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In many practical engineering applications, data are usually collected in online pattern. However, if the classes of these data are
severely imbalanced, the classification performance will be restricted. In this paper, a novel classification approach is proposed to
solve the online data imbalance problem by integrating a fast and efficient learning algorithm, that is, Extreme Learning Machine
(ELM), and a typical sampling strategy, that is, the synthetic minority oversampling technique (SMOTE). To reduce the severe
imbalance, the granulation division for major-class samples is made according to the samples’ distribution characteristic, and
the original samples are replaced by the obtained granule core to prepare a balanced sample set. In online stage, we firstly make
granulation division for minor-class and then conduct oversampling using SMOTE in the region around granule core and granule
border. Therefore, the training sample set is gradually balanced and the online ELM model is dynamically updated. We also
theoretically introduce fuzzy information entropy to prove that the proposed approach has the lower bound of model reliability
after undersampling. Numerical experiments are conducted on two different kinds of datasets, and the results demonstrate that the
proposed approach outperforms some state-of-the-art methods in terms of the generalization performance and numerical stability.

1. Introduction

With more and more successful real applications, machine
learning acting as an efficient technique of data analysis and
modeling is now becoming an important research field in the
area of aeronautics science and mechanical engineering, for
example, building surrogate model dynamically to support
system design or identifying the characteristics of system
by giving samplings. Among many concrete topics, online
learning and imbalanced classification are both receiving a
lot of attentions, and there also aremany researches in the last
decade for these two issues separately. However, to the best of
our knowledge, there are few studies about the incorporation
of these two topics, that is, data imbalance problem in online
learning procedure.We also name it as online data imbalance
problemwhich can be widely found inmany real engineering
applications such as fault diagnosis and damage detection.
Therefore, studying this problem is of great significance.

In this paper, we try to provide an efficient solution from
the perspectives of sampling strategy and learning algorithm.

Considering the whole distribution characteristic of dataset
and the feature of online learning, we present a novel
SMOTE-based classification approach to the online data
imbalance problem.This approach borrows the idea of gran-
ulation division to conduct oversampling and undersampling
simultaneously. For major class, we use granule cores to
replace the original samples for undersampling, while, for
minor class, we firstly make granulation division and then
conduct oversampling using SMOTE in the region around
granule core and granule border.The above strategy is capable
of following the data distribution of sample set, so it can
be conducted repeatedly in the offline and online stages to
balance the total sample set easily. Moreover, we introduce an
efficient online learning algorithm, online sequential extreme
learning machine (OS-ELM), which is combined with the
proposed sampling strategy to achieve the fast and robust
online learning for imbalanced data. To testify the effective-
ness of the proposed approach, we first prove theoretically by
means of the fuzzy information entropy that the proposed
approach has the lower bound of model reliability after
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undersampling. And the experimental results on two dif-
ferent kinds of datasets also demonstrate the comparative
performance of the proposed approach.

2. Related Works

Nowadays, the researches for the traditional data imbalance
problem focus on two strategies [1]. One is data-based strat-
egy which aims to make the original dataset balanced using
mainly undersampling or oversampling techniques. The key
idea of this kind of method is how to explore and obey the
inner distribution characteristic of sample set in the sampling
procedure. The synthetic minority oversampling technique
(SMOTE) [2] is a widely used technique due to its simple
form and straight idea, but it also suffers from the relatively
low accuracy because SMOTE is incapable of exploiting the
data distribution of sample set, especially in online case.
Therefore, many SMOTE-based methods were developed
with integrating other techniques. To improve the quality
of synthetic samples, Verbiest et al. [3] introduced fuzzy-
rough selection algorithm to reduce the noise generated
by SMOTE after the balance stage. Gao et al. [4] utilized
particle swarm optimization to optimize the undersampling
procedure of SMOTE and then introduced RBF classification
to reduce the misclassified cases. To reduce the imbalance
level between classes, Zeng et al. [5] integrated the kernel
trick and SMOTE into a new support vector machine (SVM)
algorithm for data imbalance problem.As a combinationwith
learning algorithm, Jeatrakul et al. [6] introduced SMOTE to
neural networks in order to improve the generalization per-
formance. Granular computing, known as an abstract idea for
data processing, has instinct capacity to effectively remodel
the original data according to data distribution, and then a
high value of keeping the raw information of sample set is
put. Therefore, granular computing has also been introduced
to solve the data imbalance problem in SVM. For example,
Wang et al. [7] utilized granulation division to hierarchically
suppress the samples before SVM training. It is worth notic-
ing that although the methods discussed above can balance
sample set to some extent and thus improve the classification
accuracy, they easily cause severe information loss if the dis-
tribution characteristic and feature are not considered well.

The other strategy is algorithm-based strategy which
tries to improve the classification efficiency by developing
the algorithms structure. For example, Hwang et al. [8]
added weight factors to Lagrange multiplayer to improve
the effectiveness of SVM upon facing imbalanced data. To
lessen the misclassification rate, Yu et al. [9] calculated the
moving distance of hyperplane by adjusting the decision
threshold of SVM. Many other algorithms such as price-
sensitive learning [10], weighted support vector machine
[11], and weighted boost learning [12] were devoted to solve
data imbalance problem. Although this strategy has been
researched thoroughly, most of the algorithms can not apply
to the online case directly due to lack of online structure.
Besides, upon facing a large amount of data, it is generally
hard for these algorithms to get results quickly. As extension
form of single-hidden layer feedforward neural network
(SLFN), extreme learning machines (ELMs), introduced by

Huang et al. [13], have been recognized by their high learning
speed and good generalization capacity for solving many
problems of regression estimate and pattern recognition. As
a sequential extension of ELM, online sequential ELM (OS-
ELM) proposed by Liang et al. [14] can learn data one by
one or chunk by chunk with fixed varied chunk size at very
high speed. Although ELM has also been developed for data
imbalance problem [15], it seems that OS-ELM has not been
widely applied to data imbalance problems.

