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This paper studies the initial-boundary value problem of a porous medium equation with a convection term. If the equation is
degenerate on the boundary, then only a partial boundary condition is needed generally. The existence of the weak solution is
proved by the monotone convergent method. Moreover, according to the different boundary value conditions, the stability of the
solutions is studied. In some special cases, the stability can be proved without any boundary value condition.

1. Introduction

Consider the motion of the ideal barotropic gas through a
porous medium. Let p be the gas density, V the velocity,
and p the pressure. The motion is governed by the mass
conservation law

pe +div (pV) =0, )
the Darcy law
V = -k (x)Vp, (2)

and the equation of stage p = P(p). Here, k(x) is a given
matrix. We usually assume that P(s) = ps® with y, « = const.
The above laws then lead to a semilinear parabolic equation
for the density p:

Al/la . 1+a
P = l+ad1v(k(x)Vp+ ). (3)

If k(x) = a(x)I, where a(x) is a function and I is the unit
matrix, then (3) becomes

o

P = div (a (x) Vp““) = pacdiv(a(x) p*Vp). (4)

l+a

Also, (4) can be regarded as the generalization of the nonlin-
ear heat equation

u, = div (h (u, x) Vu), (5)

where the function h(u,x) has the meaning of nonlinear
thermal conductivity dependent on the temperature u =
u(x,t). Ifa(x) = 1in (4) or h(u, x) = h(u) in (5), that is,

u, = A", (6)

which is called the porous medium equation, there are
well-known monographs or textbooks devoting to the well-
posedness problem of (6); one can refer to [1-6] and the
references therein. If a(x) > 0 in (4) or h(u, x) depending
on x in (5), the situation may be different from that of (6).
For example, if a(x)|,c5q = 0, we consider the equation

u, =V (a(x)Vu), (7)

and suppose that there are two classical solutions u and v of
(7) with the initial values u, and v, respectively. Then it is
easy to show that

J |t (x,8) = v (x, 1) dx < J |uo (x) = vo (x)[ dx,  (8)
Q Q

which implies that the classical solutions (if there are) of (7)
are controlled by the initial value completely. In other words,
the stability of the classical solutions of (7) is true without any
boundary value condition. Yin and Wang [7] also showed that
the non-Newtonian fluid equation with the type

u, = div (d* () [Vul > Vu),  (x,1) € Qx(0,T)  (9)
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has similar properties, where Q is a bounded domain in RY
with appropriately smooth boundary, d(x) = dist(x, 0Q2), and
« > 0 is a constant. Since the diffusion coefficient d*(x)
vanishes on the boundary, it seems that there is no heat flux
across the boundary. However, Yin and Wang [7] showed that
the fact might not coincide with what we image. In fact, the
exponent «, which characterizes the vanishing ratio of the
diffusion coefficient near the boundary, does determine the
behavior of the heat transfer near the boundary. They proved
that, if 0 < & < p — 1, the solution of (9), u € Hg for some
constant y > 1, and the trace of u on the boundary can be
defined in the traditional way; then, in physics sense, there
is no heat flux across the boundary actually, while, if & >
p — 1, the existence and uniqueness of solutions were proved
without any boundary conditions, which means that whether
there is heat flux across the boundary is uncertain. Later, Yin
and Wang [8] had shown that only a partial boundary value
condition matches up with the equation

a_u —div (a (x) |[VulP™> Vu) - fi(x)Dju+c(x,t)u

ot (10)

=g(nt), (0t eQx(0,T).

Inspired by Yin and Wang [7, 8], we will study the porous
medium equation with a convection term,

u, = div (d*Vu™) + y o0 (um),
5 ox (1)
(x,) € Qp = A x (0,T),
with the initial value
u(x,0) =uy(x), x€Q, (12)
and with the partial boundary condition
u(x,t)=0, (xt)eX,x(0,T), (13)

where X, is defined as follows. When 0 < o < 1, X, = 0Q;
whena > 1,2, = {x € 0Q : bi'(O)ni(x) < 0} and {n;} is the
inner normal vector of Q). The expression of X, is derived in
[9], we do not repeat the details here.

We suppose that b;(s) is a C' function, and

dPvul € 12 (Q), 0<uyel®(Q). (14)

Definition 1. A nonnegative function u(x, t) is said to be the
weak solution of (11) with the initial value (12), if

d? v e L® (0, T: L (), uel®(Q);  (15)

for any function ¢ € C'(Qy), ¢l,— = 0, ¢l5 = 0, there holds

” (—%u + d“Vuqu)> dxdt
Qr ot
+ ” b, (u") @, (x,t)dxdt (16)
Qr

:J uyp (x,0) dx,
Q
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and the initial condition is satisfied in the sense that
limJ |t (x, 1) = uy (x)] dx = 0. (17)
t—0 Jo

If u(x, t) satisfies (13) in the sense of the trace in addition,
then we say it is a weak solution of the initial-boundary value
problem of (11).

