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In recent years, vast amounts of data of different kinds, from pictures and videos from our cameras to software logs from sensor
networks and Internet routers operating day and night, are being generated. This has led to new big data problems, which require
new algorithms to handle these large volumes of data and as a result are very computationally demanding because of the volumes
to process. In this paper, we parallelize one of these new algorithms, namely, the HyperLogLog algorithm, which estimates the
number of different items in a large data set with minimal memory usage, as it lowers the typical memory usage of this type of
calculation from 𝑂(𝑛) to 𝑂(1). We have implemented parallelizations based on OpenMP and OpenCL and evaluated them in a
standard multicore system, an Intel Xeon Phi, and two GPUs from different vendors. The results obtained in our experiments, in
which we reach a speedup of 88.6 with respect to an optimized sequential implementation, are very positive, particularly taking
into account the need to run this kind of algorithm on large amounts of data.

1. Introduction

Very often the processing of very large data sets does not
require accurate solutions, being enough to find approximate
ones that can be achievedmuchmore efficiently.This strategy,
called approximate computing, has been used in comput-
ing for many years and can be applied in those contexts
where answers that are close enough to the actual value are
acceptable, giving place to a trade-off of accuracy for other
resources, typically memory space and time. For example,
the scholastic gradient descent algorithmofmachine learning
is used to calculate approximate local minimum and not
exact global minimum. Another example is bloom filters [1],
which allow easily checking whether an item is in a set or
not by using multiple hash functions, there being a certain
probability of false positives, that is, of classifying asmembers
of the set items that actually do not belong to it.

HyperLogLog (HLL) [2] is a very powerful approximate
algorithm in the sense that it can practically and efficiently
give a good estimation of the cardinality of a data set,meaning
the number of different items in it with respect to some char-
acteristics. This value has many real life applications, making

its computation a must for high profile companies working
in big data. This algorithm is used by basically anyone who
has a data set and needs its cardinality without wasting space,
as it can calculate the cardinality of𝑁 items with 𝑂(1) space
complexity. Because of the way it is implemented, HLL allows
many smaller budget companies and individuals without
large memory banks to use large data sets.

In this paper we develop two parallel implementations of
the HyperLogLog algorithm, one of them based on OpenMP
and targeted to multicore processors and Intel Xeon Phi
accelerators and another one based on OpenCL, which can
be run not only on these systems but also on other kinds of
accelerators such as GPUs. Both implementations are com-
pared on an Intel Xeon Phi and a standard multicore system,
while the performance of the OpenCL version is evaluated in
these platforms as well as in an NVIDIA Tesla K20m GPU
and an AMD FirePro S9150 GPU.

The remainder of this paper is organized as follows.
Section 2 briefly summarizes the HyperLogLog algorithm
and its sequential implementation, while Section 3 details our
parallel implementations. This is followed by an evaluation
in Section 4. Then, Section 5 is devoted to the related work.
Finally, Section 6 is devoted to our concluding ideas.
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input: Input file 𝑖𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒
input: Number of estimator buckets𝑁
data: Vector of𝑁 buckets →𝑀 = (𝑀0, . . . ,𝑀𝑁−1)
output: Estimation 𝐸 of number of different items in the input file𝑀index = 0, 0 ≤ index < 𝑁
while not at end of file 𝑖𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒 do𝑑𝑎𝑡𝑎𝐶ℎ𝑢𝑛𝑘 = readChunk(𝑖𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒)

foreach item in 𝑑𝑎𝑡𝑎𝐶ℎ𝑢𝑛𝑘 doℎ𝑎𝑠ℎ = hashFunction(𝑖𝑡𝑒𝑚)[𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟, 𝑖𝑛𝑑𝑒𝑥] = splitHash(ℎ𝑎𝑠ℎ)𝑛𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 = countLeadingZeros(𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)𝑀index = max (𝑀index, 𝑛𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠)
end

end

𝐸 = Alpha × 𝑁2 × (𝑁−1∑
𝑖=0

2−𝑀𝑖)−1

Algorithm 1: Pseudocode for HyperLogLog.

