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We present a technique for analysis of asymptotic stability for a class of differential in-
clusions. This technique is based on the Lyapunov-type theorems. The construction of
the Lyapunov functions for differential inclusions is reduced to an auxiliary problem of
mathematical programming, namely, to the problem of searching saddle points of a suit-
able function. The computational approach to the auxiliary problem contains a gradient-
type algorithm for saddle-point problems. We also extend our main results to systems
described by difference inclusions. The obtained numerical schemes are applied to some
illustrative examples.
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1. Motivation and overview

The method of Lyapunov functions is one of the most efficient methods for analyzing the
stability of nonlinear dynamic systems (see, e.g., [12, 22, 41]). As in the case of ordinary
differential equations, the main difficulty encountered in using this method for differen-
tial inclusions lies in constructing the Lyapunov function with requisite properties. The
aim of our paper is to obtain an algorithm for choosing the Lyapunov function for a class
of differential inclusions. Recall that differential inclusions are usual mathematical repre-
sentations of control systems with ordinary differential equations (see, e.g., [3, 10, 28]).
Let us consider the following initial-value problem [3, 7, 13, 21]:

ẋ ∈ Fq(x), x
(
t0
)= 0,

Fq(x)= {y ∈Rn : y =Ax, A∈�q
}

,
(1.1)

where x ∈Rn and �q, q ∈N, is the convex hull of the given real (n×n)-matrices A1, . . . ,
Aq, that is,

�q = co
(
A1, . . . ,Aq

)≡
{

A∈Rn×n : A=
q∑

ν=1

λνAν, λν ≥ 0,
q∑

ν=1

λν = 1

}

. (1.2)
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For example, the set of the initial-value problems for linear nonstationary differential
equations

ẋ = A(t)x, x(0)= 0, A(t)= (ai j(t)
)n
i, j=1,

αi j ≤ ai j(t)≤ βi j , i, j = 1, . . . ,n,
(1.3)

where αi j , βi j are constants, can be reduced to problem (1.1).
In parallel with (1.1), we examine a more general type of the initial-value problem for

differential inclusions

ẋ ∈ F(x), x
(
t0
)= 0,

F(x)= {y ∈Rn : y = Ax, A∈�
}

,
(1.4)

where � is a compactum (in general, nonconvex) in the n2-dimensional space of real
(n×n)-matrices A.

Recall that an absolutely continuous vector function x(·) satisfying the condition ẋ(t)
∈ Fq(x(t)) (or the condition ẋ(t)∈ F(x(t))) almost everywhere on a considered interval
of time [t0, t] is called a solution of the differential inclusion in (1.1) (a solution of the
differential inclusion in (1.4)). Note that any solution x(·) of above inclusions can be
continued on the whole semi-infinite axis [t0,∞) (see [3]). The solution x(·) ≡ 0 of the
initial-value problem (1.1) or (1.4) is called the zero solution (or trivial solution, see, e.g.,
[7]). The problem of asymptotic stability of the zero solution for systems of the type (1.1)
and (1.4), to which many practically important control systems can be reduced, consists
of choosing a Lyapunov function V :Rn→R+. This function satisfies the following con-
ditions (see [7, 13]):

(i) V(0)= 0, V(·)∈ C1(Rn);
(ii) V(x) ≥ ϕ(|x|) > 0 on Bd(0) := {x ∈ Rn : 0 < |x| < d} for some d > 0 and some

continuous function ϕ : [0,Δ)→R+.
Here C1(Rn) is the space of all continuously differentiable functions from Rn into R+.
The Lyapunov functions V(·) for systems (1.1) and (1.4) can be chosen from the class
of convex functions [27]. For the differential inclusions in (1.1) and in (1.4), the role of
usual derivatives is played by the functions

Wq(x)= sup
y∈Fq(x)

(∇V(x), y
)
, W(x)= sup

y∈F(x)

(∇V(x), y
)
, (1.5)

where∇V(x)y = limh→0+ h
−1(V(x+hy)−V(x)) is the Gateaux derivative (see [13]). The

bracket (·,·) denotes the inner product in Rn. We call the function Wq(·) or W(·) the
derivative of the function V(·) along solutions of system (1.1) or (1.4), respectively.