According to our literature survey, there are not too
many researches about online data imbalance problem. By
introducing prior duplication strategy, Vong et al. [16] firstly
generated synthetic minority class samples and then utilized
OS-ELM to establish an online sequential prediction model.
Focusing on the modeling of data distribution in online pat-
tern, Mao et al. [17] introduced the principal curve to exploit
the inner structure of online data and then applied SMOTE
to conduct oversampling by means of the distance from
sample to principal curve. However, although this method
could overcome many shortages of traditional methods, the
principal curve is not well applicable to tackle the dataset with
no apparent distribution feature. We noticed another recent
work [18] for this problem which tried to adopt granulation
division to remodel the distribution characteristic with a the-
oretical analysis about concrete information loss. Although it
neglects some potential shortage of synthetic samples and the
theoretical analysis needs to be improved largely, it is still an
interesting attempt at this problem with reference value.

3. Background

3.1. SMOTE. SMOTE (synthetic minority oversampling
technique) is a common oversampling method proposed by
Chawla et al. [2]. In the SMOTE, instead of mere data ori-
ented duplicating, the minority class is oversampled by cre-
ating synthetic instances in the feature space formed by the
instance and its 𝐾-nearest neighbors, which effectively avoid
the overfitting problem.

Thismethod is described as follows. Choose two samples,
𝑥
1
and 𝑥

2
, from the given minority sample set randomly,

where each sample has 𝑛 attributes. For 𝑥
1
and 𝑥

2
, calculate

the difference on the 𝑖th attribute; that is, diff
𝑖
= 𝑥
2𝑖
− 𝑥
1𝑖
.

Then, we obtain the 𝑖th attribute value of the new target sam-
ple according to

𝑥
12𝑖
= rand [0, 1] ∗ diff𝑖, (1)

where rand[0, 1] means a random number between 0 and 1.
So the final synthetic sample of 𝑥

1
and 𝑥

2
is

𝑥
12
= rand [0, 1] ∗ diff , (2)

where diff = (diff
1
, diff
2
, . . . , diff

𝑛
).

According to the sampling ratewe set execution times and
repeat the above process. Incorporating the synthetic samples
and the original samples, the final minority sample set is
obtained.

3.2. Review of ELM and OS-ELM. As originally proposed for
solving the single-hidden layer feedforward neural network
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(SLFN), it has been proved that, with at most 𝑁 hidden
neurons, ELM can learn𝑁 distinct samples with zero errors
by adopting any bounded nonlinear activation function [19].
Then, based on this approximation ability, ELM receivedwide
attentions and has been developed into various forms, for
example, multioutput regression [20]. The most important
feature of ELM is its fast speed, owing to its single-hidden
layer structure requiring no iterative process. In ELM, all
the hidden node parameters are randomly generated without
tuning. As an extension version of ELM, online sequential
extreme learning machine (OS-ELM) is a faster and more
accurate algorithm, which has been widely used in many
fields, such as pattern recognition and data mining. The pro-
cess of OS-ELM is divided into two steps: initialization phase
and sequential learning phase and the detailed algorithm is
described as follows [14].

Step 1 (initialization phase). Choose a small chunk 𝑀
0
=

{(𝑥
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . , 𝑁

0
} of initial training data, where 𝑁

0
≥

�̃�. Consider the following:

(1) Randomly generate the input weight w
𝑖
and bias

𝑏
𝑖
, 𝑖 = 1, 2, . . . , �̃�. Calculate the initial hidden layer

output matrixH
0
.

(2) Calculate the output weight vector:

𝛽
0
= D
0
H
0

𝑇T
0
, (3)

whereD
0
= (H
0

𝑇H
0
)
−1 and T

0
= [𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁0
]
𝑇.

(3) Set 𝑘 = 0 24.

Step 2 (sequential learning phase). Consider the following:

(1) Learn the (𝑘 + 1)th training data: 𝑑
𝑘+1

= (x
𝑁0+𝑘+1

,

𝑡
𝑁0+𝑘+1

).
(2) Calculate the partial hidden layer output matrix:

H
𝑘+1

= [𝑔 (w
1
⋅ x
𝑁0+𝑘+1

+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (w

𝐿
⋅ x
𝑁0+𝑘+1

+ 𝑏
𝐿
)]
1×𝐿
.

(4)

Set T
𝑘+1
= [𝑡
𝑁0+𝑘+1

]
𝑇.

(3) Calculate the output weight vector

D
𝑘+1
= D
𝑘
−D
𝑘
H
𝑘+1

𝑇
(I +H

𝑘+1
D
𝑘
H
𝑘+1

𝑇
)
−1

H
𝑘+1

D
𝑘
,

𝛽
𝑘+1
= 𝛽
𝑘
+D
𝑘+1

H
𝑘+1

𝑇
(T
𝑘+1
−H
𝑘+1
𝛽
𝑘
) .

