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The performance of Massive MIMO is severely limited by channel estimation error, which is caused by pilot contamination and
channel aging. In this paper, we propose an estimation algorithm based on the weighted total least-squares method with errors-in-
variables (EIV) model to alleviate the influence of pilot contamination and channel aging.Then, a channel rectification method has
been investigated to diminish the inaccuracy of channel estimation. Comparing with the traditional methods, it not only helps to
make the signal estimation more accurate, but also provides opportunities to correct the channel model with estimation error and
update the aged channel statement information. Simulations are provided to verify the efficacy of this method.

1. Introduction

Massive MIMO, which is a system where base stations with
a large number of antennas and tens of single-antenna user
terminals (UT) deployed in each cell, has attracted attentions
for its high spectrum efficiency [1]. Besides, as the number
of antennas at the BS is far larger than that of UTs in each
cell, the downlink channel estimation will not be feasible [2].
Therefore, time division duplex (TDD) is used and the chan-
nel is assumed to be reciprocal where the downlink channel is
gained from the uplink training. During the training period,
the pilots are reused at each cell as the number of orthogonal
pilots is limited by coherent bandwidth and coherent time
of the mobile channel [3]. So, the channel estimation is
contaminated, which is called pilot contamination [4]. On
the other hand, as time goes by, the channel varies, and it is
different from the estimated state. This phenomenon is the
so-called channel aging. The primary cause of this problem
is that the antennas and those of objects/people move in the
propagation medium [5]. These two impacts cause harmful
influences on the uplink signal decoding and the down-
link precoding, thus on the performance of the transmis-
sion.

To alleviate the effect of pilot contamination, many prior
works have been proposed. For example, a spatial domain
method, which uses a predetermined angular-tunable narrow
beam pattern to match the desired user based on the fact that
the spatial and/or temporal characters of channel coefficients
of different users are different, has been proposed in [3].
The work in [6] addressed the pilot contamination in cosine
modulated multitone (CMT) and took advantage of the so-
called blind equalization property to mitigate the pilot con-
tamination effect. In [7], an iterative least square projection
(ILSP) method based on diagonal Jacket matrix is proposed
to resolve the effects of pilot contamination as diagonal
Jacket matrix has many advantages such as reducing the
computational complexity and an energy harvest.Meanwhile,
to avoid the channel aging, through minimizing the mean
square error (MSE) in the channel prediction, channel state
information (CSI) is predicted by using the aged CSI and a
Wiener linear predictor to overcome channel aging effects [5].
However, less work has been done to solve the problem of
channel aging and pilot contamination jointly.

Here, we consider the channel-aging-only scenario and
then incorporate the effect of pilot contamination later on.
The effects of channel aging and pilot contamination are
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Figure 1: Massive MIMO system model under consideration.

modeled jointly, and the jointed model is then transformed
into an EIV model of the heterogeneous covariance case.
After that, an iterative algorithm is proposed based on
weighted total least-squares (WTLS) to solve the problem,
that is, to estimate the transmitted signal.With the algorithm,
the channel estimate error that is caused by channel aging
and pilot contamination can be derived. In the end, the CSI
can be rectified according to the derived channel estimate
error. Therefore, the effects of channel aging and pilot
contamination, which are inherent inMassiveMIMO system,
can be eliminated jointly with the proposed algorithm. At
the end of this paper, simulation results show that, with the
rectified CSI, the signal estimation becomes more accurate
with the proposed method.

Throughout this paper, the following notations are used.
I𝑀 is the unit matrix of size𝑀×𝑀. (∙)−1, (∙)𝑇, (∙)𝐻 indicate
the inverse, the transpose, and the conjugate transpose,
respectively, and 𝑥𝐻 is used to denote the complex conjugate
of 𝑥 when 𝑥 is a complex number. 𝑥 ∼ CN(𝑎, 𝑏)means that 𝑥
satisfies the complex Gaussian distribution with mean 𝑎 and
covariance 𝑏, and X ∈ C𝑀×𝑁 denotes that X is a matrix with
size 𝑀 × 𝑁. Finally, ‖ ∙ ‖ is the Euclidean norm. E[] is the
expectation operation and “⊗” is the Kronecker product of
two matrices.