In this paper, we also study the question of asymptotic stability of the zero solution for
systems of difference inclusions. It is common knowledge that a difference inclusion can
be obtained as discretization of the corresponding differential inclusion, and provides a
basis for the numerical treatment of the given differential inclusion. We refer to [8, 9, 28,
37] for details. Note that our paper is concerned only with a class of difference inclusions
determined by the multifunction Fq(·).
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The problem of asymptotic stability of the zero solution for system (1.1) is closely
related to the familiar problem of absolute stabilization of a nonstationary control system.
Alternatively, the above problem can also be treated as a variant of the so-called robust
stabilization problem. The concept of absolute stability of feedback systems dates back to
Lourie and Postnikov [23]. Consider a simple model of a plant

ẋ = Ãx+ bu (1.6)

with nonlinear gain u given in terms of the output σ as follows:

u= φ(σ), σ = (c,x). (1.7)

Here x (state variable), b, and c are vectors in Rn, Ã is a matrix, and φ(·) is a piecewise
continuous real function. Since the nonlinearity φ(·) is not a priori known in general, an
interesting issue which arises is to determine conditions for stability of the given model,
when φ(·) is any function in a prescribed class. Thus we are led to the concept of absolute
stability, which is basically stability of a whole class of systems. A decisive contribution
to the Lur’e-Postnikov problem was given by Popov in a series of papers, culminating
in [33]. The great advantage of the so-called frequency-domain conditions, as introduced
by Popov for finite-dimensional systems, is that they are easy to check. The relation-
ship between the frequency criteria of Popov and the existence of Lyapunov functions in
Lur’e-Postnikov form (a quadratic form plus an integral of the nonlinearity) is clarified
by Yakubovich [40] and by Kalman [18]. We refer to [30] for a historical survey of the
problem. Some applications of the frequency techniques to the stability of delay systems
are discussed in [15]. For the extensions to distributed systems, see [6, 39]. The differen-
tial inclusion in (1.1) is equivalent to the following set of linear control systems (see [35]
for details):

ẋ =�x+
q∑

ν=1

uν(t)Aνx, 0≤ u(t)≤ 1,
q∑

ν=1

uν(t)= 1, (1.8)

where the control functions uν(·), ν = 1, . . . ,q, are Lebesque measurable on each finite
segment of the t-axis and � is an (n×n) matrix. Thus the problem of asymptotic stability
of the zero solution for system (1.1) can be interpreted as the corresponding absolute
stabilization problem for the presented set of linear control systems.

Robust stability of time-varying systems with uncertainties has received much atten-
tion since the familiar paper of Kharitonov [20]. A great amount of works is devoted
to the theoretical and practical aspects of robust stability and robust stabilization of dy-
namical systems; see [1, 16, 25, 29] and the references therein. The so-called quadratic
stabilization is a powerful approach to the problem of robust stabilization for uncertain
linear systems (see, e.g., [5, 31]). The problem is to construct a common quadratic Lya-
punov function for all possible uncertainties. In this context, an uncertainty is meant
in a deterministic sense: it arises as a result of approximation, imprecision, or imperfect
knowledge introduced during the modeling procedure. In the present paper, the uncer-
tain system is defined by a differential inclusion, the right-hand side of which is a known
multifunction Fq or F. Quadratic stability dates back to the pioneering work of Lyapunov
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[24] who established that the existence of a quadratic Lyapunov function is a necessary
and sufficient condition for asymptotic stability of a linear system. Quadratic Lyapunov
functions are often the first resort in the analysis of nonlinear systems and much work
on absolute stability is based on quadratic Lyapunov functions. We refer to [17, 36] for
some new directions in the area of quadratic stability and quadratic stabilization. The
formulated problem of asymptotic stability of the zero solution for system (1.1) can also
be considered in the framework of quadratic stabilization.

The aim of this paper is to propose a new numerical approach to the described prob-
lem of asymptotic stability for systems (1.1) and (1.4) and to the corresponding robust
stabilization problem. Moreover, we also investigate the question of asymptotic stability
for the linear “nonconvex” system (1.4) (Theorems 2.4 and 2.5). Using these new theoret-
ical results, one can construct the Lyapunov function for a suitable system (1.1) in place
of the corresponding problem for the more general system (1.4). Note that the problem of
asymptotic stability of the zero solution for system (1.4) is not from the class of quadratic
stabilization problems. In the present paper, we do not consider any standard techniques
from the theory of absolute stability or robust stability (e.g., Popov-type criteria, Brock-
ett technique, stability radius, LMI-based methods, Riccati equation approach, and the
like). We apply some results from the classical stability theory for differential inclusions
(see, e.g., [7, 12, 13]). Moreover, we discuss a relaxation of the usual stability concept [7].
In contrast to the quadratic stabilization, we construct polynomial Lyapunov functions
for system (1.1) and for the corresponding discrete system. This approach makes it pos-
sible to reduce the problem of choosing the Lyapunov function to an auxiliary problem
of mathematical programming, namely, to a saddle points problem (Theorems 3.1 and
4.1). We solve this saddle points problem by application of a gradient-type method.