(5)

(4) Set 𝑘 = 𝑘 + 1. Go to Step 2(1).

4. Online Sequential Extreme Learning
Machine Based on Granulation Division
and SMOTE

To improve the classification accuracy of minority class, we
proposed a new algorithm based on granulation division and
SMOTE using extreme learning machine. The main idea is

improving the accuracy of minority class and reducing the
information loss of majority class.

For the convenience of description of the algorithm, we
give some definitions in the beginning. Suppose that 𝐷 =

{(𝑥
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . , 𝑁

1
} and 𝑆 = {(𝑦

𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . , 𝑁

2
}

represent majority sample set and minority sample set,
respectively, where 𝑥

𝑖
and 𝑦

𝑖
mean 𝑚-dimensional vector.

Dimension indicates the number of features. 𝑡
𝑖
= 1 means

the corresponding sample is the majority and 𝑡
𝑖
= 0 means

minority sample.

Definition 1 (maximum radius of granule). In the 𝑗th granule,
the distance between the granule core and the furthest point
is called maximum radius of granule of the 𝑗th granule:

𝑅
𝑗
= max
𝑥𝑖𝑗∈𝑋

(|𝐶 − 𝑋|) , (6)

where 𝐶 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑘1
), 𝑗 = 1, 2, . . . , 𝑘

1
, and 𝑐

𝑗
is the coor-

dinate of granule core.

Definition 2 (granule dispersion). Granule dispersion repre-
sents the discrete degree in a granule. Obviously, the granule
dispersion is inversely proportional to the number of samples
in a granule and is directly proportional to the maximum
radius of granule:

1 Separate (𝑐
𝑗
) =

𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1


𝑐
𝑗
− 𝑥
𝑖𝑗



𝑘3
𝑝

=

𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1
√𝑐
2

𝑗
− 2𝑥
𝑖𝑗
𝑐
𝑗
+ 𝑥
2

𝑖𝑗

𝑘3
𝑝

,

(7)

where 𝑥
𝑖𝑗
is the sample in the granule with 𝑐

𝑗
as the granule

core. It is easy to know that the bigger the granule dispersion
is, the more sparse and scattered the samples in the granule
are and thus the higher the information loss is upon using
granule core instead of the whole granule.

Definition 3 (sample weight). For each sample in the granule
except the samples farthest from the granule core, the over-
sampling is conducted using SMOTE. Obviously, the sample
weight is inversely proportional to the distance between the
granule core and the virtual samples:

𝑤
𝑖
=



1 −

√𝑐
2

𝑗
− 2𝑥
𝑖𝑗
𝑐
𝑗
+ 𝑥
2

𝑖𝑗

𝑅
𝑗



. (8)

4.1. Offline Stage. Firstly, we refactor the imbalanced sample
set using the proposed method and get the balanced sample
set 𝐴 = {(𝑥

𝑖,
𝑡
𝑖
) | 𝑖 = 1, 2, . . . , 𝑁

0
}. Then establish the initial

model. The main idea is undersampling for majority class by
choosing all the granule cores, which can reduce the number
of majority samples and ensure that the samples’ distribution
trend is consistent with the trend before undersampling.

For initial majority sample set 𝐷 = {(𝑥
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . ,

𝑁
1
}, the first granulation division is conducted. Then, we



4 Mathematical Problems in Engineering

obtain the newmajority sample set𝐷
𝑛
= {(𝑥
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . ,

𝑁
11
}.
Clustering algorithm [21] is adopted to simulate the pro-

cess of granulation division. We set the clustering algorithm
𝑘
1
in the first granulation division according to the overall

distribution of original samples. The up and down threshold
values of maximum radius of granule are set to [𝜂

1
, 𝜂
2
],

which can guarantee that the sample distribution trend keeps
unchanged before and after the first undersampling.Then, we
choose 𝑘

1
clustering center as the granule core and replace the

original majority samples. Merging the new majority sample
set 𝐷
𝑛
= {(𝑥
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . , 𝑁

11
} and the minority sample

set 𝑆 = {(𝑦
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . , 𝑁

2
}, we obtain the new training

sample set 𝐴 = {(𝑥
𝑖
, 𝑡
𝑖
) | 𝑖 = 1, 2, . . . , 𝑁

0
}.

Given the hidden active function 𝑔(𝑥) and the number
of hidden nodes 𝐿, choose input weight 𝑤

𝑖
and bias 𝑏

𝑖
, 𝑖 =

1, 2, . . . , 𝑁
0
randomly and calculate the hidden layer output

matrixH
0
:

H
0
=

[
[
[
[
[
[
[

[

ℎ (𝑥
1
)

ℎ (𝑥
2
)

.

.

.

ℎ (𝑥
𝑁0
)

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

𝑔 (𝑤
1
⋅ 𝑥
1
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐿
⋅ 𝑥
1
+ 𝑏
𝐿
)

𝑔 (𝑤
1
⋅ 𝑥
2
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐿
⋅ 𝑥
2
+ 𝑏
𝐿
)

.

.

.

𝑔 (𝑤
1
⋅ 𝑥
𝑁0
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (𝑤

𝐿
⋅ 𝑥
𝑁0
+ 𝑏
𝐿
)

]
]
]
]
]
]
]

]

.