First of all, we will study the well-posedness problem of

11).

Theorem 2. If m > 0,2 > a > 0, uy(x) > 0 satisfy (15),
then (11) with initial value (12) has a nonnegative solution.
Moreover, if 0 < o < 1, then Z,, = 0€); the solution is unique.

Then, we will study the stability of the solutions.

Theorem 3. If b(u) = 0, i.e. equation (1) is not with the
convection term, u and v are two solutions of equation (11) with
the initial value uy(x), v,(x) respectively, « > 1, then

J lu(x,t) —v(x,1) < CJ [ug (x) = vy (x)|dx.  (18)
Q Q

Since b,(u) = 0 in Theorem 3, there are some regrets more
or less. For (11) itself, we can not prove the same conclusion for
the time being. However, as compensation, we can consider a
more complicate equation than (11),

J.0b, (u", x, t
= div (@) + y P00

i=1

(19)

i

Theorem 4. Let u and v be two solutions of (19) with the initial
values uy(x), vy(x), respectively, if 1 < a < 2, and

|bi (" X, t)| <a (x) > a (x)|x€aQ = 0; (20)

a(x) satisfies
J a(x)d %dx <c (21)
Q

then the stability of the weak solutions is true in the sense of

(18).

It is more or less strange that the case @ = 1isnotincluded
in Theorems 3 and 4.

At last, we will probe the stability of the weak solutions
based on the partial boundary value condition.

Theorem 5. Let u, v be two solutions of (11) with the initial
values uy(x), vy(x), respectively. If 2 > a > 1, m > 0,

J d“' V| < oo,

? (22)
J 4! |va| < 00,

Q
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and the partial boundary condition (12) is satisfied in the sense
of trace, then

J lu(x,t) —v(x,t)| dx
! (23)
SCJ 1o (x) = vy (x)|dx+I [ = v"|dZ,
Q 5!

where =) = 00\%,,.

Theorem 6. If Qisa C?* domain, « > 2, and m > 1, then (11)
with the initial value u, and the partial boundary condition
(13) has a BV solution. Moreover, let u, v be two solutions of (11)
with the different initial values uy(x), vy(x), respectively. Then

J lu(x,t) —v(x,t)| < J |u0 (x) =, (x)|dx
Q Q
(24)
+ J |u—v|dZ,
Z/

m

where Z:n =00\%,, 2, = {x € 0Q: bi'(O)ni(x) < 0}, and {n;}
is the inner normal vector of Q.

If b, = 0, Theorem 6 has been included in Theorem 3,
while, if b, = 0is not true, then Theorem 6 has its independent
sense. Such phenomena that the solution of a degenerate
parabolic equation may be free from the limitation of the
boundary condition also can be found in [7-14]. We will use
some ideas in [9, 14]. The uniqueness of the weak solutions
when X, = 0Q had been proved in [14]. Since [14] was written
in Chinese, for the completeness of the paper, we still give its
proof in what follows. In addition, how to obtain the stability
(23) without condition (22) is a very interesting problem. Last
but not least, roughly speaking, in this paper, we can show
thatifo < & < 1 or & > 2, then the weak solution u can be
defined the trace on the boundary in the traditional sense; it
is surprising that if 1 < « < 2, whether u can be defined the
trace on the boundary is unknown for the time being.

2. The Well-Posedness Problem

We consider the following regularized problem:

. 1N o), 50 ()
unt=d1V<<d+;) Vun>+za—xi,

i=1

(X, t) € QT)
(25

u, (x,t) = l, (x,t) € S =00 x(0,T),
n

1
u, (x,0) = ug, (x) =uy (x) + =, x €.
n

According to the standard parabolic equation theory,
there is a weak solution

u, € L” (QT) 4

) (26)
Vil e I (Qy),

which satisfies

1 1

Sy () < loto | oy + — (eNeQn  (27)
by the maximum principle.

Theorem 7. If m > 0,2 > « > 0, and uy(x) > 0 satisfy (14),
then (11) with initial value (12) has a nonnegative solution.

Proof. First we suppose that 1, € C;°(Q) and 0 < uy < M,
and consider the following normalized problem

N ob. (u™
u,, = div(a, (u,) Vu,) + Z#,
i=1 i

(X, t) € QT’ (28)

u, (x,t) = l, (x,t) € 0Q x (0, T),
n

u, (x,0) = uy, (x), xe€Q.

