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ARES is a multidimensional parallel discrete ordinates particle transport code with arbitrary order anisotropic scattering. It can
be applied to a wide variety of radiation shielding calculations and reactor physics analysis. ARES uses state-of-the-art solution
methods to obtain accurate solutions to the linear Boltzmann transport equation. A multigroup discretization is applied in
energy. The code allows multiple spatial discretization schemes and solution methodologies. ARES currently provides diamond
difference with or without linear-zero flux fixup, theta weighted, directional theta weighted, exponential directional weighted, and
linear discontinuous finite element spatial differencing schemes. Discrete ordinates differencing in angle and spherical harmonics
expansion of the scattering source are adopted. First collision source method is used to eliminate or mitigate the ray effects.
Traditional source iteration and Krylov iterative method preconditioned with diffusion synthetic acceleration are applied to solve
the linear system of equations. ARES uses the Koch-Baker-Alcouffe parallel sweep algorithm to obtain high parallel efficiency.
Verification and validation for the ARES transport code systemhave been done by lots of benchmarks. In this paper, ARES solutions
to the HBR-2 benchmark and C5G7 benchmarks are in excellent agreement with published results. Numerical results are presented
which demonstrate the accuracy and efficiency of these methods.

1. Introduction

Particle transport problems arise in many different areas of
engineering physics. There are two main types of simulation
approaches in particle transport modeling: stochastic (Monte
Carlo) and deterministic [1]. Deterministic radiation trans-
port has gained popularity in recent years as a consequence
of continuous advancements in computer technology and
numerical algorithm.

ARES [2] is amultidimensional parallel discrete ordinates
particle transport code that uses state-of-the-art solution
methods to obtain accurate solutions to the Boltzmann trans-
port equation. The ARES transport code system consists of
seven main modules: DONTRAN1D, DONTRAN2D, DON-
TRAN3D, RAY2D, RAY3D, ARES_PRE, and ARES_POST.
DONTRAN1D, DONTRAN2D, and DONTRAN3D are the
series of DONTRAN that solve the one-dimensional, two-
dimensional, and three-dimensional transport problems,
respectively. RAY adopts first collision source method for
ray effects mitigation. To provide the corresponding data for

the transport calculation, we developed the preprocessing
module ARES_PRE, which can dispose the geometry and
material information of the calculated model and deal with
the quadrature sets and cross-sectional message. In addition,
it can also calculate the reactor core fixed source and provide
the interface for the Monte Carlo and discrete ordinates
coupled code. ARES_POST module presented the function
to handle the calculated flux, including calculating the dose
equivalent rate, DPA, and fast neutron fluence using the
neutron spectrum adjustment method. The ARES can be
applied to reactor physics, reactor pressure vessel fluence
calculations, radiation shielding and protection, spent fuel
storage cask design and analysis, fusion neutronics analysis,
and criticality safety calculations.

Particle transport is an extremely challenging com-
putational problem since the governing equation is six-
dimensional with a high degree of coupling between these
variables. A multigroup discretization is used in energy. Dis-
crete ordinates differencing in angle and spherical harmon-
ics expansion of the scattering source are adopted. The
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angular variable is usually discretized by replacing angular
integrals with quadrature sums. The code allows multiple
spatial discretization schemes and solutionmethodologies. A
variety of spatial differencing scheme options are available,
including diamonddifferencewith orwithout linear-zero flux
fixup, theta weighted, directional theta weighted, exponential
directional weighted, and linear discontinuous finite element
scheme. This discretization produces a large, sparse, linear
system of equations in a seven-dimensional phase space.

The most general solution technique is source iteration.
However, for optically thick problems dominated by scatter-
ing, the source iterationmethod converges very slowly. ARES
uses the Koch-Baker-Alcouffe parallel sweep algorithm to
obtain high parallel efficiency.

Since discrete ordinates method was put forward by
Carlson, many computer codes based on 𝑆𝑁 have been devel-
oped during the past half century. In the 1960s, Los Alamos
National Laboratory developed the first modern 𝑆𝑁 code
DTF-IV [3], which considers only one-dimensional transport
and employs diamond differencing with fixup. Following
DTF-IV, TWOTRAN and THREETRAN [4], which can deal
with 2D geometry and 3D Cartesian geometry, were devel-
oped. As a successor to DTF-IV, ONETRAN included 1D
linear discontinuous spatial differencing in the 1970s. After
1980, codes with DSA method emerged, such as ONEDANT,
TWODANT, and THREEDANT [5]. Corresponding to Los
AlamosNational Laboratory, Oak Ridge National Laboratory
developed ANISN, DORT, and TORT [6]. Since the 1990s,
the rapid developments in computer technology have made
it available to implement massive parallel. PARTISN [7],
a parallel 3D rectangular mesh neutral particle transport
code, was developed to solve first-order transport equation.
ATTILA [8], based on unstructured tetrahedral mesh, uses
linear discontinuous finite element approximation in the
spatial variables. In the 2000s, Oak Ridge National Labora-
tory developed Denovo [9] to replace TORT. Denovo, which
has multiple spatial differencing schemes, uses KBA parallel
sweep algorithm and DSA preconditioned Krylov solver.
Recently, THOR [10] implemented Arbitrarily High Order
Transport method of the Characteristic type.