2. System Model

We consider the general noncooperative multicell multiuser
TDD Massive MIMO system as shown in Figure 1. This sys-
tem consists of 𝐿 (𝐿 > 1) cells. One base station and 𝐾 (𝐾 >1) user terminals (UTs) are deployed in each cell. The UTs
are single-antenna while the base station has 𝑀 antennas,
where 𝑀 is far larger than 𝐾. The same frequency band is
shared by the whole system. Apart from that, we assume the
channel reciprocity as the propagation channel is essentially
reciprocal so that the downlink channel is the Hermitian
transpose of the corresponding uplink channel [2].

Here, a quasi-static channel model is assumed, so the
channels remain the same within one symbol but vary from
symbol to symbol. For the simplicity of analysis, we use
the channel model H𝑗𝑖𝑘[𝑛] = R𝑗𝑖𝑘1/2k[𝑛] ∈ C𝑀×1, where𝑛 denotes channels at the 𝑛th symbol and the subscripts

indicate the channel from the 𝑘th UT in cell 𝑖 to the base
station 𝑗 in cell. This kind of channel model, which is also
known as the stationary ergodic Gauss-Markov block fading
channel model, is versatile and is constituted by two parts:
R𝑗𝑖𝑘 = E[H𝑗𝑖𝑘[𝑛]H𝐻𝑗𝑖𝑘[𝑛]] ∈ C𝑀×𝑀 is a deterministic cor-
relation matrix and is independent of the symbol index 𝑛;
k[𝑛] ∼ CN(0, I𝑀) is a fast-fading channel vector [5, 8].
Actually,R𝑗𝑖𝑘 represents the general properties of the channel
while k stands for the channels dynamic characteristics.Then,
H𝑗𝑖[𝑛] = [H𝑗𝑖1[𝑛],H𝑗𝑖2[𝑛], . . . ,H𝑗𝑖𝐾[𝑛]] ∈ C𝑀×𝐾 denotes the
channel fromUTs in cell 𝑖 to the base station in cell 𝑗. Since the
channel vectors of different users are assumed to be Gaussian
random process with i.i.d. entries, the channel matrixH𝑗𝑖[𝑛]
is column full-rank.

In this paper, only the uplink is considered, and it consists
of the training period and the transmission period, so we
analyze the received signal at the base station, such as 𝑦𝑗 at
the base station in cell 𝑗:

Y𝑗 [𝑛] = √𝑃𝑢𝑙 𝐿∑
𝑖=1

H𝑗𝑖 [𝑛]X𝑖 [𝑛] + z𝑗 [𝑛]
= √𝑃𝑢𝑙H𝑗𝑗 [𝑛]X𝑗 [𝑛]

+ √𝑃𝑢𝑙 𝐿∑
𝑖=1,𝑖 ̸=𝑗

H𝑗𝑖 [𝑛]X𝑖 [𝑛] + z𝑗 [𝑛] ,
(1)

where X𝑖[𝑛] = [𝑥𝑖1[𝑛], . . . , 𝑥𝑖𝐾[𝑛]]𝑇 ∼ CN(0, I𝐾) and 𝑥𝑖𝑘[𝑛] ∈
C1×1 indicates the transmitted signal of the 𝑘th UT in cell 𝑖
at the 𝑛th symbol time. 𝑃𝑢𝑙 is the transmit power, 𝛿2𝑏 is the
noise power, and z𝑗[𝑛] ∼ CN(0, 𝛿2𝑏I𝑀) is the received white
addictive Gaussian noise at base station in cell 𝑗.
3. Weighted Total Least-Squares Algorithm for