2. HyperLogLog Algorithm

The HyperLogLog algorithm, thoroughly described in [2],
hashes each item in the set to be analyzed, obtaining an asso-
ciated 32-bit binary number. This value is then decomposed
in two parts.The first 𝑏 bits of this value are used to determine
which bucket of the estimator this number falls in out of the𝑁 = 2𝑏 ones available, and in the rest of the bits we count
the amount of leading zeros to estimate the probability of this
number occurring. Every estimator bucket𝑀𝑗, 0 ≤ 𝑗 < 2𝑏,
stores the maximum amount of leading zeros found for all
the values associated with that bucket. After all the items are
processed in this way, the harmonicmean of the value 2𝑀𝑗 for
all the buckets is calculated.This value is then multiplied by a
constant Alpha and the amount of buckets𝑁. This is the raw
HyperLogLog estimate, which can be expressed as

𝐸 = Alpha × 𝑁2 × ( 𝑁∑
𝑗=1

2−𝑀𝑗)
−1

(1)

and is usually the correct answer, although in some situations
corrections are applied. Namely, if 𝐸 < 2.5𝑁 and there are
estimated buckets with the value 0, then the final estimation
is 𝑁 × log(𝑁/𝑉), where 𝑉 is the number of buckets equal
to 0. Similarly, if 𝐸 > (232/30) the final estimation must
be −232 log(1 − 𝐸/232), although this latter correction does
not apply if binaries of 64 bits instead of 32 are used for
the result of the hash function. Either way, we can see that
the computationally intensive part of the algorithm is the
derivation of the hashes for the items and the update of the
buckets.

A sequential implementation for this algorithm is shown
in Algorithm 1. Since the algorithm is usually applied to large
data sets, the data to process is found in an input stream that
is processed by chunks, which are groups of consecutive data
taken from the stream, in themain loop of the algorithm.The
innermost loop takes care of the processing of each item in
the current chunk. Each item is first hashed. The resulting

value is split into two pieces.The first part is a binary number
that represents the index of the estimator array. For example,
when using 256 buckets, the index field corresponds to the
8 less significant bits of the hash, and the value 00010011 is
the bucket number 35. The rest of the bit stream is given to a
function that counts the leading zeros and then the associated
bucket is updated with this value if it is larger than the current
value in the bucket. When the process finishes, (1) is applied
to compute the raw estimate. Figure 1 presents the algorithm
flow chart.

3. Parallel Implementations

As a first step we developed a sequential implementation
of HyperLogLog used as input items 32 bit integers, so
that its purpose was the estimation of the number of dif-
ferent integers in an input stream. Before proceeding to
the development of parallel implementations we optimized
our sequential implementation. This step was critical, as
the initial implementation of the hash function was based
on a temporary C++ string (std::string), which implied
allocations and deallocations of memory in each invocation.
Our optimized sequential baseline is based on an array
of characters of a predefined size computed to ensure the
representation always fits in it: 11 characters in our case,
including a 0 value to mark the end of the string.The applica-
tion requires a single array of this kind, as it is reused for
the hashing of each different input item. Also, this string was
filled in with translations of the values to hash which were
computed in a suboptimal way. Concretely, the initial code
used conditional statements to translate from single digit
integers in which the input was decomposed to the associated
character in their string representation; for example, the value
associated with 1 would be the character “1” and so on.
This was replaced with straight computations, as since it is
standard that the ASCII characters from “0” to “9” start at the
value 48 for the character “0” and are consecutively mapped,
it follows that the ASCII character for the single digit integer
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Figure 1: Sequential implementation of the HyperLogLog algorithm.

𝑥 is always 𝑥 + 48. Both improvements made our sequential
baseline one order of magnitude faster (concretely about 16
times) than the initial implementation.

Two parallel versions of the HyperLogLog algorithm
were developed, one based on OpenMP and another based
on OpenCL. Both implementations follow the strategy of
decomposing the input stream in chunks that are processed
in sequence, the parallelization being applied to the loop that
processes the items in each chunk. We now describe the two
implementations in turn.