The remainder of the paper is organized as follows. Section 2 contains some basic
facts about the asymptotic stability. In Section 3, we propose a constructive approach
to the stability problem and establish a relation between stability of systems given above
and an auxiliary saddle points problem. Section 4 contains the related results for a class
of difference inclusions. In Section 5, we apply a gradient-type method to the auxiliary
saddle points problem and present an algorithm for constructing the Lyapunov functions.
Finally, we consider two illustrative examples.

2. Mathematical preliminaries

First let us discuss some definitions and theoretical results in connection with the stability
theory for differential inclusions (see [3, 7, 13]).

Definition 2.1. The zero solution x(·)≡ 0 of the initial-value problem (1.1) (or (1.4)) is
called asymptotically stable if

(i) for any ε > 0, there exists δ(ε) > 0 such that for each solution x̃(·) of the differ-
ential inclusion in (1.1) (or in (1.4)), the inequality ‖x̃(t)‖ < ε holds for all t ≥ t0,
only if ‖x̃(t0)‖ < δ(ε);

(ii) there exists Δ > 0 such that for any solution x̃(·) of the differential inclusion in
(1.1) (or in (1.4)) with ‖x̃(t0)‖ < Δ, the following limiting relation limt→∞ x̃(t)= 0
holds.
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The zero solution x(·) ≡ 0 is said to be weakly asymptotically stable if the above def-
inition holds with “for each” replaced by “for some.” For the classical Lyapunov-type
stability theorems, see [7, 13]. Let us present two special stability theorems for the given
system (1.4) [27].

Theorem 2.2. For the zero solution x(·)≡ 0 of problem (1.4) to be asymptotically stable, it
is necessary and sufficient that there exists a strictly convex, homogeneous (of second order)
Lyapunov function V(·) of a quasiquadratic form, namely,

V(x)= xT�(x)x, V(0)= 0, �(x)= (li, j(x)
)n
i, j=1,

�T(x)=�(x)=�(τx), x 
= 0, τ 
= 0,
(2.1)

whose derivative along solutions of system (1.4) satisfies the inequality

W(x)≤−γ‖x‖2, γ > 0. (2.2)

Note that Theorem 2.2 is a variant of the converse theorems of Lyapunov’s direct
method for differential inclusions [22]. In parallel with the quasiquadratic Lyapunov
functions, one can also consider the Lyapunov functions from some other classes of func-
tions, for one, from the class of homogeneous forms [27].

Theorem 2.3. The zero solution x(·) ≡ 0 of problem (1.4) is asymptotically stable if and
only if there exists a Lyapunov function in the class of homogeneous forms of order 2p, p ∈N,

Vm,p(l,x)=
m∑

i=1

(
li,x
)2p

, (2.3)

where li ∈Rn, i= 1, . . . ,m are constant vectors with

rank�= n≤m, �= (l1, . . . , lm
)T

, (2.4)

such that for its derivative

Wm,p(l,x)= 2p sup
y∈F(x)

{ m∑

i=1

(
li,x
)2p−1(

li, y
)
}

(2.5)

along solutions of system (1.4), the inequality

Wm,p(l,x)≤−γ‖x‖2p, γ > 0, (2.6)

is satisfied with an integer p ≥ 1.

Since (1.1) is a special case of (1.4), Theorems 2.2 and 2.3 provide the necessary and
sufficient conditions of the asymptotic stability of the zero solution x ≡ 0 for systems
(1.1) and (1.4). Evidently, the parameters determining the class of Lyapunov functions
Vm,p(·,·) are the components of the vectors li, i= 1, . . . ,m, and the numbers m and p. As
is shown in [27], the Lyapunov functions in Theorems 2.2 and 2.3 can be chosen from
the class of convex (with respect to x) functions.
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The next result establishes a useful link between problem (1.4) and an approximate
initial-value problem.