Signal Estimation

The EIV observation model is conceptually symbolized as in
[9, 10]:

y − 𝑒𝑦 = (A − EA) 𝜉, (2)
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where y ∈ C𝑛×1, A ∈ C𝑛×𝑚, 𝜉 ∈ C𝑚×1, and 𝑛 > 𝑚 = rank(A).𝑒𝑦 andEA are the corresponding observation error of y andA,
respectively, and their stochastic properties are characterized
by

[𝑒𝑦𝑒A] ∼ ([00] , 𝜎20 [Q𝑦 0
0 QA

]) , (3)

where 𝑒A = vec(EA) and “vec” is the operation that converts
a matrix to a column vector by stacking one column of this
matrix underneath the previous one. Q𝑦 ∈ C𝑛×𝑛 and QA ∈
C𝑛𝑚×𝑛𝑚 (QA = Q0 ⊗ Q𝑥; the individual cofactor matrices Q0
have size𝑚 ×𝑚 andQ𝑥 has size 𝑛 × 𝑛;Q0 could be singular)
are the symmetric andnonnegative-definite cofactormatrices
of 𝑒𝑦 and 𝑒A, and 𝜎20 is the variance component, which is
unknown.

In the consideration Massive MIMO system, 𝜉, A, and 𝑦
usually correspond to the transmitted signal, the system coef-
ficients, and the received signal, respectively. In the following
sections, we will model the signal estimation problem with
the effect of pilot contamination and channel aging as EIV
model.

3.1. Channel Aging. In the realistic wireless communication
system, the variation of channels never stops due to the
change of various factors, such as the relative movement of
the transmitters and receivers, the temperature, the humidity,
and the mobility of adjacent objects. Therefore, the channel
changes between the training period and the transmission
period of the uplink, which affects the accuracy of channel
modeling and signal estimation at the base station. Here, for
analysis, we adopt the channel aging model as in [5], where
the channel model at (𝑛 + 1)th symbol is

H𝑗𝑖𝑘 [𝑛 + 1] = 𝑃∑
𝑝=0

𝛼𝑝H𝑗𝑖𝑘 [𝑛 − 𝑝] + e𝑗𝑖𝑘 [𝑛 + 1] , (4)

where {𝛼𝑝}𝑃𝑝=0 are the AR coefficients and e𝑗𝑖𝑘[𝑛 + 1] is tem-
porally uncorrelated complex white Gaussian noise process.

For simplicity, we use the first-order model to approxi-
mate the changing channel; that is,

H𝑗𝑖𝑘 [𝑛 + 1] = 𝛼H𝑗𝑖𝑘 [𝑛] + e𝑗𝑖𝑘 [𝑛 + 1] . (5)

It is obvious that increasing the order 𝑃 will improve the
accuracy of channel modeling but increase the complexity as
well. In this first-order model, 𝛼 = 𝐽0(2𝜋𝑓𝑑𝑇𝑠) ≈ 1− (𝜋𝑓𝑑𝑇𝑠)2,
where 𝐽0(⋅) is zeroth-order Bessel function of the first kind,𝑓𝑑
is themaximumDoppler shift, and𝑇𝑠 is the channel sampling
duration; e𝑗𝑖𝑘[𝑛+1] ∼ CN(0,R𝑗𝑖𝑘−𝛼2R𝑗𝑖𝑘) is the uncorrelated
channel error due to the effect of channel aging. From this
model, we can easily get the idea that 𝛼 decreases as 𝑓𝑑
becomes larger so thatH𝑗𝑖𝑘[𝑛+1] becomes less dependent on
H𝑗𝑖𝑘[𝑛], which coincides with our intuition that the channel
changes severely if the environment has a great variation.
Specially, when 𝑓𝑑𝑇𝑠 = 1/𝜋, H𝑗𝑖𝑘[𝑛 + 1] = e𝑗𝑖𝑘[𝑛 + 1], which
meansH𝑗𝑖𝑘[𝑛 + 1] has nothing to do withH𝑗𝑖𝑘[𝑛].