3.1. OpenMP Parallelization. This implementation processes
the data in chunks whose size can be adjusted.The processing

of each chunk is parallelized by statically partitioning the
iterations of the loop that processes the chunk among the
available threads using the omp parallel for compiler
directive. This way each thread processes different items in
the chunk concurrently, as shown in Figure 2. As we can see
in Figure 1, all the steps of the processing of each item can be
safely performed in parallel except the update of the associ-
ated bucket of the algorithm, as each bucket is shared bymany
items, and sometimes two or more of these items could be
processed simultaneously by different threads. Unfortunately
OpenMP does not provide atomic max operations in C++,
the language in which we developed our application. Also,
a coarse-grained strategy such as protecting all the buckets
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Figure 2: OpenMP implementation of the HyperLogLog algorithm.

with a single lock would heavily serialize the operation of
the threads due to the large contention experienced in this
lock. For this reason, we ensured the safeness of the update
of the buckets by following a fine-grained locking approach
in which each bucket is protected by a different lock, which is
reflected at the bottom of Figure 2.

Even when contention is much lower using fine-grained
locking, locking and unlocking have still some cost. In
addition, in executions in systems with many cores such as
the Intel Xeon Phi, the contention can be noticeable. For
this reason we further optimized this reduction stage by
comparing the locally obtained 𝑛𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 value with the
one currently stored in bucket associated with the item being
processed (𝑀index in Algorithm 1) and only trying to acquire
the lock to update the bucket if the local value is greater, as
otherwise the value in the bucket would remain unchanged.
Of course after acquiring the lock 𝑛𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 is compared
again to𝑀index to make sure it is still larger in order to decide
whether the bucket must actually be updated.

3.2. OpenCL Parallelization. OpenCL is a standard for heter-
ogeneous computing which, contrary to other popular
approaches such as CUDA, provides large portability,

enabling applications to be run in a wide variety of acceler-
ators. Unfortunately, contrary to OpenMP, OpenCL requires
much boilerplate code as well as the management of new
concepts such as buffers, command queues, and platforms
noticeably obscuring the application [3]. This has led to
the development of libraries that simplify the use of this
paradigm by automating many of tasks it requires and hiding
from the developer several of its related concepts, while usu-
ally providing minimal overheads with respect to the straight
use of OpenCL. We have developed our parallelization using
one of these libraries, namely, the Heterogeneous Program-
ming Library (HPL) [4], which has shown to provide excel-
lent programmability for heterogeneous applications while
incurring in negligible overheads. Although HPL supports
writing the kernels in OpenCL C [5] our implementation
relies on the embedded language introduced in [4], which is
translated at runtime into OpenCL C by the library.

Our OpenCL implementation is based on a kernel that
parallelizes the innermost loop in Algorithm 1. The kernel
executes a different OpenCL work-item, which is basically
a parallel thread of execution, for a number of elements in
the chunk that the user can configure in order to control the
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granularity. This way, the loop is replaced by the execution of
the kernel in the selected accelerator.The kernel code chooses
the items from the chunk based on the unique identifier of the
work-item and then applies the same steps as the sequential
implementation, namely, hashing, split of the hash, count of
leading zeros, and update of the associated bucket. As in the
OpenMP implementation, this last stage poses a problem,
as multiple work-items can try to update the same bucket
in parallel. Our implementation relies on an atomic_max
routine provided by OpenCL to avoid the potential races in
these updates. In order to reduce ping-pong problems in the
caches due to the exclusive ownership required by writes, our
implementation always tests whether the locally computed𝑛𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑍𝑒𝑟𝑜𝑠 is greater than the current value in the bucket,
and only in that case does it attempt to perform the atomic
operation. Another optimization we tested consisted in using
the OpenCL local memory as a cache of the buckets for each
work-group in order to try speedup of the checks and the
updates on the buckets. The rationale for this optimization
was that (a) the access to the buckets in local memory
should be faster than in global memory and (b) since each
work-group would have its own copy, there should be less
contention in the atomic updates. Nevertheless, this turned
out to provide no advantage with respect to the direct usage
of a single array of buckets stored in the global memory of the
device and shared by all the work-items in execution.

Another difference between this implementation and the
OpenMP one is that OpenCL kernels are typically run in
an accelerator that has a separate memory. This implies that
the data must be transferred between the main host memory
and the accelerator memory for its processing. In our case,
each chunk must be transferred to the accelerator before
its processing, and at the end of the main loop the buckets
must be transferred from the accelerator to the host. Since
the chunk is the main memory object to transfer and this
operation happens repetitively, its size was tuned seeking the
best performance for each platformaswewill see in Section 4.