(9)

The output vector is T
0
= [𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁0
]
𝑇 and the output

weight is

𝛽
0
= H
0

†T
0
, (10)

where H
0

†
= (H
0

𝑇H
0
)
−1H
0

𝑇. Set 𝑃
0
= (H
0

𝑇H
0
)
−1, and then

we haveH
0

†
= 𝑃
0
H
0

𝑇.
Set 𝑘 = 𝑘 + 1.

4.2. Online Stage. Suppose that the sequential samples chunk
is Ω
𝑘+1

= {(𝑥
𝑖
, 𝑡
𝑖
) | 𝑖 = 𝑁

0
+ 1 + 𝑘, . . . , 𝑁

0
+ 1 + 𝑘 + Block}

in (𝑘 + 1)th step, where Block means the number of samples
in Ω
𝑘+1

. Ω
𝑘+1

is divided into majority class Ω
𝑑
and minority

class Ω
𝑠
according to the value of label 𝑡

𝑖
.

(1) Granulation division for majority classis Ω
𝑑
is con-

ducted. We choose 𝑘
1
points as the initial granule core

uniformly according to the samples distribution trend, where
𝑘
1
is set as about three times the number of minority samples.

We can obtain 𝑘
1
clustering center in each iteration, namely,

granule core, by equation of clustering algorithm 𝜇
(𝑗+1)

𝑖
=

(1/𝑛
𝑖
) ∑
𝑛𝑖

𝑖=1
𝑝
𝑖𝑡
, until the distance between each sample and

the clustering center meets the condition of the following
equation. Finally, we can obtain 𝑘

1
clustering center 𝐶 =

{𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑘1
}, namely, 𝑘

1
granule core. Now, the majority

sample set isΩ
𝑑𝑛

and the imbalance rate reduces to 3 : 1:

min ∑∑ dist (𝑐
𝑖
, 𝑥)
2

. (11)

(2) Granulation computing for minority class: the value
of 𝑘
2
is set to half the number of original minority samples:

𝑘
2
=
1

2
size (Ω

𝑠
) . (12)

If there are other samples except the granule core, we add
the virtual samples within the granule and granule boundary
using SMOTE. Then, we obtain the new minority sample
set by merging the virtual samples and original minority
samples. The detailed description is as follows.

Step 1. Choose the granule core as the center of a circle. We
add virtual samples between the granule core and all the other
samples using SMOTE, as shown in the following equation:

𝑥


𝑗𝑖𝑚
= 𝑐
𝑗
+ diff
𝑖
× rand [0, 1]

= 𝑐
𝑗
+ (𝑐
𝑗
− 𝑥
𝑗𝑖
) × rand [0, 1] .

(13)

The virtual samples are generated between the granule core
and other samples in the granule. Every time there are 𝑚
virtual samples generated. The value of 𝑚

1
is set according

to the actual situation.

Step 2. According to the following equation:

𝑥


𝑗𝑖(𝑚+1)
= 𝑐
𝑗
+ diff
𝑖
× rand [1, 𝑛

1
]

= 𝑐
𝑗
+ (𝑐
𝑗
− 𝑥
𝑗𝑖
) × rand [1, 𝑛

1
] ,

(14)

𝑚
2
virtual samples will be generated between the granule

core and most of the samples in the granule, except the
sample farthest from the granule core, which can ensure that
the new virtual samples are not too far from the granule
core and thus maintain credibility. Usually we set 𝑚

2
≤

(1/3)𝑚
1
, where 𝑚

1
means the total sample numbers in the

granule. The new virtual samples expand the distribution
range of the granule and do not affect the overall credibility
simultaneously. Besides, the randomnumber is between 1 and
𝑛
1
, 1 < 𝑛

1
≤ 1.5, which can ensure that the distance between

new virtual samples and the granule core is farther than the
distance between raw samples and the granule core, andmost
of the virtual samples are still in the granule.

Step 3. Set the sample weight of virtual samples according to
Definition 3 and then update the virtual samples.Merging the
virtual samples and the original minority samples, we can get
the new minority sample set Ω

𝑠𝑛
.

(3) The final balanced sample set is newΩ
𝑘+1
= {(𝑥
𝑖
, 𝑡
𝑖
) |

𝑖 = 𝑁
0
+ 1 + 𝑘, . . . , 𝑁

0
+ 1 + 𝑘 + newBlock}, where newBlock

is the number of samples in (𝑘 + 1)th step. Now the rate of
majority class and minority class is probably between 1.5 : 1
and 1.1 : 1.