This paper is organized as follows. In Section 2, the
spatial, angular, time, and energy discretizations used in
ARES are described and summarized.The parallel algorithms
and solution techniques will be discussed in Section 3. The
first collision source algorithms used to mitigate ray effects
are summarized in Section 4. Section 5 contains some
verification results and analysis. Concluding remarks are pre-
sented in Section 6.

2. Discretization Methods

The Boltzmann transport equation solved in ARES is

Ω⃗ ⋅ ∇𝜓 ( ⃗𝑟, Ω⃗, 𝐸) + Σ𝑡 ( ⃗𝑟, 𝐸) 𝜓 ( ⃗𝑟, Ω⃗, 𝐸)
= ∫𝑑𝐸󸀠 ∫

4𝜋
𝑑Ω⃗󸀠Σ𝑠 ( ⃗𝑟, 𝐸󸀠 󳨀→ 𝐸, Ω⃗󸀠 ⋅ Ω⃗) 𝜓 ( ⃗𝑟, Ω⃗, 𝐸󸀠)

+ 𝜒𝑝 ( ⃗𝑟, 𝐸) ∫ 𝑑𝐸󸀠V (𝐸󸀠) Σ𝑓 ( ⃗𝑟, 𝐸󸀠) 𝜙 ( ⃗𝑟, 𝐸󸀠)
+ 𝑞𝑒 ( ⃗𝑟, Ω⃗, 𝐸) .

(1)
The physical meaning of each parameter is shown as follows:𝜓 is angular neutron flux; 𝜙 is scalar neutron flux; V is neutron
velocity; 𝐸 is energy; Ω⃗ is angle; Σ𝑡 is macroscopic total
cross section; Σ𝑠 is macroscopic scattering cross section; 𝜒𝑝 is
energy spectrum for prompt neutron; 𝑞𝑒 is external source
term.

As we can see, the state is determined by the angular flux𝜓. The independent variables are ⃗𝑟(𝑥, 𝑦, 𝑧) (in centimeters),𝐸 (in megaelectronvolts), and Ω⃗(𝜃, 𝜙) (in steradians). The
following boundary condition is obeyed:

𝜓 ( ⃗𝑟, Ω⃗, 𝐸, 𝑡) = Γ, ⃗𝑟 ∈ 𝜕𝑉, Ω⃗ ⋅ ⃗𝑛 < 0, (2)

which defines the incoming flux on all problem boundaries
with outgoing normal ⃗𝑛.

Each independent variable needs to be discretized in
deterministic solutions. The most commonly used angular
discretization is the discrete ordinates method. This dis-
cretization produces a large, sparse, and linear system of
equations in a six-dimensional phase space. We now briefly
discuss each of these discretizations.

2.1. Angular Discretization. In 𝑆𝑁 method, we use a set
number of discrete directions to discretize the continuous
angular variable. With this approximation, (1) becomes

Ω⃗𝑚 ⋅ ∇𝜓𝑔 ( ⃗𝑟, Ω⃗𝑚) + Σ𝑡,𝑔 ( ⃗𝑟) 𝜓𝑔 ( ⃗𝑟, Ω⃗𝑚)
= 𝐺∑
𝑔󸀠=1

𝑄𝑠,𝑔󸀠→𝑔 ( ⃗𝑟, Ω⃗𝑚) + 14𝜋𝑄𝑓 ( ⃗𝑟) + 14𝜋𝑄𝑔 ( ⃗𝑟) .
(3)

Quadrature sets are comprised of discrete directions and
associated weight coefficients. For 3D geometry, ARES pro-
vides the level symmetric quadrature sets, the equal weight
quadrature sets, and the even-odd moment quadrature sets,
which are full-symmetric, as well as the Legendre-Chebyshev
quadrature sets which are half-symmetric. And a biasing
technique based on the Legendre-Chebyshev quadrature sets,
called “the angular refinement technique for polar angles,” is
developed.

For 3D transport calculation, the level symmetric quadra-
ture sets (LS or LQ𝑁) developed by Lathrop and Carlson
are still the most widely and commonly used sets [11]. 𝑆6
level symmetric quadrature sets are illustrated by Figure 1.
Nevertheless, the order of this type is limited to 𝑆20 since
weights become negativewhenwe solve equations ofmoment
conditions with the order is greater than 𝑆20.

From the point of view to satisfy more moment condi-
tions for integration accuracy, the even-oddmoment quadra-
ture sets (EO𝑁) have the ability to accurately integrate not
only even moments but also odd moments of direction
cosines in one octant [12]. On the other hand, the arrange-
ment of directions in the EO𝑁 sets may be more reasonable,
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Figure 1: Point arrangement for 𝑆6 level symmetric quadrature sets.

considering that these sets have more degrees of freedom for
direction cosines than LS and EO𝑁 sets. Similar to LS sets,
EO𝑁 sets also have a limitation that their order cannot be
greater than 𝑆16.