According to [11], compared to pilot contamination,
multiuser interference and noise are negligible impacts.

Therefore, the received signal at the base station from UT 𝑘
in cell 𝑗 is
y𝑗𝑘 [𝑛 + 1] = √𝑃𝑢𝑙H𝑗𝑗𝑘 [𝑛 + 1] x𝑗𝑘 [𝑛 + 1] + z𝑗 [𝑛 + 1] . (6)

By inserting (5) into (6), we can obtain the received signal
when the channel aging error (−√𝑃𝑢𝑙e𝑗𝑗𝑘[𝑛+1]) is considered,
which is

y𝑗𝑘 [𝑛 + 1] − z𝑗 [𝑛 + 1]
= (𝛼√𝑃𝑢𝑙H𝑗𝑗𝑘 [𝑛] − (−√𝑃𝑢𝑙e𝑗𝑗𝑘 [𝑛 + 1]))
⋅ x𝑗𝑘 [𝑛 + 1] .

(7)

Assume that 𝜎20 = 1; then we define

Q𝑦 = 𝛿20I𝑀;
Q0 = I𝑀;
Q𝑥 = 𝑃𝑢𝑙 (R𝑗𝑗𝑘 − 𝛼2R𝑗𝑗𝑘) .

(8)

Therefore, the signal estimation problem can be treated
as a total least square problem, and it is modeled as an EIV
model. Consequently, the estimation of x𝑗𝑘[𝑛 + 1] can be
derived through the proposed algorithm. The performance
compared to the no-channel-updating scenario is demon-
strated by simulation.

3.2. Incorporating Pilot Contamination. After modeling the
channel aging separately, we will derive the model of the
incorporating pilot contamination, which will also be trans-
formed into an EIV model. The uplink channel estimation at
the base station is made by using the pilots or the training
sequences sent by user 𝑘, 𝑘 ∈ [1, . . . , 𝐾]. Let 𝜏 be the length of
the training period.Φ𝑘[1 : 𝜏] ∈ C𝜏×1 is the pilot vector of the𝑘th user in the training period. Suppose that all cells use the
same pilots set Φ[1 : 𝜏] = [Φ1[1 : 𝜏], Φ2[1 : 𝜏], . . . , Φ𝐾[1 :𝜏]]𝑇 ∈ C𝐾×𝜏; the pilots are normalized to meet Φ ⋅Φ𝐻 = I𝐾.
So, the received signal at base station 𝑗 at the 𝑛th symbol time
reads

ytr𝑗 [𝑛] = √𝑃tr 𝐿∑
𝑖=1

H𝑗𝑖 [𝑛]Φ [𝑛] + z𝑗 [𝑛]
= √𝑃trH𝑗𝑗 [𝑛]Φ [𝑛]

+ √𝑃tr 𝐿∑
𝑖=1,𝑖 ̸=𝑗

H𝑗𝑖 [𝑛]Φ [𝑛] + z𝑗 [𝑛] ,
(9)

where 𝑃tr is the training transmit power and “tr” denotes the
training period.
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Then, the signal for channel estimation is derived as
follows:

ỹtr𝑗𝑘 [𝑛] = 1√𝑃tr𝑦tr
𝑗 [𝑛]Φ𝐻𝑘 [𝑛]

= H𝑗𝑗𝑘 [𝑛] + 𝐿∑
𝑖=1,𝑖 ̸=𝑗

H𝑗𝑖𝑘 [𝑛]
+ 1√𝑃tr z𝑗 [𝑛]Φ𝐻𝑘 [𝑛] .