The corresponding hidden layer matrix of newΩ
𝑘+1

is
𝐻
Ω
= [ℎ𝑘+𝑁0+1

ℎ
𝑘+𝑁0+2

⋅ ⋅ ⋅ ℎ
𝑘+𝑁0+newBlock], and now the

hidden layer matrix becomes H
𝑘+1

= [𝐻
𝑘

𝑇
𝐻
Φ

𝑇
]
𝑇. Update

the network weight according to the following equation:

𝛽
𝑘+1
= H
𝑘+1

†
𝑇
𝑘+1
, (15)
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where 𝑇
𝑘+1

= [𝑇
𝑘

𝑇
𝑇
Ω

𝑇
]
𝑇 is the output vector and H

𝑘+1

† is
(H
𝑘+1

𝑇H
𝑘+1
)
−1H
𝑘+1

𝑇. Let 𝑃
𝑘+1
= (H
𝑘+1

𝑇H
𝑘+1
)
−1. We have

H
𝑘+1

†
= 𝑃
𝑘+1

H
𝑘+1

𝑇
, (16)

because

H
𝑘+1

𝑇H
𝑘+1
= [𝐻
𝑘

𝑇
𝐻
Φ

𝑇
] [𝐻
𝑘

𝑇
𝐻
Φ

𝑇
]
𝑇

= 𝐻
𝑘

𝑇
𝐻
𝑘
+ 𝐻
Φ

𝑇
𝐻
Φ
;

(17)

namely,

𝑃
𝑘+1

−1
= 𝑃
𝑘

−1
+ 𝐻
Φ

𝑇
𝐻
Φ
. (18)

Calculate the inversion of both ends of the equation
according to Sherman-Morrision matrix inversion lemma.
We obtain the recursive expression of 𝑃

𝑘+1
:

𝑃
𝑘+1
= (𝑃
𝑘

−1
+ 𝐻
Φ

𝑇
𝐻
Φ
)
−1

= 𝑃
𝑘
−
𝑃
𝑘
𝐻
Φ

𝑇
𝐻
Φ
𝑃
𝑘

𝐼 + 𝐻
Φ
𝑃
𝑘
𝐻
Φ

𝑇
. (19)

So 𝑃
𝑘+1

can be calculated based on 𝑃
𝑘
, which reduces cal-

culation and greatly improves the computational efficiency.
We can obtain H

𝑘+1

† by substituting (15) into (14) and then
update the network weight 𝛽

𝑘+1
.

5. The Reliability Analysis

According to the discussion as above, we reduce the majority
samples using granulation division both in offline stage and
in online stage. For the original majority sample set 𝜃

𝑑
=

{(𝑥
𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . . ,𝑀}, we only choose 𝑚 most represen-

tative samples and get the new balanced majority sample set
𝜃


𝑑
. Although the imbalanced phenomenon could be reduced

to some extent, there is a loss of information in the undersam-
pling because of abandoning some samples. To illustrate the
rationality of the proposed method, we give the lower bound
of the model reliability after undersampling based on infor-
mation entropy [22], which can indicate indirectly that there
is upper bound of the information loss in undersampling.

Suppose that the loss sample set is 𝐴 = {(𝑥
𝑖𝑗
, 𝑡
𝑖
), 𝑗 = 1,

2, . . . , 𝑚} in every online undersampling, where 𝑥
𝑖𝑗

is a
sample in the granule centered with the granule core 𝑐

𝑗
. As

discussed in Section 4.2, we reject all samples in this granule
except 𝑐

𝑗
. The sample weight of 𝑐

𝑗
is defined as follows:

𝜔 (𝑐
𝑗
) =

1

Separate (𝑐
𝑗
)

=

𝑘
3

𝑝

𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1


𝑐
𝑗
− 𝑥
𝑖𝑗



. (20)

Then the missed classed probability is

𝑃
𝑓
=

𝑚

∑

𝑗=1

𝑤
𝑘
=

𝑚

∑

𝑗=1

(1 −

𝑘
3

𝑝

𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1


𝑐
𝑗
− 𝑥
𝑖𝑗



) , (21)

where 𝑘
𝑝
means the number of samples and ∑𝑘𝑝

𝑖=1
|𝑐
𝑗
− 𝑥
𝑖𝑗
|

means the sum of Euclidean distance between each sample
and the granule core.

In offline stage, the loss sample set is 𝐴
1
= {(𝑦
𝑖𝑗1
, 𝑡
𝑖
), 𝑗 =

1, 2, . . . , 𝑚
0
}, where 𝑦

𝑖𝑗1
means the sample in the 𝑗th granule.

The granule core 𝑐
𝑗1

will join the final balanced sample set
representing thewhole granule. So themisclassification rate is

𝑃
𝑓1
=

𝑚0

∑

𝑙=1

𝑤
𝑘1
=

𝑚0

∑

𝑙=1

(1 −

𝑘
3

𝑝1

𝑅
𝑗1
∗ ∑
𝑘𝑝1

𝑖=1


𝑐
𝑗1
− 𝑥
𝑖𝑗1



) . (22)

Theorem 4. At present, 𝑁 is the sample number of majority
set𝐷 and 𝐿 is the number ofmisclassificationmajority samples.
Let 𝑅
𝐿
represent the lower bound of model reliability. Because

binary classification result obeys the binomial distribution, the
lower bound of model reliability can be obtained when the
confidence coefficient is determined:

𝐿

∑

𝑟=0

(
𝑁

𝑟
)𝑅
𝑁−𝑟

𝐿
(1 − 𝑅

𝐿
)
𝑟

=

𝑁∗𝑃𝑓

∑

𝑟=0

(
𝑁

𝑟
)𝑅
𝑁−𝑟

𝐿
(1 − 𝑅

𝐿
)
𝑟

=

𝑁∗∑
𝑚

𝑗=1
(1−𝑘
3

𝑝
/(𝑅𝑗∗∑

𝑘𝑝

𝑖=1
|𝑐𝑗−𝑥𝑖𝑗|))

∑

𝑟=0

(
𝑁

𝑟
)𝑅
𝑁−𝑟

𝐿
(1 − 𝑅

𝐿
)
𝑟

= 1 − 𝛼,

(23)

where 𝐿 is negatively correlated with 𝑅
𝐿
. It can be seen that the

fuzzy reliability is only related to the discrete degree.