The half-symmetric Legendre-Chebyshev quadrature sets
(𝑃𝑁𝑇𝑁) are offered for users, whose set of direction cosines
along 𝜉 axis is different from the sets along other two axes [13].𝑆8 Legendre-Chebyshev quadrature sets are illustrated by Fig-
ure 2. Similar to LS sets, directions in 𝑃𝑁𝑇𝑁 sets are arranged
along 𝜉 levels, equal to the roots of the Legendre polynomial
or the one-dimensional Gauss-Legendre quadrature sets.The
azimuthal angles or the direction cosines of 𝜇 and 𝜂 for each
direction are defined from the roots ofChebyshev polynomial
of first kind. From the Gauss-Legendre quadrature sets, the
level weights for 𝜉 levels are determined and weights of
directions on the same level are equal.The order of the 𝑃𝑁𝑇𝑁
sets can be easily increased without limitation of negative
weights.

For problems that angular flux distribution or spa-
tial distribution of scalar flux is highly peaked caused by
highly anisotropic scattering or regional materials, results
of transport calculation with traditional quadrature sets
may be unsatisfying. To solve this problem, we designed a
quadrature’s biasing technique called “the angular refinement
technique for polar angles” based on the 𝑃𝑁𝑇𝑁 sets. We can
refine arbitrary 𝜉 level, which users choose, to several levels to
increase calculation accuracy in the local region. Especially,
this technique can refinemany levels simultaneously whether
they are next to each other or not.

2.2. Spatial Differencing. ARES currently provides diamond
difference with or without linear-zero flux fixup, theta
weighted (TW), directional thetaweighted (DTW), exponen-
tial directional weighted (EDW), and linear discontinuous
finite element spatial differencing schemes.

The diamond difference method, which assumes a linear
relationship between the directional flux at the cell center
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Figure 2: Point arrangement for 𝑆8 Legendre-Chebyshev quadra-
ture sets.

and cell boundaries, is simple and accurate for small mesh
intervals. When the mesh interval is too large, the difference
equationsmay yield negative fluxes.TheTW,DTW, andEDW
variations on theDDmethodwere developed to eliminate the
appearance of negative fluxes without significantly sacrificing
computational cost or accuracy.

The balance equation can be obtained by integrating the
discretized form of the transport equation over the mesh cell
such as (Δ𝑥, Δ𝑦, Δ𝑧).𝜇𝑚Δ𝑥 (𝜓𝑖out − 𝜓𝑖in) + 𝜂𝑚Δ𝑦 (𝜓𝑗out − 𝜓𝑗in)

+ 𝜉𝑚Δ𝑧 (𝜓𝑘out − 𝜓𝑘in) + Σ𝑡,𝑖,𝑗,𝑘𝜓𝐴 = 𝑞𝐴,
(4)

where 𝜓𝐴 is the cell average flux and the entering and exiting
angular fluxes are referred to as the “in” and “out” subscripts.𝑞𝐴 is known from the previous source iteration and the
entering angular fluxes are known from the boundary values.

𝜓A = 𝑞𝐴𝑉 + 2 󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴𝜓𝑖in + 2 󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵𝜓𝑗in + 2 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶𝜓𝑘in2 󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴 + 2 󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵 + 2 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶 + Σt𝑉 , (5)

where 𝐴 = Δ𝑦Δ𝑧; 𝐵 = Δ𝑥Δ𝑧; 𝐶 = Δ𝑥Δ𝑦.
The accuracy of the diamond difference scheme is

second-order truncation. Considering that negative bound-
ary angular flux is nonphysical, the negative flux set to zero
fixup is commonly used. However, the fixup causes DZ to
become nonlinear and depart from second-order accuracy
[15]. The oscillation of DZ difference scheme is still apparent
even when the mesh is refined. To guarantee a nonnegative
exiting flux value with positive sources, the theta weighted
(TW) scheme is developed.

The scheme uses the incoming fluxes to calculate weight-
ing factors.The cell-centered and exiting fluxes vary smoothly
between the step and diamond difference approximations.
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The weighting factors are calculated from the following
system of equations:

1 − 𝑎
= 𝑞𝐴𝑉𝜃𝑠 + 󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴𝜓𝑖in + (󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵𝜓𝑗in + 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶𝜓𝑘in) 𝜃𝑛(2 󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵 + 2 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶 + Σ𝑡𝑉)𝜓𝑖in

1 − 𝑏
= 𝑞𝐴𝑉𝜃𝑠 + 󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵𝜓𝑗in + (󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴𝜓𝑖in + 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶𝜓𝑘in) 𝜃𝑛(2 󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴 + 2 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶 + Σ𝑡𝑉)𝜓𝑗in

1 − 𝑐
= 𝑞𝐴𝑉𝜃𝑠 + 󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 𝐶𝜓𝑘in + (󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴𝜓𝑖in + 󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵𝜓𝑗in) 𝜃𝑛(2 󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 𝐴 + 2 󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 𝐵 + Σ𝑡𝑉)𝜓𝑘in .

(6)

Using the weighting factors, the cell-centered and exiting
fluxes are

𝜓A

= 𝑞𝐴𝑉 + (󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 /𝑎) 𝐴𝜓𝑖in + (󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 /𝑏) 𝐵𝜓𝑗in + (󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 /𝑐) 𝐶𝜓𝑘in(󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 /𝑎) 𝐴 + (󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 /𝑏) 𝐵 + (󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 /𝑐) 𝐶 + Σt𝑉 . (7)

The theta-weighting factors 𝜃𝑠 and 𝜃𝑛 are set to values
between 0 and 1. By default, ARES uses the theta weighted
model from the TORT code in which 𝜃𝑠 = 𝜃𝑛 = 0.9
[16].The weighted factors are bounded between the diamond
difference and step approximations, 0.5 ≤ 𝑎, 𝑏, 𝑐 ≤ 1.