(10)

Here,H𝑗𝑗𝑘[𝑛] is the desired channel,∑𝐿𝑖=1,𝑖 ̸=𝑗H𝑗𝑖𝑘[𝑛] is the
so-called pilot contamination, and (1/√𝑃tr)z𝑗[𝑛]Φ𝐻𝑘 denotes
the effect of noise. For analysis, R𝑗𝑘 and Π𝑗𝑘 are defined as
R𝑗𝑘 = ∑𝐿𝑖=1 R𝑗𝑖𝑘 andΠ𝑗𝑘 = (𝛿2𝑏/𝑃tr)I𝑀+R𝑗𝑘−R𝑗𝑗𝑘, respectively,
where the subscript 𝑗 indicates the index of base station while
the subscript 𝑘 indicates the index of UTs, and z𝑗[𝑛]ΦH𝑘 ∼
CN(0, 𝛿2𝑏I𝑀).

So the real CSI can be described as

H𝑗𝑗𝑘 [𝑛] = ỹtr𝑗𝑘 [𝑛]
− ( 𝐿∑
𝑖=1,𝑖 ̸=𝑗

H𝑗𝑖𝑘 [𝑛] + 1√𝑃tr z𝑗 [𝑛]Φ𝐻𝑘 ) . (11)

By inserting (11) into (5), we derive

H𝑗𝑗𝑘 [𝑛 + 1] = 𝛼ỹtr𝑗𝑘 [𝑛] + ẽ𝑗𝑗𝑘 [𝑛 + 1] , (12)

where ẽ𝑗𝑗𝑘[𝑛 + 1] = −𝛼(∑𝐿𝑖=1,𝑖 ̸=𝑗H𝑗𝑖𝑘[𝑛] + (1/√𝑃tr)z𝑗[𝑛]Φ𝐻𝑘 ) +
e𝑗𝑗𝑘[𝑛 + 1].

ẽ𝑗𝑗k[𝑛 + 1] consists of the interference from users in other
cells, the Gaussian White noise, and channel aging e𝑗𝑗𝑘[𝑛 +1]. In fact, the interference from users in other cells is the
sum of the interference channel coefficients that are i.i.d.
Gaussian variants with zero mean, and the channel aging
error is assumed to be uncorrelated with the interference
channel coefficients. This model for pilot contamination and
noise is proposed and widely used in prior works [8, 12]; here
we extend it for training period in the presence of channel
aging, pilot contamination, and noise. Therefore, ẽ𝑗𝑗𝑘[𝑛 + 1]
satisfies ẽ𝑗𝑗𝑘[𝑛 + 1] ∼ CN(0,R𝑗𝑗𝑘 − 𝛼2R𝑗𝑗𝑘 + 𝛼2Π𝑗𝑘).

Similar to Section 3.1, we can get

y𝑗𝑘 [𝑛 + 1] − z𝑗 [𝑛 + 1]
= (𝛼√𝑃𝑢𝑙ỹtr𝑗𝑘 [𝑛] − (−√𝑃𝑢𝑙ẽ𝑗𝑖𝑘 [𝑛 + 1])) x𝑗𝑘 [𝑛 + 1] , (13)

for all 𝑖, 𝑗 ∈ [1, . . . , 𝐿] and 𝑘 ∈ [1, . . . , 𝐾] do
predefine error threshold 𝜀0 = 1𝑒 − 10;
predefine pilotΦ = [Φ1, Φ2, . . . , Φ𝐾]𝑇;
initialize the algorithm parameters as Eq. (14)

end for
for each 𝑗 ∈ [1, . . . , 𝐿] do

define [N, c] = A𝑇Qy
−1[A, y] and 𝑘 ∈ [1, . . . , 𝐾];

define k̂(0) fl 0, 𝜁(0) fl N−1c,

𝛿(1) = A𝑇 (Qy + ((𝜁(0))𝑇Q0𝜁(0))Qx)−1 A𝜁(1) = A−1y;
while ‖𝜁(𝑖) − 𝜁(𝑖−1)‖ < 𝜀0 do𝜆̂(𝑖) = (Qy + ((𝜁(𝑖))𝑇Q0𝜁(𝑖))Qx)−1 (y − A𝜁(𝑖))
k̂(𝑖) = (𝜆̂(𝑖))𝑇Qx𝜆̂(𝑖);
𝛿(𝑖) = A𝑇 (Qy + ((𝜁(𝑖))𝑇Q0𝜁(𝑖))Qx)−1 A
𝜁(𝑖+1) = (𝛿(𝑖) − k̂(𝑖)Q0)−1 𝛿(𝑖)A−1y

end while
end for

Algorithm 1: Signal Estimate Algorithm.