Proof. According to the definition of fuzzy reliability
∑
𝐹

𝑟=0
(𝑁/𝑟)𝑅

𝑁−𝑟

𝐿
(1 − 𝑅

𝐿
)
𝑟
= 1 − 𝛼, 𝑅

𝐿
reaches the maximum

when 𝐹 is the minimum with definite 𝛼, because

𝐹 ≤ 𝐿 = 𝑁 ∗ 𝑃
𝑓

= 𝑁 ∗

𝑚

∑

𝑗=1

(1 −

𝑘
3

𝑝

𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1


𝑐
𝑗
− 𝑥
𝑖𝑗



) .

(24)

As can be seen from the above equation, 𝑅
𝐿
is only related to

𝑘
3

𝑝
/(𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1
|𝑐
𝑗
− 𝑥
𝑖𝑗
|). We know 𝑘3

𝑝
/(𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1
|𝑐
𝑗
− 𝑥
𝑖𝑗
|) =

1/Separate(𝑐
𝑗
). So the smaller themaximum radius of granule

is, the smaller the distance sum of samples is, the higher the
number of samples in granule is, the smaller the dispersion is,
and the bigger the value of 𝑘3

𝑝
/(𝑅
𝑗
∗ ∑
𝑘𝑝

𝑖=1
|𝑐
𝑗
− 𝑥
𝑖𝑗
|) is, which

will cause smaller lower bound of reliability andmore reliable
model.

Theorem 5. The sample size of majority set 𝐷
0
is 𝑁
0
in

offline stage and the number of misclassification samples is
𝐿
0
. The reliability can be obtained according to the following

equation. And the reliability is only related to the value of 𝑘3
𝑝1
/

(𝑅
𝑗1
∗ ∑
𝑘𝑝1

𝑖=1
|𝑐
𝑗1
− 𝑥
𝑖𝑗1
|):

𝐿0

∑

𝑟=0

(
𝑁
0

𝑟
)𝑅
𝑁0−𝑟

𝐿0
(1 − 𝑅

𝐿0
)
𝑟

=

𝑁0∗𝑃𝑓1

∑

𝑟=0

(
𝑁
0

𝑟
)

⋅ 𝑅
𝑁0−𝑟
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(1 − 𝑅

𝐿0
)
𝑟
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=

𝑁0∗∑
𝑚0
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(1−𝑘
3
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/(𝑅𝑗1∗∑

𝑘𝑝1
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(25)

Proof. According to the definition of fuzzy reliability, we have
𝐹 ≤ 𝐿

0
= 𝑁
0
∗ 𝑃
𝑓1

= 𝑁
0
∗

𝑚0

∑

𝑙=1

(1 −

𝑘
3

𝑝1

𝑅
𝑗1
∗ ∑
𝑘𝑝1

𝑖=1


𝑐
𝑗1
− 𝑥
𝑖𝑗1



) .
(26)

According to the equation, the value of 𝑅
𝐿0

is related
to the sum of distance between the granule core and other
samples. The smaller the distance sum is, the smaller the
dispersion is and the more compact the samples in granule
are, which will cause the bigger fuzzy reliability and more
reliable model.

Theorems 4 and 5 prove the reasonability of the proposed
algorithm from the point of information entropy. Consider-
ing the extreme case, if the granule dispersion is 0, namely, not
undersampling by granulation division, the misclassification
rate of majority class is almost 0; that is, lim

𝑃𝑠→1
𝐻(Φ) → 0

means that it does not provide the information entropy and
the information loss is 0, which is accordant with the practical
situation.

6. Simulation Experiment

In order to demonstrate the effectiveness and the superiority
of the proposed algorithm, we conduct the simulation experi-
ments on the chessboard-shaped dataset with uneven density
distribution and the imbalanced distribution meteorological
data of Macao in 2010 and 2012. At the same time, we
compare the experimental result of our algorithm with that
of SVM (support vector machine) [23], OS-ELM (online
sequential ELM) [14], and MCOS-ELM (Metacognitive OS-
ELM) [16]. Among them, MCOS-ELM is an online extreme
learning algorithm presented by Vong et al. [16] for the online
data imbalance problem. For better demonstration, we call
the proposed method DGSMOTE (Division of Granulation
and SMOTE OS-ELM). Before the training, we apply the
normalization procedure to the dataset. We take the average
value of 30 trials as the final experimental result.

6.1. Construct the Chessboard-Shaped Dataset. In the chess-
board-shaped dataset, both the majority and the minority
samples take up eight cells in the chessboard.According to the
respective class in each cell, some data chunks are randomly
generated. Ultimately, the quantity of majority and minority
samples is 1000∗8 and 100∗8, respectively; that is to say, the
ratio of the classes is 10 : 1.The testing data are generated with
the same method.

6.1.1. Experimental Results Analysis of Chessboard-Shaped
Data. In the offline stage, we conduct the undersampling
on the majority samples first. Then the changes in the

Table 1: Changes in the numbers before and after balancing the
offline data.