The directional theta weighted scheme is an extension
of TW scheme. The direction-based parameters are used to
obtain angular flux weighting factor. To be consistent, the
weights (𝑎, 𝑏, 𝑐) are restricted to the range between 0.5 and
1. Because of the directional weighting of DTW, the over-
and underestimated angular fluxes among different direc-
tions result in more accurate scalar fluxes [17]. However, it
may be not a highly accurate scheme in all situations
such as streaming problems. Therefore, the EDW scheme is
developed.

TheEDWscheme uses theDTW to predict a solution that
is then corrected by an exponential fit and it should be more
stable and accurate than DTW alone. We simply write down
the equations that are solved inARES.The inherently positive
exponential auxiliary equations are given. The exponential
coefficients 𝜆 can be obtained from the DTW solutions.

𝜓𝑚 (𝑥, 𝑦, 𝑧) = 𝑎0 exp(𝜆𝑖𝑃1 (𝑥)󵄨󵄨󵄨󵄨𝜇𝑚󵄨󵄨󵄨󵄨 ) exp(𝜆𝑗𝑃1 (𝑦)󵄨󵄨󵄨󵄨𝜂𝑚󵄨󵄨󵄨󵄨 )
⋅ exp(𝜆𝑘𝑃1 (𝑧)󵄨󵄨󵄨󵄨𝜉𝑚󵄨󵄨󵄨󵄨 ) ,

(8)

where

𝑃1 (𝑢) = 2𝑢Δ𝑢 − 1, 0 ≤ 𝑢 ≤ Δ𝑢, 𝑢 ∈ {𝑥, 𝑦, 𝑧} . (9)

This method is absolutely positive, stable, and direc-
tionally weighted and is significantly more accurate than
the DTW scheme in streaming problems with relaxed cell
intervals [18].

Discontinuous finite element differencing captures dis-
continuities in solution and material properties and has
third-order accuracy for global quantities, is acceleratable
and damped, and has the diffusion limit [19]. The DFEM
spatial differencing remains accurate and stable even on
coarsemeshes [20].We begin the discussion by assuming that
the problem domain 𝐷 has been divided into unstructured
tetrahedral volume elements. The material properties within
each element are assumed to be constant. Carrying out the
Galerkin finite element approximation [21] in which 𝜔𝐾,𝑛 =𝑏𝐾,𝑛, equation for element𝐾 becomes

( ∑
𝜕𝐾𝑖∈𝜕𝐾

+

𝐻𝑖 − 𝐺 + Σ𝑀)𝜓𝐾 − ∑
𝜕𝐾𝑖∈𝜕𝐾

−\𝜕𝐷

𝐻𝑖,𝐾󸀠𝜓𝐾󸀠
− ∑
𝜕𝐾𝑖∈𝜕𝐷

𝐻𝑖𝜓inc
𝑖 = MQ,

(10)

where

𝐺 = ∫
𝐾
∇⃗ ⋅ 𝑏 ⋅ Ω⃗ ⋅ 𝑏𝑇𝑑𝑉

𝑀 = ∫
𝐾
𝑏 ⋅ 𝑏𝑇𝑑𝑉

𝐻𝑖 = ∫
𝜕𝐾𝑖

󵄨󵄨󵄨󵄨󵄨 ⃗𝑛𝑖 ⋅ Ω⃗󵄨󵄨󵄨󵄨󵄨 ⋅ 𝑏 ⋅ 𝑏𝑇𝑑𝐴
𝐻𝑖,𝐾󸀠 = ∫

𝜕𝐾𝑖∩𝜕𝐾
󸀠

󵄨󵄨󵄨󵄨󵄨 ⃗𝑛𝑖 ⋅ Ω⃗󵄨󵄨󵄨󵄨󵄨 ⋅ 𝑏 ⋅ 𝑏𝑇𝐾󸀠𝑑𝐴,

(11)

where 𝜕𝐾− is the inflow boundary, 𝜕𝐾+ is the outflow
boundary, and𝐾󸀠 is the neighbored element of 𝐾.
3. Solution Techniques and
Parallel Algorithms

3.1. Numerical Solution Techniques. ARES uses traditional
source iteration and Krylov methods to solve transport
equation. Tomake the discussion of numerical solution tech-
niques clear, discretized transport equation can be expressed
in operator notation [22].

L𝜓 = MS𝜙 + 1𝑘MF𝜙
𝜙 = D𝜓, (12)

whereL = Ω⃗⋅∇+Σ𝑡 is the transport operator,M is the operator
that converts harmonicmoments into discrete angles,D is the
discrete to moments operator that integrates discrete angles
into angular flux moments using quadrature rules, S is the
scattering matrix, F = 𝜒f𝑇 is the fission matrix, 𝜒 is the
block matrix fission spectrum, and f𝑇 is the block matrix of
nufission cross section.
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The standard way to calculate eigenvalue is power itera-
tion [23]. Power iteration proceeds as follows:

(I −DL−1MS) 𝜙(𝑙+1) = 1𝑘(𝑙)DL−1MF𝜙(𝑙) (13)

𝑘(𝑙+1) = 𝑘(𝑙) f𝑇𝜙(𝑙+1)
f𝑇𝜙(𝑙) . (14)

Within each power iteration, the method for solving (13)
is equivalent to that for fixed-source calculations:

(I −DL−1MS) 𝜙 = 𝑄, (15)

where 𝑄 represents external fixed source for fixed-source
problems and fission source for eigenvalue problems.

