 (𝑡, 𝑦 − 𝑡𝑥) 𝑑𝑡 + 𝑧𝐸𝑦 + 𝐸𝑥 (14)

is given, where 𝐻(𝛼, 𝛽) and 𝐸(𝑥, 𝑦) are arbitrarily chosen.
Fundamental metric function is given another form by [28]

𝐿 (𝑥, 𝑦, 𝑥̇, 𝑦̇) = 𝑥̇ ∫𝑧
0
(𝑧 − 𝑡)𝐻 (𝑡, 𝑦 − 𝑡𝑥) 𝑑𝑡 + 𝑥̇𝐸𝑥

+ 𝑦̇𝐸𝑦.
(15)

The corresponding Finsler metric is derived by the two-
parameter Weibull distribution function instead of two-
parameter family of curves. First, the two-parameter cumu-
lative Weibull distribution function in (2) is linearized to
calculate 𝛼, 𝛽, 𝑢 variables in a simpler form.

In (2), applying some mathematical calculations is as
follows:

𝑦 = log [− log (1 − 𝐹 (V))] = 𝑘 log V
𝑐 , (16)

𝑦 = 𝑘𝑥 − 𝑘 log 𝑐 (17)

is obtained as linear equation, where 𝑥 = log V. Finally,

𝑦 = 𝑓 (𝑥; 𝑘, 𝑐) (18)

is defined. When the given curve family is linear, some of the
necessary quantities are obtained as follows [28]:

𝛼 = 𝑧,
𝛽 = 𝑦 − 𝑧𝑥,
𝑢 = 0.

(19)

Different Finsler metrics and their geodesics resulting from
selection 𝐻(𝛼, 𝛽) and 𝐸(𝑥, 𝑦) arbitrary functions are dis-
cussed in the next section for family of curves that has two-
parameter Weibull distribution.

4. Finsler Metrics and Geodesics for
Two-Parameter Weibull Distribution

Different Finslermetrics for two-parameterWeibull distribu-
tion function will be obtained for 𝑛 arbitrarily nonnegative
real number by choice of𝐻(𝛼, 𝛽) = 𝛽𝑛 in (15).Hence, with the
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selection of𝐻(𝑧, 𝑦−𝑧𝑥) = 𝛽𝑛 = (𝑦−𝑧𝑥)𝑛 and𝐸 = constant in
(15), metric function that hasWeibull distribution is obtained
in the form of

𝐿 (𝑥, 𝑦, 𝑥̇, 𝑦̇) = 𝑦(𝑛+2)𝑥̇
𝑥2

𝑛∑
𝑘=0

(𝑛 + 2
𝑘 + 2)(−𝑥𝑦̇𝑦𝑥̇)

(𝑘+2) . (20)

It can be easily seen that the obtained function provides the
Finsler metric conditions.𝐿𝑛 and𝐺𝑖𝑛, respectively,metric function defined in 𝑛 value
and spray coefficients, for integer selection of 𝑛 = 2 and 5, are
calculated as

𝐿2 (𝑥, 𝑦, 𝑝, 𝑞) = 𝑞2𝑥2 (𝑞2𝑥2 − 4𝑝𝑞𝑥𝑦 + 6𝑝2𝑦2)
𝑥2𝑝3 ,

𝐿5 (𝑥, 𝑦, 𝑝, 𝑞) = 𝑞2𝑥2 (−𝑞5𝑥5 + 7𝑝𝑞4𝑥4𝑦)
𝑥2𝑝6

− 21𝑝2𝑞3𝑥3𝑦2 + 35𝑝3𝑞2𝑥2𝑦3
− 35𝑝4𝑞𝑥𝑦4 + 21𝑝5𝑦5.

(21)

Spray coefficients for Finsler metrics related to these equa-
tions are found by (12).

𝐺21 = 𝑝2𝑞 (−𝑞𝑥 + 4𝑝𝑦)
𝑞2𝑥2 − 4𝑝𝑞𝑥𝑦 + 6𝑝2𝑦2 ,

𝐺22 = 𝑝𝑞2 (−𝑞𝑥 + 4𝑝𝑦)
𝑞2𝑥2 − 4𝑝𝑞𝑥𝑦 + 6𝑝2𝑦2 ,

𝐺51 = 𝑝𝑞2 (𝑞4𝑥4 − 7𝑝𝑞3𝑥3𝑦 + 21𝑝2𝑞2𝑥2𝑦2 − 35𝑝3𝑞𝑥𝑦3 + 35𝑝4𝑦4)
−𝑞5𝑥5 + 7𝑝𝑞4𝑥4𝑦 − 21𝑝2𝑞3𝑥3𝑦2 + 35𝑝3𝑞2𝑥2𝑦3 − 35𝑝4𝑞𝑥𝑦4 + 21𝑝5𝑦5 ,

𝐺52 = 𝑝2𝑞 (𝑞4𝑥4 − 7𝑝𝑞3𝑥3𝑦 + 21𝑝2𝑞2𝑥2𝑦2 − 35𝑝3𝑞𝑥𝑦3 + 35𝑝4𝑦4)
−𝑞5𝑥5 + 7𝑝𝑞4𝑥4𝑦 − 21𝑝2𝑞3𝑥3𝑦2 + 35𝑝3𝑞2𝑥2𝑦3 − 35𝑝4𝑞𝑥𝑦4 + 21𝑝5𝑦5 .