Dataset Before After
Majority Minority Majority Minority

Chessboard-shaped
data 7997 807 2500 2449

Table 2: Comparative results on chessboard-shaped dataset.

Algorithms DGSMOTE OS-ELM MCOS-ELM LS-SVM
Testing time (s) 0.0874 0.1976 0.0531 132.476
Minority training
accuracy 0.9167 0.6329 0.7438 0.6385

Majority training
accuracy 0.9414 0.8988 0.8051 0.9792

Whole testing
accuracy 0.9363 0.8439 0.8612 0.9606

𝐺-mean 0.9325 0.7334 0.7445 0.7822

distribution of the chessboard-shaped data are shown as
Figure 1(b) after the first granulation division. In the online
stage, after conducting granulation division, we process the
SMOTE algorithm to realize the oversampling for the minor-
ity samples. As a result, the changes of the dataset are shown
as Figure 1(c).

It can be seen from Figure 1 that, compared with the
original samples, now the classifications of dataset at the
moment are nearly balanced. For the different classes of the
chessboard-shaped dataset, Table 1 presents the changes in
their numbers before and after the process of this proposed
algorithm.

In the simulation experiment, the activation function of
the hidden layer is set as “sig” and the numbers of hidden
nodes are set as 140.We take themean value of 30 trials as the
experimental result. Finally, the performance comparison of
the four models is shown as Table 2.

From Table 2, though the DGSMOTE’s whole testing
accuracy is not the highest among the models, its testing
accuracy and testing times do not appear to bemuch different
from the other three algorithms. In addition, the minor-
ity training accuracy of DGSMOTE is much higher than
that of others. Compared with LS-SVM, DGSMOTE shows
superior performance in both testing training speed and
accuracy.This demonstrates the instantaneity of the proposed
algorithm. Furthermore, the new DGSMOTE presents good
performance upon using 𝐺-mean to evaluate specialty and
the sensitivity of the algorithm. It can highly improve the
classification accuracy of minority with less decrease of
amplitude of majority accuracy. At the same time, it can
eliminate the bias which is generated by applying traditional
algorithm to handle the imbalanced data.

To strengthen the reliability and observability of our
algorithm, the classification results and the minority accu-
racy variation with different numbers of hidden nodes on
chessboard-shaped dataset are shown in Figures 2 and 3,
where the dark spot means the misclassified samples. They
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Figure 1: The distribution of the offline chessboard-shaped data (a) before and (b) after the first granulation and (c) the result after using
SMOTE.
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Figure 2: Classification results of on chessboard-shaped dataset. (a) OS-ELM and (b) DGSMOTE.
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Figure 3: Classification accuracy on minority class with different
number of hidden nodes for chessboard-shaped dataset.

also reflect the good generalization and learning performance
of DGSMOTE.

From Figure 2, classification accuracy of minority sam-
ples is significantly less than that of majority samples upon
using OS-ELM to classify the dataset. Namely, the model
of OS-ELM possesses obvious bias in the classification.
Compared with the improved OS-ELM algorithms, the
DGSMOTE has a better overall classification performance
with little effect on the majority classification accuracy. Dur-
ing the procedure of undersampling and oversampling in our
algorithm, both the whole distribution characteristics and
the original feature of the samples are fully considered. So
loss information value of the balanced samples is low and
stable. We transform the number of the hidden nodes for the
three online extreme learning algorithms. Then the accuracy
of each node for the corresponding algorithm is obtained by
taking the mean value of 20 trials. Hence, we get Figure 3. By
observing the changes ofminority accuracy, we know that the
whole performance of DGSMOTE algorithm is not only high
but also stable.

After synthesizing all the above indicators, it is obvious
that theDGSMOTEpossesses effective generalization perfor-
mance and outstanding learning ability. In order to display
the sensitivity and specificity of our algorithm, we employ
ROC curve to reveal the excellent performance. The ROC
curves of the four models on the chessboard-shaped dataset
are shown in Figure 4.

AUC denotes the area under the ROC curve. The larger
the value of AUC is, the better the classification is. From
Figures 1–3, we can know that the proposed DGSMOTE
algorithm significantly outperforms the other three models
with better overall performance and lower minority misclas-
sification rate. Besides, it reduces the loss cost generated by
misclassification because of its strong recognition capability
and lower classification bias.

Table 3: Changes in the numbers before and after balancing the
offline data.

Dataset
Before After

Majority Minority Majority Minority

Forecasting data in
2010

334 31 110 97

Forecasting data in
2011

330 35 110 104

Table 4: Comparative results on Macao forecasting data in 2010.

Algorithms DGSMOTE OS-ELM MCOS-ELM LS-SVM

Testing time (s) 0.0399 0.0468 0.0468 1.6224

Minority training
accuracy

0.9655 0.5775 0.7037 0.7009

Majority training
accuracy

0.9481 0.9771 0.9746 0.9286

Whole testing
accuracy

0.9546 0.9432 0.9368 0.9025

𝐺-mean 0.9472 0.7403 0.8213 0.7655

6.2. Experimental Results Analysis of Macao Forecasting Data.
Macao forecasting dataset is obtained from the website
of the Macao Meteorological Bureau [24]. Compared with
chessboard-shaped dataset, it has less samples but more
attributions and is a kind of flow distribution data. According
to its own features, we choose PM

10
and SO

2
as the two main

characteristics from all the six features for illustration. And
the changes after the first granulation division are shown in
Figure 5(b).