More specifically, with the groups defined over the energy
range 𝑔 ∈ [1, 𝐺], (15) can be decomposed into a series
of coupled single-group equations. Gauss-Seidel iteration is
commonly used over energy and can be written as follows:

(I −DL−1𝑔 MS𝑔𝑔) 𝜙(𝑙+1)𝑔
= DL−1𝑔 M(𝑔−1∑

𝑔󸀠=1

S𝑔𝑔󸀠𝜙(𝑙+1)𝑔󸀠 + 𝐺∑
𝑔󸀠=𝑔+1

S𝑔𝑔󸀠𝜙(𝑙)𝑔󸀠) + 𝑄𝑔
𝑔 = 1, . . . , 𝐺.

(16)

When using Gauss-Seidel iteration over energy, one must
solve 𝐺 within-group equations over angle-space, and they
have the following form:

(I −DL−1𝑔 MS𝑔𝑔) 𝜙𝑔 = 𝑄𝑔, (17)

where 𝑄𝑔 involves all sources for group 𝑔 except for sources
scattering from group 𝑔.

ARES provides source iteration and Krylov for the
within-group equations. Source iteration can be thought of
as a two-part process:

L𝑔𝜓(𝑘+1)𝑔 = MS𝑔𝑔𝜙(𝑘)𝑔 + 𝑄𝑔, (18)

𝜙(𝑘+1)𝑔 = D𝜓(𝑘+1)𝑔 . (19)

Here, 𝑘 is the iteration index. It begins with an estimate
flux moments for the scattering source on the right side of
(18). By a transport sweep, new flux moments can be given
through (18) and (19). These iterations are repeated until the
flux moments converge.

However, as the problem becomes more scattering-
dominated, source iteration will be increasingly inefficient.
Classic diffusion synthetic acceleration scheme suffers from
severe stability problems in three dimensions with large
material discontinuities [24]. Therefore, except for source
iteration, Krylov iterative method preconditioned with DSA
is applied to solve within-group equations.

The desired form for Krylov iteration is given as follows:

Ã𝜙 = 𝑏̃, (20)

x

z

y

Figure 3:Decomposition of 3D structuredmesh forKBAalgorithm.

where

Ã = (I + PD−1𝑔 RS𝑔𝑔) (I −DL−1𝑔 MS𝑔𝑔)
𝑏̃ = (I + PD−1𝑔 RS𝑔𝑔)𝑄𝑔. (21)

Krylov iteration schemes are particularly amenable for
this quite large, fairly sparse matrix because only the action
of operator Ã on an iteration vector is required. Applying
the action of operator Ã on iteration vector V requires some
steps [25]. The transport operator L is inverted by sweeping
through the mesh in the discretized direction of particles
travel. GMRES(m) is used as the Krylov solver in ARES code
system.

3.2. Parallel Algorithms. The problems typically of interest
in the nuclear engineering community are of large scale.
As larger computer resources have made it possible, some
discrete ordinates codes on massive parallel machines, such
as PARTISN and Denovo, have been developed. Motivated
by the required ability to calculate large scale problems
on available computer resources, ARES is developed with
capability of paralleling.

The efficiency of the discrete ordinates method is largely
dependent on the efficiency of the transport sweep procedure.
KBA algorithm [26], the best known parallel sweep algorithm
devised by Baker and Koch, is used in ARES transport
code system to obtain the ability of calculating large-scale
problems.The KBA algorithm uses special columnar domain
decomposition and a particular sweep ordering. Figure 3
depicts a typical cubic geometry, which has been divided into𝐼, 𝐽, and𝐾meshes along 𝑥-, 𝑦-, and 𝑧-axes, respectively.

For a given direction, the KBA algorithm orders the tasks
as depicted in Figure 4. First, the processor that has been
assigned task at the top front right corner solves the block.
The solution of this block is depicted by removing from
the mesh in Figure 4. Then, the newly computed partition
boundary fluxes are sent to the neighbor processors along
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Figure 4: KBA sweep ordering.

𝑥-, 𝑦-axes direction. Along 𝑧-axes direction, communication
is not needed since all of these meshes belong to the
same processor. Within each block, the sweep order is not
important, as long as it satisfies the dependency constraints.

The discrete directions are pipelined so that the sweep
along the next direction in the octant begins without waiting,
when sweeping along the current direction is completed.The
pipelining can be visualized as repeating the domains 2𝑀
times, where 𝑀 is the number of discrete directions in an
octant. Note that the factor of 2 results from the pipelining
of ±𝑧 octant within each quadrature.

We note that some processors remain idle at the begin-
ning and ending of pipeline, which causes PCE is less than
unity. Some more gains could be obtained by sweeping on
all quadrants at once rather than sequentially [27]. This
approach has not been included in current ARES code
system.

4. Ray Effects Mitigation Methods

Ray effects, shown as unphysical oscillations in the scalar
flux, are inherent problem in 𝑆𝑁 method. They are caused
by the inability of any quadrature set to accurately integrate
the angular flux. First collision source method [28] has been
employed to mitigate ray effects in ARES.