where we can also model it as an EIV model to estimate
the transmitted signal more accurately. To get the estimated
x𝑗𝑘[𝑛 + 1], we make the following definition:

y = y𝑗𝑘 [𝑛 + 1] ,
A = 𝛼√𝑃𝑢𝑙ỹtr𝑗𝑘 [𝑛] ,
e𝑦 = z𝑗 [𝑛 + 1] ,
EA = −√𝑃𝑢𝑙ẽ𝑗𝑖𝑘 [𝑛 + 1] ,
Q𝑦 = 𝛿20I𝑀,
Q0 = I𝑀,
Q𝑥 = 𝑃𝑢𝑙 (R𝑗𝑗𝑘 − 𝛼2R𝑗𝑗𝑘 + 𝛼2Π𝑗𝑘) .

(14)

In this model, we incorporate effect of pilot contamina-
tion with that of channel aging and use the proposed iterative
Signal Estimate Algorithm to estimate the transmitted signal
[9]. Comparing to the channel-aging-only scenario, the error
of the channel model becomes larger. Apart from that, it is
obvious that this model reduces to the pilot-contamination-
only scenario when 𝛼 = 1. The procedures of the above
iteration are outlined in Algorithm 1:

3.3. Channel Rectification. After the EIVmodel is established
for pilot contamination and channel aging inMassiveMIMO
system in previous sections, the closed-form solution and
the estimated parameters are complicated and hard to ana-
lytically compute, because the EIV model is essentially a
nonlinear model. Here, we propose a channel rectification
algorithm based on the weighted total least-squares solution
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(WTLSS) [9, 10], to solve this problemaccording to the theory
of nonlinear least-squares adjustment.

While achieving more accurate signal estimation at the
base station, the proposed algorithm can also rectify the
channel model by deriving the residual error of channel; that
is, ẼA, through the WTLSS method, can be expressed as (15).

ẼA

= −Q𝑥 (Q𝑦 + ((x̂𝑗𝑘 [𝑛 + 1])𝑇Q0x̂𝑗𝑘 [𝑛 + 1]) ⋅Q𝑥)−1
⋅ (y − Ax̂𝑗𝑘 [𝑛 + 1]) (x̂𝑗𝑘 [𝑛 + 1])𝑇Q0.

(15)

Finally, the rectified channelmodel at the (𝑛+1)th symbol
in Sections 3.1 and 3.2 is as follows:

H𝑗𝑗𝑘 [𝑛 + 1] = 𝛼𝜔𝑗𝑗𝑘 [𝑛] − 1√𝑃𝑢𝑙 ẼA, (16)

where 𝜔𝑗𝑗𝑘[𝑛] = H𝑗𝑗𝑘[𝑛] for Section 3.1; 𝜔𝑗𝑗𝑘[𝑛] = ỹtr𝑗𝑘[𝑛]
for Section 3.2. The contribution of this step is to update the
channel estimated during the training period since the more
accurate signal estimation corresponds to the more accurate
channelmodel.Therefore, we can increase the time interval of
transmitting pilot signals and decrease the expense of channel
estimation.

4. Simulation

Here, simulations results are derived by Monte Carlo simula-
tion technique, which averages over 106 channel realizations
(103 different𝑅 and each𝑅with 103 different V for ℎ = 𝑅1/2V).
The effect ofWTLSSmethod is comparedwith the traditional
least square (LS)method.The estimation error ‖𝑥−𝑥‖2, where𝑥 is the transmitted signal and𝑥 is the estimation of the signal,
is considered as the standard for comparison.