After the first granulation division, the imbalanced ratio
of the new sample set is markedly decreased compared to that
of the original dataset.

In the online stage, we first conduct granular computing.
Next, we apply SMOTE algorithm to process the oversam-
pling for the minority. Figure 5(c) displays how the minority
samples ofMacao forecasting data change after the procedure
of DGSMOTE.

It is obvious form Figure 5 that the sample data are nearly
balanced after the oversampling and undersampling. Table 3
shows the changes in the number of the observations before
and after being handled by our algorithm.

The next step is to use the new balanced sample set to
establish the initial model of the online extreme learning
machine. Similarly, the activation function of the hidden layer
is set as “sig.”According to features of the forecasting data, the
numbers of hidden nodes were assigned as 30.The fourmod-
els established by the four algorithms conduct the learning
on the two different forecasting datasets, respectively. Finally,
the comparative performances of the models are presented in
Tables 4 and 5.

As can be seen from Tables 4 and 5, compared with the
other three algorithms, DGSMOTE can effectively increase
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Figure 4: Comparison of the ROC on chessboard-shaped dataset for the four algorithms (a) SVM, (b) OS-ELM, (c) MCOS-ELM, and (d)
DGSMOTE.

Table 5: Comparative results on Macao forecasting data in 2011.

Algorithms DGSMOTE OS-ELM MCOS-ELM LS-SVM
Testing time (s) 0.0321 0.0412 0.0425 1.638
Minority training
accuracy 0.9469 0.5723 0.7206 0.7457

Majority training
accuracy 0.9456 0.9756 0.9673 0.9492

Whole testing
accuracy 0.9495 0.9421 0.9662 0.9263

𝐺-mean 0.9347 0.7387 0.8399 0.7948

the classification accuracy and recognition capability of the
minority samples upon dealing with the practical imbalanced
problem. However, the overall testing accuracy and the value

of 𝐺-mean suffer no decline. This case declares that most
original features of the minority samples are reserved after
the undersampling. It also reflects the low information loss
and the validity of the granulation division. Meanwhile, the
shorter testing time reveals the fast learning speed, strong
recognition ability, and good instantaneity of the DGSMOTE
algorithm.

In order to make the validity and stability of our pro-
posed algorithm more clear, the classification results and the
minority accuracy variationwith different numbers of hidden
nodes on the two datasets are shown in Figures 6, 7, and
8, respectively. In Figures 6 and 7, the dark spots mean the
misclassified samples.

From Figures 6 and 7, our proposed algorithm has
superior recognition ability to the other three algorithms as
well as avoiding significant decline of majority class accuracy.
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Figure 5: The distribution of the forecasting data (a) before and (b) after the first granulation division and (c) the result after using SMOTE.
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Figure 6: Classification results of (a) OS-ELM and (b) DGSMOTE on forecasting data in 2010 year.
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Figure 7: Classification results of (a) OS-ELM and (b) DGSMOTE on forecasting data in 2011 year.
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Figure 8: Classification accuracy on minority class with different number of hidden nodes on Macao forecasting data in (a) 2010 year and
(b) 2011 year.

That is to say, the DGSMOTE effectively eliminates the bias
generated by applying the original OS-ELM algorithms to
handle the imbalanced problems. In Figure 8, the curves of
DGSMOTE are much smoother without erratic fluctuation
along with the variation of the number of hidden nodes. And
they further testify the favorable generalization and stability
of our proposed algorithm.

We still use ROC curves to exhibit the outstanding overall
effect and superior performance of the proposed algorithm.
Figures 9 and 10 indicate the ROC curves of the four models
on the Macao forecasting data in 2010 year and 2011 year,
respectively.

According to ROC curves in Figures 9 and 10, it is
obvious that the DGSMOTE algorithm has an advantage
over the other three algorithms and possesses better overall
performance and recognition ability upon dealing with the
flow distribution imbalanced data. This shows more research
and application value for the practical problems.

7. Conclusion

In this paper, a novel classification approach based on
SMOTE is proposed from the application in actual engi-
neering. In the offline stage, we conduct the granulation
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Figure 9: Comparison of the ROC on Macao forecasting data in 2010 year for the four algorithms (a) SVM, (b) OS-ELM, (c) MCOS-ELM,
and (d) DGSMOTE.

division according to the distribution and the clustering
characteristics of the majority samples. The central sample
in each granule is used to replace the granule itself. Finally,
the balanced offline dataset is obtained. In the online stage,
we first process the granulation division for the minority
class on the basis of the offline stage and then conduct
the SMOTE to realize the oversampling of the minority
samples. Our algorithm effectively increases the classification
accuracy of the minority class under the premise that the
overall distribution was unchanged and the information loss
of majority samples reduced.

Furthermore, entropy theorem is used to testify the
rationality of the proposed algorithm.The final experimental
results demonstrate that the overall generalization perfor-
mance, classification efficiency, and classification accuracy of
the online imbalanced samples can get improved by applying

granulation division to make the dataset balanced. For the
online imbalanced small sample set and the large scale data,
our research is of both great theoretical significance and
practical value.
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Figure 10: Comparison of the ROC on Macao forecasting data in 2011 year for the four algorithms (a) SVM, (b) OS-ELM, (c) MCOS-ELM,
and (d) DGSMOTE.
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