The first collision source method decomposes the trans-
port equation into (22) and (23) [28]. It means the total fluxes
are decomposed into uncollided and collided fluxes.

Ω⃗ ⋅ ∇𝜓𝑔
(𝑢)
( ⃗𝑟, Ω⃗) + Σ𝑔𝑡 ( ⃗𝑟) 𝜓𝑔(𝑢) ( ⃗𝑟, Ω⃗) = 𝑞𝑔𝑒 ( ⃗𝑟, Ω⃗) (22)

Ω⃗ ⋅ ∇𝜓𝑔
(𝑐)
( ⃗𝑟, Ω⃗) + Σ𝑔𝑡 ( ⃗𝑟) 𝜓𝑔(𝑐) ( ⃗𝑟, Ω⃗)

= 𝐺∑
𝑔󸀠=1

𝑁∑
𝑛=0

2𝑛 + 14𝜋 Σ𝑔𝑔󸀠𝑠𝑛 ( ⃗𝑟) 𝑛∑
𝑘=−𝑛

𝑌∗𝑛𝑘 (Ω⃗) 𝜙𝑔󸀠(𝑐)𝑛𝑘 ( ⃗𝑟)
+ 𝑞(𝑢)𝑠 ( ⃗𝑟, Ω⃗) .

(23)

The uncollided flux moments are calculated analytically
by (24). The uncollided fluxes are applied to calculate first

collision source with (25). The collided components are
obtained with 𝑆𝑁 method in (23).

𝜙𝑔(𝑢)
𝑛𝑘 (𝑟) = ∫

4𝜋
𝑌∗𝑛𝑘 (Ω⃗) 𝜓𝑔(𝑢) (𝑟, Ω⃗) 𝑑Ω⃗

= 𝑌∗𝑛𝑘 (Ω⃗𝑝→𝑟) 𝑞04𝜋 𝑒−𝜏(𝑟,𝑟𝑝)󵄨󵄨󵄨󵄨󵄨𝑟 − 𝑟𝑝󵄨󵄨󵄨󵄨󵄨2
(24)

𝑞(𝑢)𝑠 (𝑟, Ω⃗)
= 𝐺∑
𝑔󸀠=1

𝑁∑
𝑛=0

2𝑙 + 14𝜋 Σ𝑔𝑔󸀠𝑠𝑛 (𝑟) 𝑛∑
𝑘=−𝑛

𝑌∗𝑛𝑘 (Ω⃗) 𝜙𝑔󸀠(𝑢)𝑛𝑘 (𝑟) . (25)

In ARES, arbitrary number of point sources are employed
to approximate the source region. And the location of a point
source can be arbitrary. RAY employs ray tracing method to
accelerate the calculation of optical distances 𝜏(𝑟, 𝑟𝑝) between
all source points and all grid cells, and point source correction
factor is introduced to improve the accuracy of calculation
results [29]. RAY3D has been validated by a series of national
benchmarks, such likeKobayashi benchmarks [30] andAzmy
benchmarks [31]. RAY can effectively eliminate ray effects and
obtain reasonable results.

5. Verification and Discussions

The ARES code system has been validated and verified by
lots of analytical problems, international benchmark prob-
lems, and international benchmark experiments. All results
of ARES have been compared with authoritative transport
codes, such as TORT and MCNP.

The Kobayashi benchmark problem [30], proposed by
OECD/NEA, can be used to verify the ability to calcu-
late shielding problems with void region. The solutions of
DONTRAN3D and DONTRAN3D with RAY3D agree with
MCNP solutions that are within 3% and 11%, respectively
[29]. ARES can effectivelymitigate ray effects and obtain good
accuracy for the void problems.

The Takeda benchmark problems [32], proposed by
Takeda and Ikeda, are used to verify the accuracy of transport
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codes for critical calculation. The eigenvalues and region-
averaged fluxes are calculated by DONTRAN3D, eigenvalue
differences between ARES-calculated values, and reference
values lie within 30 pcm in most cases [33]. ARES has a good
performance in critical calculation for homogeneous core
models.

In this chapter, the HBR-2 benchmark problem [34] and
C5G7 benchmark problem [35] are calculated to further
verify and validate the ability of ARES for engineering
application.

5.1. HBR-2 Benchmark Problem. An accurate calculation of
the neutron fluence at the reactor vessel is necessary to
estimate the structural integrity over the designed lifetime
and to support analyses for a potential plant life extension.
TheH. B. RobinsonUnit 2 Pressure Vessel Benchmark (HBR-
2 benchmark), based on experimental data from an operating
PWR reactor, is the only openly available RPV benchmark
through the SINBADDatabase at theOECD/NEAData Bank
[14]. To verify the reliability and availability ofARES shielding
calculation, the HBR-2 benchmark was modeled and we
provided the final result of the average ratio of the calculated
to measured specific activities (𝐶/𝑀) for the six dosimeters
in the surveillance capsule during cycle 9.

HBR-2 benchmark is a 2300MW (thermal power) pres-
surized water reactor designed by Westinghouse, as shown
in Figure 5. The core consists of 157 fuel elements and is
surrounded by the core baffle, core barrel, thermal shield,
pressure vessel, and biological shield. The overall dimensions
of the three-dimensional configuration is 443.31 × 443.31 ×
425.936 cm, while each assembly is 21.504 × 21.504 cm, and
each fuel assembly is composed of 15 × 15 array of fuel pins.