Theorem 2.4. The zero solution x(·) ≡ 0 of problem (1.4) is asymptotically stable if and
only if the zero solution of the problem

ẋ ∈ Fc(x), x
(
t0
)= 0,

Fc(x)= {y ∈Rn : y =Ax, A∈ co(�)
} (2.7)

is asymptotically stable.

Proof. Sufficiency of the assertion follows from the inclusion F(x)⊆ Fc(x). Necessity fol-
lows from the equivalence of the closure of the solution set of problem (1.4) and the
solutions set of problem (2.7) (see [3, 13]). �

Since a convex compactum co(�) can be approximated by convex polyhedrons �q,
we have the following result.

Theorem 2.5. For the zero solution x(·) ≡ 0 of problem (1.4) to be asymptotically stable,
it is necessary and sufficient that there exists a number q ≥ 1 and an initial-value problem
(1.1) whose zero solution x(·)≡ 0 is asymptotically stable and

Fc(x)⊆ Fq(x). (2.8)

Proof. Let q ∈N be a number such that Fc(x)⊂ Fq(x). We assume that the zero solution
x(·)≡ 0 of (1.1) is asymptotically stable. The asymptotic stability of the zero solution of
the initial-value problem (2.7) is an immediate consequence of (2.8). By Theorem 2.4,
the zero solution of problem (1.4) is asymptotically stable too.

Now we assume that the zero solution x(·)≡ 0 of problem (1.4) is asymptotically sta-
ble. It follows from the results of [3, 12] that there exists some ε > 0 such that the zero
solution of the initial-value problem

ẋ ∈ Fε(x), x
(
t0
)= 0,

Fε(x)= {y ∈Rn : y =Ax, A∈�ε
}

,
(2.9)

where �ε is a compactum and � ⊂�ε, is asymptotically stable. This implies that the
zero solution of the problem

ẋ ∈ Fc,ε(x), x
(
t0
)= 0,

Fc,ε(x)= {y ∈Rn : y =Ax, A∈ co
(
�ε
)} (2.10)

is asymptotically stable (see Theorem 2.4). Then there exists a number q ∈N such that

co(�)⊂ co
(
A1, . . . ,Aq

)
, As ∈ co

(
�ε
)
, s= 1, . . . ,q. (2.11)

We have

co
(
A1, . . . ,Aq

)⊂ co
(
�ε
)
, As ∈ co

(
�ε
)
, s= 1, . . . ,q. (2.12)
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This means that there is a number q ≥ 1 such that the solution x(·)≡ 0 of (1.1) is asymp-
totically stable and condition (2.8) holds. �

In a similar way, one can formulate the corresponding results for week asymptotically
stable systems.

Theorem 2.6. The foregoing Theorems 2.2 and 2.3 hold with “asymptotically stable” re-
placed by “week asymptotically stable” and with derivatives W(·), Wm,p(·,·) replaced by
functions

W−(x) := inf
y∈F(x)

(∇V(x), y
)
,

W−
m,p(l,x) := inf

y∈F(x)

(∇Vm,p(l,x)y
)= 2p inf

y∈F(x)

{(
li,x
)2p−1(

li, y
)}

,
(2.13)

respectively.

Theorem 2.6 can be proved in the same way as the above-mentioned Theorems 2.2
and 2.3.

We will touch briefly on the problem of stabilization for the control system

ẋ ∈Q(x), Q(x)= f (t,x,U), 0∈Q(0), x
(
t0
)= 0, (2.14)

where f : R×Rn ×Rm, x is the state variable, and U is a control region. The asymp-
totic stability in this case means that if ‖x(t0)‖ < δ, then the trajectory x(·) satisfies the
inequality ‖x(t)‖ < ε (t0 ≤ t <∞) for every admissible control function u(·),u(t) ∈ U .
The weak asymptotic stability means the same inequality holds only for some admissible
controls.