The following assumptions are made:

(1) 𝑃tr = 𝑃𝑢𝑙 = 𝑃.
(2) 𝛿20 = 1 and the signal noise ratio SNR =

10 log10(𝛿20/𝑃).
Figure 2 shows the effectiveness of WTLSS at different

channel variations, in which the parameters is denoted by𝑓𝑑 × 𝑇𝑠, when channel aging is the only factor taken into
consideration. As pilot contamination and interference are
assumed to be well removed here, the number of cell and
the number of UT in each cell do not affect the accuracy
of signal estimation. Figure 2 compares the signal estimation
errors of the WTLSS method and the LS method when
the number of antennas at the base station Ar = 50, 100
and SNR = 10, 30 dB. It is obvious that WTLSS stands
out compared to LS as 𝑓𝑑 × 𝑇𝑠 increases; that is, the channel
changes substantially. When 𝑓𝑑 × 𝑇𝑠 is close to zero, WTLSS
reduces to the traditional LS method. Increasing Ar and SNR
does not improve its performance significantly but decreases
the number of iterations of WTLSS method as is shown in
Figure 3, which illustrates the number of WTLSS iterations
versus 𝑓𝑑 × 𝑇𝑠.
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Figure 2: Signal estimation at different 𝑓𝑑 × 𝑇𝑠 with channel aging.
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Figure 3: Iteration number for the convergence of WTLSS at
different 𝑓𝑑 × 𝑇𝑠.

Figure 4 compares the signal estimation error of the
WTLSS and LS methods when both channel aging and pilot
contamination are considered in multicell Massive MIMO
system. Here, we assume that Ar = 50, SNR = 20 dB, and𝑓𝑑 × 𝑇𝑠 = 0.2. As is shown in the figure, the WTLSS method
performs better than LS method. However, as the number
of cells increases, the effect of pilot contamination becomes
more severe.

Figure 5 presents the effects of WTLSS and LS methods
taking both channel aging and pilot contamination into
consideration with different transmission SNR of UTs. The
distance between UT and its corresponding base station is
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Figure 4: Signal estimation error of different number of cells with
pilot contamination and channel aging.
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Figure 5: Signal estimation at different SNR with pilot contamina-
tion and channel aging.

assumed to be half less than the distance between UT and
base stations in its adjacent cells; thus the power of aimed
channel is four times larger than that of the “contamination”
channel. As shown in Figure 5, WTLSS outperforms LS
method for different transmission SNR in four different
scenarios (Ar ∈ {50, 100}; 𝑓𝑑 × 𝑇𝑠 ∈ {0.1, 0.2}). As pilot
contamination is not relevant to 𝑓𝑑 × 𝑇𝑠, the influence of the
pilot contamination is increasing with the SNR increase; it is
because the increased SNR in the adjacent cell will increase
the “contamination” power. But when the value of SNR is
large, the ratio of desired power and the “contamination”
power will tend to be fixed, which will make the performance
curve parallel to the 𝑥-axis. On the other side, the proposed
algorithm decreases the reflection of the impact of channel
aging. it is shown that the performance gap between different𝑓𝑑 × 𝑇𝑠 using WTLSS is much less than the one using LS
method.

5 10 15 20 25 30 35 400
SNR

WTLSS: Ar = 50, fd × Ts = 0.1

WTLSS: Ar = 100, fd × Ts = 0.1

WTLSS: Ar = 50, fd × Ts = 0.2

WTLSS: Ar = 100, fd × Ts = 0.2

2

3

4

5

6

Es
tim

at
io

n 
nu

m
be

r
of

 W
TL

SS

Figure 6: Signal estimation at different SNR with pilot contamina-
tion and channel aging.

Figure 6 shows that both increasing SNR and the smaller𝑓𝑑 × 𝑇𝑠 will decrease the iteration number; it means that the
complexity of the proposed iterative algorithm is influenced
by the 𝑓𝑑 × 𝑇𝑠 and the SNR.