(22)

As can be seen easily from the calculated values, spray coef-
ficients are 𝐺𝑛1 = (𝑝/𝑞)𝐺𝑛2 for the 𝑛 arbitrary nonnegative
integer. In this case, 𝑦󸀠󸀠 is always zero when substituted spray
coefficients in (22) to (23) give the geodesics; we get

𝑦󸀠󸀠 = 2 ∗ (𝐺1𝑞 − 𝐺2𝑝)
𝑝3 . (23)

This gives us 𝑦 = 𝐶1𝑥 + 𝐶2 linear function structure where𝐶1 and 𝐶2 are the integration constants. In the calculation
steps, if substituting this value to (17), two-parameterWeibull
probability and cumulative probability functions that are the
same in (1) and (2) are obtained for nonnegative all integer
values of 𝑛.

If the same calculation steps are repeated for arbitrary
positive rational numbers, 𝑛 = 1/2 and 11/12, we get

𝐿1/2 (𝑥, 𝑦, 𝑝, 𝑞) = 15𝑞2𝑥2√𝑦
8𝑥2𝑝 ,

𝐿11/12 (𝑥, 𝑦, 𝑝, 𝑞) = 805𝑞2𝑥2𝑦11/12
288𝑥2𝑝 .

(24)

Spray coefficients are found.

𝐺1/21 = 𝐺11/121 = 0,
𝐺1/22 = 𝑞2

8𝑦 ,

𝐺11/122 = 11𝑞2
48𝑦 .

(25)

Substituting spray coefficients in (25) to (23), we obtain
second-order differential equation of 𝑦 with respect to 𝑥.

𝑦󸀠󸀠 = 𝐾𝑦󸀠2
𝑦 , (26)

where𝐾 is a coefficient dependent on 𝑛. It is apparent that𝐾
are −1/4, −11/24 for 𝑛 = 1/2, 11/12, respectively. In this case,
it can be seen that relation between 𝑛 and 𝐾 is 𝐾 = −(1/2)𝑛.
For all nonnegative rational numbers, when the differential
equation in (26) is solved,

𝑦 = (𝐶2𝑥 + 2
𝑛 + 2𝐶1)

2/(𝑛+2)

(27)

is found, where 𝐶1 and 𝐶2 are the integration constants. Sub-
stituting 𝑦 to (17), new two-parameter cumulative function
is

𝐹new (V; 𝐶1, 𝐶2) = 1 − 𝑒−(2/(𝑛+2))V𝐶2 𝑒(2/(𝑛+2))𝐶1 . (28)

Setting 𝑎 = 2/(𝑛 + 2), it is rewritten in the form

𝐹new (V; 𝐶1, 𝐶2) = 1 − 𝑒−𝑎V𝐶2 𝑒𝑎𝐶1 . (29)

Probability density function is calculated by𝑓new = 𝑑𝐹new/𝑑V.
𝑓new (V; 𝐶1, 𝐶2) = 𝑎𝐶2𝑒𝑎(𝐶1−𝑉𝐶2 𝑒𝑎𝐶1 )V𝐶2−1. (30)
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Figure 2: Comparative analysis for new function based on Finsler
metric and Weibull function for different 𝑛 values.

While the solution of the differential equation that is obtained
by using the arbitrary values of nonnegative integer 𝑛 gives
the same geodesics as the two-parameter Weibull function,
new function that defined nonnegative rational numbers of 𝑛
is derived for two-dimensional family of curve.

On the real world application, it is foreseen that accu-
rate modeling ability is given by estimation of 𝐶1 and 𝐶2
parameters in the new function. With an example on the real
world application, it can be shown as Figure 2 that geodesics
are based on Finsler geometry such as nonlinear wind speed
modeling on real world problem, where the parameters in the
new curve families based on Finsler metric using wind speed
data for Bilecik/Turkey are determined by the boundary value
problem and showed comparatively different 𝑛 values.

We have already stated that it gives the same probability
and cumulative probability density functions as the Weibull
when 𝑛 values are taken as nonnegative integers. For different
nonnegative rational 𝑛 values, while 𝑛 goes to zero, the
probability and cumulative probability density functions of
models converge to observation values.

It can be said that optimal modeling can be applied to
nonlinear structures for the different new family of curves
that are obtained by choosing arbitrary 𝑛 values and estimat-
ing of parameters in the many real world applications.