3. Lyapunov functions and saddle points problem

The Lyapunov function from Theorem 2.3 has the polynomial form

Vm,p(l,x)=
m∑

i=1

( n∑

j=1

l
j
i x j

)2p

, p ≥ 1, (3.1)

or equivalently

Vp(z,x)=
N(p)∑

r=1

zrψr(x)= (z,ψ(x)
)
, (3.2)

where ψr(x), r = 1, . . . ,N(p), are standard monomials of degree 2p ≥ n,

ψ(x)= xk1r
1 · ··· · xknrn ,

n∑

i=1

kir = 2p, kir ∈N, r = 1, . . . ,N(p),
(3.3)

z ∈ Gz ⊂RN(p) are coefficients of monomials and N(p)= C
2p
n+2p−1 is the number of mo-

nomials. The derivativesWp,q(z,x) andW−
p,q(z,x) of the functionVp(·,·) along solutions
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of the given system (1.1) have the form

Wp,q(z,x)= sup
y∈Fq(x)

(
z,
∂ψ(x)
∂x

y
)
=max

λ∈Θ

q∑

ν=1

λν

(
z,
∂ψ(x)
∂x

Aνx
)

,

W−
p,q(z,x)= inf

y∈Fq(x)

(
z,
∂ψ(x)
∂x

y
)
=min

λ∈Θ

q∑

ν=1

λν

(
z,
∂ψ(x)
∂x

Aνx
)

,

(3.4)

where λ := (λ1, . . . ,λq)T , Θ := {λ∈Rq :
∑q

j=1 λj = 1, λj ≥ 0}, and

∂ψ(x)
∂x

=
(
∂ψr(x)
∂xi

)

, i= 1, . . . ,n, r = 1, . . . ,N(p), (3.5)

is an (N(p)×n)-matrix. We will use the following notation: x̄ := 0.
Now we consider the bounded region Gx := {x ∈ Rn | ‖x‖ ≤ Γx} and investigate the

asymptotic stability of system (1.1) for x ∈Gx. Note that under the above-presented con-
dition (2.8) Theorems 2.4 and 2.5 make it possible to reduce the question of asymptotic
stability of system (1.4) to the same question for system (1.1). Therefore, we give the
constructive characterization of condition (2.6) in Theorem 2.3 only for the initial-value
problem (1.1).

Theorem 3.1. Let Vp(·,·) be the Lyapunov function from the class of homogeneous forms
of order 2p, p ∈N, for system (1.1). The inequality

Wp,q(z,x)≤−γ‖x‖2p, γ > 0, x ∈Gx, (3.6)

has a solution z̄ ∈Gz if and only if the inequalities

Wp,q(z̄,x)≤Wp,q(z̄, x̄)≤Wp,q(z, x̄) (3.7)

hold for all z ∈Gz, x ∈Gx, and x 
= 0.

Proof. Assume that the inequality Wp,q(z̄,x)≤−γ‖x‖2p holds for a vector z̄ ∈ Gz. Then
we have

Wp,q(z̄,x) < 0=Wp,q(z̄, x̄)=Wp,q(z, x̄), (3.8)

and the necessity of the assertion is proved.
Now we assume that (3.7) is true. Clearly,

Wp,q(z̄,x)≤ 0=Wp,q(z̄, x̄)=Wp,q(z, x̄). (3.9)

It is matter of direct verification to prove that the set Fq(x), x ∈ Gx, is a bounded convex
closed (a convex compact) subset of Rn. Moreover, we deal with continuous functions.
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Hence,

Wp,q(z̄,x)≤ 2pmax
x∈Gx

max
y∈Fq(x)

{ m∑

i=1

(
li,x
)2p−1(

li, y
)
}

=
m∑

i=1

(
li, x̃
)2p−1(

li,Ax̃
)≤−γ̃‖x̃‖2,

(3.10)

where γ̃ > 0, x̃ ∈Gx, and A∈�q. For x ∈Gx, x 
= 0, we have

−γ̃‖x̃‖2 =−γ̃‖x‖2 ‖x̃‖2

‖x‖2
≤−γ̃‖x‖2 min

x∈Gx

‖x̃‖2

‖x‖2
. (3.11)

Let γ := γ̃minx∈Gx(‖x̃‖2/‖x‖2). We obtain

Wp,q(z̄,x)≤−γ‖x‖2 (3.12)

for all x ∈Gx, x 
= 0. The proof is finished. �

In other words, the pair (z̄, x̄) ∈ Gz ×Gx is a saddle point of the function Wp,q(·,·).
After this investigation, we come back to the question leading to the construction of the
Lyapunov function Vp(·,·) for the given system (1.1) (or system (1.4)). This problem
is now reduced to an auxiliary problem of mathematical programming, namely, to the
saddle points problem described by inequalities (3.7). Note that in practice we define
Gz := {z ∈RN(p) | ‖z‖ ≤ Γz}. The constant Γz can be determined, for instance, by a max-
imal machine number. We can also obtain the similar result for weakly asymptotic stable
systems.