4. Experimental Results

In this section we evaluate our implementations in three
systemswith the sameCPU andmainmemory configuration,
but each computer has a different kind of accelerators.
Namely, each host was a dual-socket system with two Intel
Xeon E5-2660 Sandy Bridge processors with eight 2.2 Ghz
cores and 2-way hyperthreading (8 × 2 threads per processor,
for a total of 32) and 64GB of RAM, offering a single-
precision theoretical peak performance of 563 GFLOPS. The
accelerators available in the three computers were

(i) an Intel Xeon Phi 5110P with sixty 1.053GHz cores
with 8GB of RAM; Intel OpenCL driver version
1.24.5.0.8; Single-precision theoretical peak perfor-
mance of 2022 GFLOPS

(ii) an NVIDIA Tesla K20m with Kepler GPU archi-
tecture (2496 cores at 705MHz) and 5GB GDDR5;
NVIDIA OpenCL driver version 340.58; Single-
precision theoretical peak performance of 3524
GFLOPS

(iii) anAMDFirePro S9150withHawaii GPU architecture
(2816 cores at 900MHz) and 16GB GDDR5; AMD
OpenCL driver version 1702.3; Single-precision the-
oretical peak performance of 5070 GFLOPS.

The codes were compiled using the Intel compiler version
13.1.1 enabling the O3 optimization level. This compiler was
chosen both because Intel compilers are the recommended
ones for applications that run in the Xeon Phi, and this way
the same compiler can be used across all the experiments,
and because we observed that it provided better performance
in the Sandy Bridge host than the other compiler we had
available (g++ 4.9.2). The only exception is the OpenCL
kernels, which are compiled at runtime by the JIT compiler
of the OpenCL environment, as is the usual practice. In the
experiments we measured the time required by the execution
of the HLL algorithm itself; thus the measurement does not
include the load of the items to process in the host memory.
The measurements include however the time required to
compile the kernels and transfer the data between the host
memory and the accelerator when running in OpenCL. In
order to eliminate outlier results, the times reported are the
average of 10 runs for each experiment.

The experiments have been performed using 256 buckets
for the HLL algorithm and a data set of 109 items, each item
being an integer of 32 bits, thus totaling an input of 4GB.
In order to establish whether the results were representative
for other problem sizes, a study on the standard deviation
and the evolution of the runtime of the processing of each
new chunk as the problem size grows was performed using
all our implementations and platforms. In all the cases we
observed that, after the processing of the first chunk, the
processing time per chunk always got stable and regular,
meaning that the average processing time of each new chunk
remained constant. Also, the deviations observed after this
short initialization period were small. Namely, the standard
deviation of the chunks processing time varied between a
minimum of 0.16% of the average chunk processing time for
our optimized sequential baseline executed in the Xeon E5-
2660 host and a maximum of 8.26% for the HPL/OpenCL
implementation in the AMD FirePro S9150, which presents
the shortest runtimes. The larger variability obtained for the
first chunk was to be expected, as not only are caches heated
and do conflicts in the buckets happen more frequently at
the beginning, but, in the case of the OpenCL based codes,
the buffer allocations in the devices and the compilation
of the kernels only happen for the very first chunk. As a
result, the relative performance observed in our experiments
is representative of the ones for other large problem sizes that
justify resorting to an approximate algorithm such as HLL.

We now evaluate the absolute performance and the
scalability of the OpenMP implementation in the Sandy
Bridge host and the Intel Xeon Phi. This accelerator contains
60 cores, each one of them capable of executing four threads,
but since one of the cores is reserved for the system OS, this
leaves users with 59 usable cores and thus 59 × 4 = 236
parallel threads to execute their applications. Since under
OpenMP the Xeon Phi can execute full applications that
perform every sort of activity, including I/O, these runs were
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Figure 3: OpenMP execution times.
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Figure 4: OpenMP speedups with respect to the sequential execu-
tion in the Intel Xeon E5-2660 CPU.

directly executed in the Xeon Phi and thus they do not
involve neither the host nor data transfers between the host
and the accelerator. Given a series of tests, the chunk size
chosen for this implementation for both systems was 100000
elements, as increases in the chunk size until this point led to
improvements in the runtime that plateaued at this point.