5. Conclusions

The two-parameter Weibull distribution presents the mod-
eling opportunity for nonlinear structure in the real world
problems. Modeling of wind speed which has nonsymmetri-
cal and unstable character is one of these real world problems.
With the help of Finsler geometry’s modeling ability of
physical phenomena that are genuinely asymmetric and/or
nonisotropic more accurate modeling can be achieved. For
this reason, Finsler metrics of Weibull distribution function
with two-parameter family of curve are derived in this
paper. The arbitrary function is chosen as 𝐻(𝑧, 𝑦 − 𝑧𝑥) =𝛽𝑛 in order to derive Finsler metrics that have family of

two-parameter Weibull distribution functions. As a result of
this selection, two-parameter new cumulative distribution
function is derived as the geodesics obtained for the different
nonnegative rational 𝑛 values are examined. It is expected that
the proposed Finsler metric based function can be applied in
many real world problems such as wind speed modeling. It is
foreseen that the performed analysis using this function will
bring a new approach to the literature.
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Finsler geodesics,” Nonlinear Analysis: Real World Applications,
vol. 4, no. 5, pp. 711–722, 2003.

[25] T. Yajima and H. Nagahama, “Finsler geometry for nonlinear
path of fluids flow through inhomogeneous media,” Nonlinear
Analysis. Real World Applications, vol. 25, pp. 1–8, 2015.

[26] D. Bao, C. Robles, and Z. Shen, “Zermelo navigation on
Riemannian manifolds,” Journal of Differential Geometry, vol.
66, no. 3, pp. 377–435, 2004.

[27] M. Matsumoto, “The inverse problem of variation calculus in
two-dimensional Finsler space,” Journal ofMathematics of Kyoto
University, vol. 29, no. 3, pp. 489–496, 1989.

[28] M. Matsumoto, “Geodesics of two-dimensional Finsler spaces,”
Mathematical andComputerModelling, vol. 20, no. 4-5, pp. 1–23,
1994.

[29] M. Matsumoto, “Two-dimensional Finsler spaces whose
geodesics constitute a family of special conic sections,” Journal
of Mathematics of Kyoto University, vol. 35, no. 3, pp. 357–376,
1995.

[30] S. Shamshirband, A. Keivani, K. Mohammadi, M. Lee, S. H. A.
Hamid, and D. Petkovic, “Assessing the proficiency of adaptive
neuro-fuzzy system to estimate wind power density: case study
ofAligoodarz, Iran,”Renewable and Sustainable Energy Reviews,
vol. 59, pp. 429–435, 2016.

[31] O. Arslan, “Technoeconomic analysis of electricity generation
fromwind energy in Kutahya, Turkey,” Energy, vol. 35, no. 1, pp.
120–131, 2010.

[32] A. Malik and A. H. Al-Badi, “Economics of Wind turbine as an
energy fuel saver—a case study for remote application in oman,”
Energy, vol. 34, no. 10, pp. 1573–1578, 2009.

[33] F. J. Liu and T. P. Chang, “Validity analysis of maximum entropy
distribution based on different moment constraints for wind
energy assessment,” Energy, vol. 36, no. 3, pp. 1820–1826, 2011.

[34] T.-P. Chang, F.-J. Liu, H.-H. Ko, S.-P. Cheng, L.-C. Sun, and S.-
C. Kuo, “Comparative analysis on power curve models of wind
turbine generator in estimating capacity factor,” Energy, vol. 73,
pp. 88–95, 2014.

[35] T. Arslan, Y. Murat Bulut, and A. Altın Yavuz, “Comparative
study of numerical methods for determining Weibull param-
eters for wind energy potential,” Renewable and Sustainable
Energy Reviews, vol. 40, pp. 820–825, 2014.

[36] K. Mohammadi, O. Alavi, A. Mostafaeipour, N. Goudarzi, and
M. Jalilvand, “Assessing different parameters estimation meth-
ods of Weibull distribution to compute wind power density,”
Energy Conversion andManagement, vol. 108, pp. 322–335, 2016.

[37] M. Carrasco-Dı́az, D. Rivas, M. Orozco-Contreras, and O.
Sánchez-Montante, “An assessment of wind power potential
along the coast of Tamaulipas, northeasternMexico,”Renewable
Energy, vol. 78, pp. 295–305, 2015.

[38] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy
Explained: Theory, Design and Application, John Wiley & Sons,
2010.

[39] S. Mathew,Wind Energy: Fundamentals, Resource Analysis and
Economics, vol. 1, Springer, Heidelberg, Germany, 2006.

[40] Z. Shen, Lectures on Finsler Geometry, vol. 2001, World Scien-
tific, Singapore, 2001.

[41] Z. Shen, Differential Geometry of Spray and Finsler Spaces,
Kluwer Academic, Dordrecht, Netherlands, 2001.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