Theorem 3.2. Let Vp(·,·) be the Lyapunov function from the class of homogeneous forms
of order 2p, p ∈N, for system (1.1). The inequality

W−
p,q(z,x)≤−γ‖x‖2p, γ > 0, x ∈Gx, (3.13)

has a solution z̄ ∈Gz if and only if the inequalities

W−
p,q(z̄,x) <W−

p,q(z̄, x̄)≤W−
p,q(z, x̄) (3.14)

hold for all z ∈Gz, x ∈Gx, and x 
= 0.

The proof of this theorem is analogous to the proof of Theorem 3.1.

4. On the asymptotic stability of difference inclusions

In this section, we study the initial-value problem for difference inclusions

x(k+ 1)∈ Fq
(
x(k)

)
, x(0)= 0, (4.1)

where k = 0,1, . . . , and the multifunction Fq(·) is determined in Section 1. The definition
of asymptotic stability of the zero solution x(·)≡ 0 of (4.1) is analogous to Definition 2.1.
In particular, as in the case of the initial-valued problem (1.1), the asymptotic stability of
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the zero solution of (4.1) can be established by means of the Lyapunov functionVm,p(·,·)
which in this case will satisfy the inequality (see, e.g., [27])

max
y∈Fq(x)

Vm,p(l, y)−αVm,p(l,x)≤ 0, (4.2)

for some 0 < α < 1. For system (4.1), we introduce the Lyapunov function Vp(·,·) (see
Section 3) and consider the inequality

Wp,q(z,x) := max
y∈Fq(x)

Vp(z, y)−αVp(z,x)≤ 0 (4.3)

for z ∈ Gz and x ∈ Gx. Evidently, relation (4.3) implies the inequality “along solutions”
of the discrete system (4.1), namely, the inequality

Wp,q
(
z,x(k)

)= max
y∈Fq(x(k))

Vp(z, y)−αVp
(
z,x(k)

)≤ 0. (4.4)

The difference inclusion in (4.1) can be considered as a discretization scheme for (1.1)
(see [9]).

Theorem 4.1. Let Vp(·,·) be the Lyapunov function from the class of homogeneous forms
of order 2p, p ∈N, for system (4.1). The inequality (4.3) has a solution z̄ ∈Gz if and only if
the inequalities

Wp,q(z̄,x)≤Wp,q(z̄, x̄)≤Wp,q(z, x̄) (4.5)

are fulfilled for all z ∈Gz and x ∈Gx, x 
= 0.

Proof. Let z̄ ∈Gz be a solution of (4.3). Since

Vp(z, x̄)= 0, z ∈Gz, (4.6)

and Fq(x̄)= {0}, we have Wp,q(z̄, x̄)=Wp,q(z, x̄)= 0. This implies that the saddle points
inequalities (4.5) are fulfilled.

Now we assume that (z̄, x̄)∈Gz ×Gx is a solution of (4.5). Since

Wp,q(z̄, x̄)= 0, (4.7)

we obtain Wp,q(z̄,x)≤ 0 for x ∈Gx, x 
= 0. �

As is evident from the foregoing, the problem of constructing the Lyapunov function
for system (4.1) with difference inclusions is also reduced to an auxiliary saddle points
problem.

5. Numerical aspects

This section is devoted to the numerical treatment of the auxiliary saddle points prob-
lems given above. We solve the saddle points problem by application of the gradient-type
algorithm. Note that the gradient method is one of the most popular first-order methods
for solving problems of mathematical programming (see, e.g., [11, 32]). Let us consider
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the convex Lyapunov function Vp(·,·) and the function Wp,q(·,·) from Theorem 3.1 or
Theorem 4.1. Evidently, Wp,q(·,·) is a differentiable function. The following initial-value
problems present a variant of gradient method for saddle points problem (see [2, 19]):

ξ̇ = ∂Wp,q(ζ ,ξ)

∂ξ
, ξ(0)= 0,

ζ̇ =−∂Wp,q(ζ ,ξ)

∂ζ
, ζ(0)= 0.