Figure 3 shows the absolute execution time of the HLL
algorithm in the host and the Xeon Phi when implemented
using OpenMP when using from 1 to the maximum number
of threads supported in each system. For each platform we
show the runtime obtained for our initial version, which
always locked the access to the buckets, and the optimized one
that reduces the amount of locking required. The associated
speedups with respect to the serial optimized execution
in one Xeon E5-2660 CPU core are reflected in Figure 4.
As we can see, the optimization applied is very important
for both systems. The optimized version scales linearly in
the Sandy Bridge host, for which using hyperthreading is
counterproductive, as the increased contention in the locks
outweighs the additional parallelism exploited. Regarding the
Xeon Phi, its behavior scales very linearly up to 32 threads,
as in this region each duplication of the number of threads
leads to a growth of the speedup obtained between 87% and

100%. After that point the collisions in the locks of the 256
buckets begin to happen more often, leading to increases of
the speedup between 33% and 54%. By using all the hardware
threads, the optimized implementation reaches a 78 times’
speedup compared to a single Xeon Phi core. Unfortunately,
as Figure 3 shows, the sequential version of the program runs
about ten times slower in a core of the Xeon Phi than in a
core of the Sandy Bridge. An important reason for this is that
while vectorization is known to be critical to achieve good
performance in this platform, unfortunately the two most
important loops in this application, which account for 84% of
its runtime, have a variable number of iterations and present
inherent dependence between consecutive iterations of the
loops, which precludes their vectorization. For this reason, as
shown in Figure 4, the speedupof theXeonPhi is only 7.7with
respect to the sequential execution in the Xeon E5-2660 CPU.
As a result, the Sandy Bridge host, which reaches a speedup
of 13.5, clearly outperforms the Xeon Phi in this problem.

As for our HPL/OpenCL implementation, it was tested in
the three accelerators we had available as well as in the host.
This was possible thanks to the portability that this standard
provides. Still, it is important to notice that functional
portability does not imply performance portability. In fact the
search for strategies to develop performance-portable codes
on top of OpenCL is an important research topic [6, 7]. As
a result, we tuned the code for each platform seeking the
best chunk size, work-group size, and number of items to
process in each work-item. For the first parameter we tried
all the possible chunk sizes that were a power of 2, while the
two last parameters were found using an exhaustive search
limited by the maximum work-group size supported by each
platform and the number of elements in each chunk. The
runtimes found for the neighbor chunk sizes of the optimal
one found for each platform, which had a size of one-half and
double of it, were very similar, thus indicating that a more
fine-grained search in the neighborhood of the best chunk
size found would be of little use. The optimum values found,
shown inTable 1, prove indeed the different requirements and
characteristics of these platforms.

Figure 5 summarizes the speedups achieved by all the ver-
sions we developed, where in the case of HPL the optimized
version checks the value of the bucket to decide whether
to apply the atomic max operation, while the unoptimized
version always applies this atomic operation for every item
processed. We can see that this technique was not interesting
in OpenCL, as it slightly reduced the performance in the
two GPUs and had a negligible impact in the Intel platforms.
Another interesting conclusion is that the high parallelism of
GPUs allows them to clearly outperform the other platforms
in this problem, as they reached maximum speedups of 44.7
(K20) and 88.6 (S9150), noticeable better than the 14.4 of
the Xeon Phi and the 16.7 of the Sandy Bridge. As for the
comparison of OpenCL/HPL with OpenMP, the former one
performs better than the latter one, the maximum speedups
for OpenMP being 7.7 in the Xeon Phi and 13.5 in the Sandy
Bridge. We must take into account the fact that when using
OpenCL, the binary of the kernel is generated by theOpenCL
driver, and it may be the case that it generates more efficient
code for this concrete problem than the Intel compiler. We
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Table 1: Optimum parameters for each platform.

Platform Xeon Phi Sandy Bridge K20 S9150
Chunk size (in items) 226 221 226 227
Work-group size 256 1024 128 128
Elements per work-item 1 1 2 4
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Figure 5: Speedups achieved by all the parallel versions with respect
to the sequential execution in the Intel Xeon E5-2660 CPU.

have also looked into the possibility that the usage of the
atomic operation provided by OpenCL instead of the more
expensive lock-based implementation required by OpenMP
was another reason for the improved performance. Profiling
however showed that the function where locking/unlocking
happens only accounts for 3.6% of the runtime of the
OpenMP code in the Xeon Phi, which is the system where
the locks can suffer more contention. As a result this second
hypothesis has been discarded.