5. Conclusion

In this paper, we proposed an iterative method based on
the WTLSS to alleviate the effect of channel aging and pilot
contamination. We firstly incorporate these two effects and
modeled them as an EIVmodel. Simulations aremade to ver-
ify the efficiency of the proposed signal estimation algorithm
compared with the traditional LS method. According to the
simulation results, the proposed algorithm outperforms the
LS method at both the channel-aging-only scenario and the
scenario taking channel aging and pilot contamination into
consideration, especially when 𝑓𝑑 × 𝑇𝑠 is large. The other
advantage of our algorithm is that we can update the channel
through deriving the channel estimate error, and the validity
of channel rectification is also verified by simulation.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundations of China under Grants 61601334 and 61201168
and by project of Natural Science Foundation of Hubei
Province under Grant 2015CFC870.

References

[1] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spec-
tral efficiency of very large multiuser MIMO systems,” IEEE
Transactions on Communications, vol. 61, no. 4, pp. 1436–1449,
2013.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L.Marzetta, “Mas-
siveMIMOfor next generationwireless systems,” IEEECommu-
nications Magazine, vol. 52, no. 2, pp. 186–195, 2014.

[3] H.Wang, Z. Pan, J. Ni, and I. Chih-Lin, “A spatial domain based
method against pilot contamination for multi-cell massive



Mathematical Problems in Engineering 7

MIMO systems,” in Proceedings of the 8th International Con-
ference on Communications and Networking in China (CHINA-
COM ’13), pp. 218–222, IEEE, Guilin, China, August 2013.

[4] P. Xu, J. Wang, and J. Wang, “Effect of pilot contamination on
channel estimation in massive MIMO systems,” in Proceedings
of the International Conference on Wireless Communications
and Signal Processing (WCSP ’13), pp. 1–6, Hangzhou, China,
October 2013.

[5] K. T. Truong and R.W. Heath, “Effects of channel aging in mas-
siveMIMO systems,” Journal of Communications and Networks,
vol. 15, no. 4, pp. 338–351, 2013.

[6] A. Farhang, A. Aminjavaheri, N. Marchetti, L. E. Doyle, and
B. Farhang-Boroujeny, “Pilot decontamination in CMT-based
massive MIMO networks,” in Proceedings of the 11th Interna-
tional Symposium onWireless Communications Systems (ISWCS
’14), pp. 589–593, IEEE, Barcelona, Spain, August 2014.

[7] M. A. Latif Sarker and M. H. Lee, “A fast channel estimation
and the reduction of pilot contamination problem for massive
MIMO based on a diagonal Jacket matrix,” in Proceedings of the
4th International Workshop on Fiber Optics in Access Network
(FOAN ’13), pp. 26–30, Almaty, Kazakhstan, September 2013.

[8] M. Vu and A. Paulraj, “On the capacity ofMIMOwireless chan-
nels with dynamic CSIT,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 7, pp. 1269–1283, 2007.

[9] B. Schaffrin and A. Wieser, “On weighted total least-squares
adjustment for linear regression,” Journal of Geodesy, vol. 82, no.
7, pp. 415–421, 2008.

[10] Y. Shen, B. Li, and Y. Chen, “An iterative solution of weighted
total least-squares adjustment,” Journal of Geodesy, vol. 85, no.
4, pp. 229–238, 2011.

[11] J. Hoydis, S. Ten Brink, andM. Debbah, “Massive MIMO in the
UL/DL of cellular networks: how many antennas do we need?”
IEEE Journal on Selected Areas in Communications, vol. 31, no.
2, pp. 160–171, 2013.

[12] H. Q. Ngo, T. L. Marzetta, and E. G. Larsson, “Analysis of
the pilot contamination effect in very large multicell multiuser
MIMO systems for physical channel models,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP ’11), pp. 3464–3467, IEEE, Prague,
Czech Republic, May 2011.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