To describe the model accurately, the calculation of
neutron source is significant. The power to neutron source
conversion factor was calculated based on the contributions
of 235U and 239Pu to the fission neutron source, and we took
the average fission spectrum of 235U and 239Pu as the source
energy spectrum [34].

The MUSE1.0 [36] cross-sectional library based on
ENDF/B-VII was used for the ARES transport calculations.
The 𝑃3-𝑆8 approximation is introduced. 𝑃3 corresponds to
the order of the expansion in Legendre polynomials of
the scattering cross-sectional matrix and 𝑆8 represents the
order of the flux angular discretization. Fully symmetrical
quadrature sets were introduced.

With the purpose of comparing the calculated and mea-
sured specific activities, we take the reactor power changes
during irradiation period and the affection of the closest fuel
assemblies to the reaction rate at the dosimetry locations into
account. According to the relative reactor data given by the
benchmark, the approximate reaction rate can be written as

𝑅𝑗 = 𝑅𝑐 × 𝑃𝑖𝑃Avg ×
𝑃𝑗𝑃ref , (26)

where𝑅𝑗 is reaction rates of the dosimeters in the surveillance
capsule during 𝑗th day, 𝑅𝑐 is reaction rate obtained from the
transport calculation (ARES) in nominal core power, 𝑃𝑖 is
normalized average relative power of the three closest fuel
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Figure 5: Horizontal cross section of the HBR-2 reactor. 1: reactor
core; 2: core baffle; 3: core barrel; 4: downcomer reg. #1; 5:
thermal shield; 6: downcomer reg. #2; 7: pressure vessel; ×: capsule
dosimeters location.

elements during 𝑖th burn up step, 𝑃Avg is average relative
power of the three closest fuel elements during the whole 9
cycles, 𝑃𝑗 is daily average reactor core power during 𝑗th day
(during 𝑗th day is in the burnup step 𝑖th), and 𝑃ref is nominal
core power (2300MW).

For all the considered typical nuclide reaction, the reac-
tion rates of the dosimeters in the surveillance capsule
calculated by ARES, the reference values provided by DORT
for the cycle average power distribution, and core power of
2300MW are given in Table 1.

According to the reaction rates from Table 1, the specific
activities were calculated and presented in Table 2. This table
also lists the measured specific activities of the dosimeters
from surveillance capsule at the end of cycle 9.

The ratios of the calculated and measured specific activ-
ities are listed in Table 3. The data in the bracket below the
corresponding ratios are the values that take the correction
discussed above into account.

The results indicate that the ARES transport calculation
and the measured specific activities are in good agreement
except 238U(𝑛, 𝑓) reaction. However, the benchmark report
pointed out that, due to the particularity of (𝑛, 𝑓) detectors,
the deviation is generally large and further revision is needed.
Overall, ARES has been proved that it can be applied in
shielding calculation, and the results are relatively accurate
and credible.

5.2. C5G7 Benchmark Problem. The C5G7 benchmark prob-
lem [35], proposed by OECD/NEA expert group, was
modeled to verify the criticality calculation capabilities of
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Table 1: Reaction rates calculated by ARES and reference values (DORT).

Reaction rate (s−1atom−1)
238U(𝑛, 𝑓) 58Ni(𝑛, 𝑝) 54Fe(𝑛, 𝑝) 46Ti(𝑛, 𝑝) 63Cu(𝑛, 𝛼)

Reference (DORT) 1.54𝐸 − 14 4.74𝐸 − 15 3.51𝐸 − 15 5.62𝐸 − 16 3.57𝐸 − 17
ARES 1.47𝐸 − 14 4.79𝐸 − 15 3.56𝐸 − 15 7.26𝐸 − 16 4.00𝐸 − 17

Table 2: Calculated specific activities.

Specific activity (Bq/mg)
238U(𝑛, 𝑓) 58Ni(𝑛, 𝑝) 54Fe(𝑛, 𝑝) 46Ti(𝑛, 𝑝) 63Cu(𝑛, 𝛼)𝑇1/2 30 years 71 days 313 days 84 days 5.3 years

Measured∗ 5.345𝐸 + 1 1.786𝐸 + 4 9.342𝐸 + 2 3.500𝐸 + 2 2.646𝐸 + 1
Reference
(DORT) 4.54𝐸 + 1 1.71𝐸 + 4 8.69𝐸 + 2 2.96𝐸 + 2 2.39𝐸 + 1
ARES 4.37𝐸 + 01 1.73𝐸 + 04 8.73𝐸 + 02 3.62𝐸 + 02 2.67𝐸 + 01
∗The specific activity of 137Cs produced by 238U should be reduced by 5% to compensate for the photofission contribution for the reason that the dosimeters
in the capsule were covered by 0.508mm Gd cover. Meanwhile, the activity of 60Co in 63Cu should be reduced by 2.5% when considering 59Co(𝑛, 𝑝)60Co
reaction as the Co impurities [14].

Table 3: Ratios of calculated-to-measured (𝐶/𝑀) specific activities.