(5.1)

By ξ̇(·), ζ̇(·) we denote here the derivatives of the smooth functions ξ(·), ζ(·) with respect
to t ∈ R. We investigate the limit points of the solutions of (5.1) for t →∞. It is neces-
sary to stress that the conditions of convergence of the gradient-based procedure (5.1)
conventionally contain the requirements of convexity of the function Wp,q(·,·) in z and
its concavity in x. In this case, the considered method (5.1) converges to the solution of
the equivalent minimax problem (see, e.g., [38]). Note that the function Wp,q(z,·) is (in
general) not concave in variable x ∈Gx for any z ∈Gz. Nevertheless, for system (5.1) with
the function Wp,q(·,·) it will be established that all its solutions have a limit at t→∞.

Let C ⊆Gz be the set of all solutions of the inequality

Wp,q(z,x)≤−γ‖x‖2 (5.2)

for system (1.1) or the set of all solutions of the inequality (4.3) for system (4.1). If (5.2)
or (4.3) is solvable, that is, C 
= ∅, then the closure C̄ of the set C will be the totality of all
solutions of the corresponding inequalities. We now formulate the next result.

Theorem 5.1. Let Vp(·,·) be the Lyapunov function from the class of homogeneous forms
of order 2p, p ∈N, for system (1.1) or (4.1). Assume that the set

D := {(z̄, x̄)∈Gz×Gx : z̄ ∈ C̄, x̄ = 0
}

(5.3)

is the set of all saddle points of the corresponding function Wp,q(·,·). Then any solution
(ξ(·),ζ(·)) of the initial-value problem (5.1) satisfies the following limit relations:
limt→∞(ξ(t),ζ(t))= (x̄, z̄), where z̄ ∈ C̄ and x̄ = 0.

Proof. See [19, Theorem 3]. �

Theorem 5.1 makes it possible to use the computational scheme (5.1) for finding sad-
dle points of Wp,q(·). We apply the gradient-type method (5.1) to a class of the initial-
valued problems (1.1). Let us consider the following nonlinear system (see [4]):

ẋ =�x+
S∑

s=1

bsφs
((
cs,x

)
, t
)
, x(0)= 0,

φs :R×R+ −→R, φs(0, t)= 0, s= 1, . . . ,S,

(5.4)

where S ∈ N and bs ∈ Rn, cs ∈ Rn are constant vectors. Assume that the nonlinear
function φs(·,·) satisfies the conditions

0≤ φs(σ , t)σ ≤ Ksσ2 ∀(σ , t)∈R×R+, s= 1, . . . ,S (5.5)
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with 0 < Ks <∞. Evidently, a function us(x) := (cs,x) in (5.4) can be interpreted as a linear
feedback control function for the control system

ẋ =�x+
S∑

s=1

bsφs(u, t), x(0)= 0. (5.6)

In this case, the system (5.4) is a closed-loop control system. One can rewrite (5.4) in the
following equivalent form [4]:

ẋ ∈ Fφ(x), x(0)= 0, (5.7)

where

Fφ(x)=
{

y ∈Rn : y =�x+
S∑

s=1

bsμs
(
cs,x

)
, 0≤ μs ≤ Ks, s= 1, . . . ,S

}

. (5.8)

It can be shown (see [4]) that (5.7) is a special case of (1.1) if

Aν =� +
S∑

s=1

hνsbsc
T
s , q = 2S, (5.9)

where hνs = 0 or hνs = Ks, ν= 1, . . . ,q, and s= 1, . . . ,S. We now give an example of system
(5.4).

Example 5.2. Consider the initial-value problem

ẋ1 = x2, x1(0)= 0,

ẋ2 =−2x1− x2−φ
(
x1, t

)
, x2(0)= 0.

(5.10)

In this example, we have S= 1, c = (0,1), b = (0,−1), and the matrix

�=
(

0 1
−2 −1

)

(5.11)

is a Hurwitz-type matrix (see, e.g., [22]). Assume that the nonlinear function φ(·,·) sat-
isfies the inequalities 0≤ φ(σ , t)σ ≤ Kσ2, where (σ , t) ∈ R×R+ and K is a positive con-
stant. For system (5.10), we compute the Lyapunov function V1(·,·) from the class of
quadratic forms such that

(

∇V(z,x),

(

Ax+K

(
0
−x2

)))

<−γ‖x‖2, γ > 0, (5.12)

for all solutions of (5.10). Clearly, p = 1, n = 2, and N(p) = 3. Let K = 3.73. Using the
gradient-type method (5.1) and the limit procedure from Theorem 5.1, we obtain