5. Related Work

Thefield of estimation algorithms is not new.MinCount [8, 9]
is an estimation algorithm that helps estimate cardinality
with 𝑂(𝜖 − 2 log 𝑛) space requirements, its accuracy being1/√𝑚, where𝑚 is themaximumnumber of hash values. After
MinCount, researchers continued to propose new algorithms
in order to save space and increase both speed and accuracy.
This way, the LogLog algorithm [10] provided a big leap of
intuition in the field of cardinality estimation.This algorithm
estimates the cardinality of a data set by using probability
statistics and basically estimates cardinality on the probability
of a number occurring. To be more accurate the algorithm
does this a number of times and then takes the geometric
mean of the values. The effectiveness of this algorithm and
others on different data types was evaluated in [11].

Later, HyperLogLog [2] largely increased the accuracy
of the original LogLog proposal by using a harmonic mean
[12] for value correction instead of a geometric mean [13].
The algorithm has become popular in the growing field

of computer science algorithms called big data because of
its excellent properties for the processing of vast amounts
of information, there being specialized implementations
for important big data problems such as DNA processing
with parallel implementations for shared memory based on
OpenMP [14] and distributed memory based on MPI [15]. A
generic parallel implementation ofHLL based onParallel Java
Map Reduce has also been proposed [16].The report provides
very few details, and the runtimes reported, which use up to 8
cores, aremuch higher than those of our implementations for
the same numbers of cores. Since it is a C++ code parallelized
with OpenMP, [14] is the most related to our approach.
However it relies on C++ strings and complex flows with
switch statements, whose removal accelerated by 16 times
our sequential implementation. Also, as we have seen in the
previous section that OpenCL achieved better performance
than OpenMP in our CPU and Xeon Phi. Finally, since we
did not find any implementation of HLL for accelerators in
the literature, our portable OpenCL based proposal and the
parameterization we performed are of particular interest.

A more recent version of the algorithm is Hyper-
LogLog++ (HLL++) [17], which increases the power of the
already very efficient HyperLogLog algorithm. One of the
changes is that instead of 32-bit hashes HLL++ uses 64-bit
hashes, so there is no longer a need for long range correction.
Also the authors of HLL++ found through trial and error a
value correction table that makes the algorithm even more
accurate. Finally, in [18] there is an algorithm that is quite
similar to HyperLogLog, but instead of a harmonic mean it
uses an inverse of an arithmetic mean as normalizing func-
tion. Neither of these variations of HLL imply modifications
in the computationally intensive part of the algorithm, the
changes involving only the final correction stage, which runs
in a totally negligible time. This way, both our parallelization
schemes for HLL as well as their impact on runtime would be
totally identical for these algorithms.

6. Conclusions

The increasingly widespread management of large amounts
of data is a critical challenge that demands both algorithms
suited to the particular needs of these problems and opti-
mized implementations of them. One of the strategies appli-
cable to some of these problems is approximate computing,
which provides sufficiently good results rather than accurate
ones, thus saving considerable computational resources while
allowing solving the problem at hand. The HyperLogLog
algorithm for the count-distinct problem belonging to this
family of solutions has received considerable attention thanks
to its reduced memory requirements. In this paper we have
explored several parallel implementations of this algorithm
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in order to further facilitate its application on (very) large
sets of data. Namely, we developed portable implementations
based onOpenMP andOpenCLwhichwere evaluated in four
platforms. Our OpenCL implementations allow exploiting
the high performance provided by GPUs, where we obtained
speedups of up to 88.6with respect to an optimized sequential
implementation. When these accelerators are not available,
the OpenCL implementation is still useful, as it can run on
regular CPUs, achieving a speedup of 16.7 in a Sandy Bridge,
outperforming themaximum speedup of 13.5 obtained by our
OpenMP implementation.

As future work we contemplate extending our parallel
implementations to exploit multiple accelerators attached to
the same computer using the advanced features of HPL [19],
as well as the development of distributed memory versions
that parallelize the algorithm in homogeneous and heteroge-
neous clusters.
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