238U(𝑛, 𝑓) 58Ni(𝑛, 𝑝) 54Fe(𝑛, 𝑝) 46Ti(𝑛, 𝑝) 63Cu(𝑛, 𝛼) Average
Reference
(DORT)

0.85
(0.89) 0.96 0.93 0.85 0.90

(0.93)
0.90 ± 0.04
(0.91 ± 0.04)

ARES 0.82
(0.86) 0.97 0.93 1.03 1.01

(1.03)
0.95 ± 0.04
(0.96 ± 0.04)
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Figure 6: Geometry specification for C5G7 benchmark.

ARES code system for reactor core problems without spatial
homogenization. As shown in Figure 6, this benchmark
consists of four UO2/MOX fuel assemblies surrounded by
water moderator. Each fuel assembly is made up of a 17 × 17
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Y
(c

m
)

0.6300.000−0.630

0.630

0.000

−0.630

Figure 7: Mesh over a pin cell.

square lattice of fuel pin cells. The pitch of each pin cell is
1.26 cm and every fuel pin, guide tube, control rod, and fission
chamber have a radius of 0.54 cm. In our calculation, curved
surface of the fuel rod is approximated by staircase. As shown
in Figure 7, each of te pin cells is divided into 14 × 14 × 36
meshes, which gives a total of 486×486×54meshes, together
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Table 4: Comparison of calculated eigenvalue with reference value.

UNRODDED RODDED A RODDED B
Reference
MCNP

1.14308 ±0.00006 1.12806 ±0.00006 1.07777 ±0.00006
ARES 1.14320 1.12826 1.07784
Differences/pcm 10 18 6

with moderator region. A detailed description of the fuel
assembly composition is available [37]. Figure 7 illustrates
that the volume of fuel and moderator is approximated
by employing orthogonal structured meshes. Therefore, the
macroscopic cross sections presented in [34] are corrected
by adjusting nuclei densities to preserve fuel and moderator
masses [37].

Σcorrected
fuel = Σfuel × 𝑉fuel𝑉mesh

fuel

Σcorrected
moderator = Σmoderator × 𝑉moderator𝑉mesh

moderator
, (27)

where 𝑉 denotes actual volume and 𝑉mesh denotes approxi-
mate volume based on the orthogonal structure meshes.

This problem is executed using an EO16 quadrature set
with a total of 288 angles.Three cases characterized by control
rods position are considered: (1) UNRODDED, control rods
stay in the moderator above fuel assemblies, (2) RODDEDA,
the control rods are inserted one-third of the inner UO2 fuel
assembly, and (3) RODDED B, the control rods are inserted
two-third of the innerUO2 fuel assembly and one-third of the
two MOX fuel assemblies. The convergence criteria were set
to 1 × 10−5 for the flux and 1 × 10−6 for the eigenvalue.

Table 4 gives the eigenvalue results and differences rel-
ative to the reference MCNP value. All of the three cases
under consideration achieved excellent agreement with the
reference solution within 20 pcm, calculated by

𝜀pcm = 󵄨󵄨󵄨󵄨𝑘reference − 𝑘calculate󵄨󵄨󵄨󵄨𝑘reference × 105. (28)

Figure 8 plots relative differences between ARES-
calculated maximum pin power and referenceMCNP values.
Axially, the maximum relative differences lie in slice 3,
in which region noticeable differences are presented with
increased control rods insertion. This is likely due to the
shortcomings of the method in treating large thermal flux
gradients caused by inserted strong-absorptive control rods.

Assembly powers are calculated and compared with
reference MCNP values in Table 5. The results indicate
an overestimation of assembly power in the inner UO2
assembly.Whenmoving toward theMOXassembly and outer
UO2 assembly, it gives underestimated assembly powers. The
differences all lie within one standard deviation uncertainty
of MCNP calculations.

In summary, the results show that ARES can be used
to perform precise transport calculation for complex three-
dimensional geometries that include strongly absorbing
materials, such as fuel assemblies without homogenization.
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Table 5: Comparison of assembly power with reference value.

Assembly Reference MCNP ARES Relative
difference/%

Unrodded inner UO2 491.2 ± 0.29% 491.26 0.012
Unrodded MOX 212.7 ± 0.21% 212.68 −0.009
Unrodded outer UO2 139.4 ± 0.15% 139.38 −0.014
Rodded A inner UO2 461.2 ± 0.28% 461.28 0.017
Rodded A MOX 221.7 ± 0.22% 221.69 −0.004
Rodded A outer UO2 151.4 ± 0.16% 151.34 −0.040
Rodded B inner UO2 395.4 ± 0.26% 395.59 0.048
Rodded B MOX 236.6 ± 0.23% 236.58 −0.008
Rodded B outer UO2 187.3 ± 0.18% 187.26 −0.021

6. Conclusions

ARES code system is developed to solve the linearized
Boltzmann transport equation for a wide variety of radiation
transport applications and reactor physics analysis. ARES
provides five spatial differencing schemes, uses the first
collision source method to eliminate or mitigate the ray
effects, and applies source iteration and Krylov iterative
methods to solve the linear system of equations.

In this paper, ARES solutions to the HBR-2 benchmark
and C5G7 benchmarks are in excellent agreement with ref-
erence results. ARES is undergoing continuous development
with many new features planned for implementation, aiming
to deal with advanced physical model and problems of
extended range, such as more accurate solutions for deep
penetration problems with void region.
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