V1(z,x)= x2
1 + 1.1005x1x2 + 1.6513x2

2. (5.13)

Note that the computed Lyapunov function V1(z,·) is convex.
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Example 5.3. We examine the same system (5.10) and construct the Lyapunov function
V2(·,·) from the class of the fourth order forms. Note that p = 2 and N(p) = 5. For
K = 6.40 we have

V2(z,x)= x4
1 + 0.301x3

1x2 + 0.620x2
1x

2
2 + 0.211x1x

3
2 + 0.101x4

2 . (5.14)

The gradient-type method (5.1) and the limit procedure from Theorem 5.1 in Exam-
ples 5.2 and 5.3 are implemented in C. We used the “numerical recipes in C” package [34]
and some author programs for this purpose.

Finally, we note that a discrete variant of (5.4) can be written as follows:

x(k+ 1)= Δt
(
x(k) +Ax(k) +

S∑

s=1

bsφs
((
cs,x(k)

)
,kΔt

))
, x(0)= 0, (5.15)

where k = 0,1, . . . and Δt is a step size for the variable t in (5.4). Evidently, this discrete
system is equivalent to the following system:

x(k+ 1)∈ Fφ
(
x(k)

)
, x(0)= 0, k = 0,1, . . . (5.16)

with the above-presented multifunction Fφ.

6. Concluding remarks

In this paper, we establish the important role of saddle points problems in computing
polynomial Lyapunov functions for a class of initial-value problems for differential and
difference inclusions. We investigate a new numerical schema derived from a variant of
the gradient method. This schema can also be treated as a practicable computational
approach to the related problem of robust stability. The presented algorithm has usual
advantages and disadvantages of a first-order numerical method. Note that the main idea
of the algorithm can be combined not only with the gradient-type method but also with
some other techniques for saddle points problem. It is conceivable that one can use the
proposed computational approach and the corresponding results in studies of the so-
called receding horizon control (see, e.g., [14, 26]). Moreover, this approach can also be
applied to some other classes of continuous and discrete control systems governed by
differential and difference inclusions.
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[14] É. Gyurkovics, Receding horizon control for the stabilization of nonlinear uncertain systems de-
scribed by differential inclusions, Journal of Mathematical Systems, Estimation, and Control 6
(1996), no. 3, 1–16.

[15] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York,
1966.

[16] D. Hinrichsen and A. J. Pritchard, Robustness measures for linear systems with application to sta-
bility radii of Hurwitz and Schur polynomials, International Journal of Control 55 (1992), no. 4,
809–844.

[17] M. Johansson, Piecewise Linear Control Systems, Lecture Notes in Control and Information Sci-
ences, vol. 284, Springer, Berlin, 2003.

[18] R. E. Kalman, Lyapunov functions for the problem of Lur’e in automatic control, Proceedings of
the National Academy of Sciences USA 49 (1963), 201–205.

[19] V. A. Kamenetskiy and Ye. S. Pyatnitskiy, An iterative method of Lyapunov function construction
for differential inclusions, Systems & Control Letters 8 (1987), no. 5, 445–451.

[20] V. L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear
differential equations, Differentsial’nye Uravneniya 14 (1979), 1483–1485 (Russian).

[21] M. Kisielewicz, Differential Inclusions and Optimal Control, Mathematics and Its Applications
(East European Series), vol. 44, Kluwer Academic, Dordrecht; PWN—Polish Scientific Publish-
ers, Warsaw, 1991.

[22] N. N. Krasovskiı̆, Stability of Motion. Applications of Lyapunov’s Second Method to Differential
Systems and Equations with Delay, Stanford University Press, California, 1963.

[23] A. I. Lourie and V. N. Postnikov, Concerning the theory of stability of regulating systems, Priklad-
naya Matematika i Mekhanika 8 (1944), 246–248 (Russian).

[24] A. M. Lyapunov, The general problem of the stability of motion, International Journal of Control
55 (1992), no. 3, 521–790, translated into English by A. T. Fuller.



Vadim Azhmyakov 15

[25] M. Mansour and B. D. O. Anderson, On the robust stability of time-varying linear systems, Sta-
bility Theory (Ascona, 1995) (R. Jeltsch and M. Mansour, eds.), Internat. Ser. Numer. Math.,
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