Here, a,,(u) = c(n) > 0, and
an(u):m<d+l> u" ifue [l,M+l] (29)
n n n

Thus, the solution of the problem u,, is also a solution of
problem (25). Moreover, by comparison theorem, we clearly
have

U, (1) <u,(x,t), (30)
which yields
u(xt) = limu, (x,1). (31)

Now, we can prove that the limit function u is a weak solution
of (6) with the initial value (8).

Multiplying both sides of the first equation in (25) by ¢ =
u — (1/n)™ and integrating it over Q;, we have

[ -G )

SRACHON I
I, o (= ()

} L t, (x,T) (”2" (e T) - <%>m>dx
-y (- ()"
B JJQ mu;”untdx dt

- [J, () e (- e
S, P (- (1)

1

(32)



By the fact

Il 5 (- ()

1

=- “QT b, (u,) a% (u;” - (%)m) dxdt  (33)

=
Qr 9x; Jajmym

then we have

(m+1) ” <d+ l) |Vu;"|2dxdt
Q n

T

b (s)dsdxdt =0,

Uy (x) — ni’”) Uy, (x) dx

(
_ L u, (x,T) (u;ﬂ (x,T) - nim) dx (34)

+ ”QT % (u;" - (%>m>dxdt

1

m 1 m+1 1 1
SJ <u0 (x)+—> dx+—<M+—)J dx.
Q n n n’Jo

Thus, we obtain

1 OL/Z
l<d+ —> vu)!
n

By choosing a subsequence, we can assume that

<c (35)
LX(Qr)

1 lx/2
(d+—) Vu,' =, (36)
n
weakly in L*. We need to prove that

¢ =d**vum, (37)

For any Yy € C;°(Q), denoting thatd,, 2 d+1/n, we have

” A9y dx di
Qr

|| vy yaxa
Qr

_« ” A4 - ™y dx dt (38)
2 Mo,

- ” A2 Yy dx dt

T

¢ ” A1V My dx dt.
2 Jar

Let n — o00. The left hand side is

lim “ A9y dx dt = H Cydxdt.  (39)
Qr Qr

n—o00
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while on the right hand side, by
m 1\™
|Vd-un|SclVd|-|u;”|Sc<M+—> <, (40)
n
and by the condition 0 < & < 2,
J d:/z_ldx <c (41)
Q
using the control convergent theorem,

% fim ” A1V My dxdi
Qr

2 n—00
(42)
_« ” ANy ddt,
2 Ja,
we have
lim |- ” A2 Ty dx dt
n—00 QT
_« ” A4 ™y dx dt] . ” A
2 Jor Qr
(43)
-Vydxdt - g “ d*?7'Vd WMy dx dt
Qr
_ ” APy vy dxdt.
Qr
Thus we obtain (37).
At the same time, since b, € C, by (31), we have
Jim b, (1) = b (u™). (44)

Thus, u is a solution of (11) with the initial value (12).

If u, only satisfies (14), by considering the problem of (25)
with the initial value u,, which is the mollified function of
u,, then we can get the conclusion by a process of limitation.
Certainly, the solution u(x, t) generally is not continuous at
t = 0, but satisfies (15) and (17). Theorem 7 is proved. O

Lemma 8. Let u, satisfy (14). If 0 < « < 1 and u is a solution
of (11) with the initial value (12), then there exists a constant
y > 1 such that

” |Vu"|" dx dt < c. (45)

T

Proof. Since « < 1, there exists constant § € («, 1), < («x +
1)/2 such that 2 — «/ 8 > 1. Therefore, there exists y € (1,2 —
a/B) such that By < 1. Therefore,

” |Vu™|" dx dt

T

= ” |Vu"|" dx dt
{(x,1)eQpsdP|Vum|<1}

+ ” |Vum|y dx dt
(o) €Qrsdf|Vum|>1)

< ” AP dx dt + ” a4 [V [FY d dt
Qr Qr
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<[ atraxare || a(vevurp)dxas
Qr Qr

<c
(46)

Thus 4™ can be defined the trace on the boundary in the
traditional way. By the definition of the trace, we also know
that u can be defined as the trace on the boundary in the
traditional way. The lemma is proved. O

Theorem 9. Ifm > 0,1 > a > 0 and uy(x) > 0 satisfies (14),
then Z,, = 0Q, and the solution of the initial-boundary value
problem (11)-(13) is unique.

Proof. First of all, by Theorem 7 and Lemma 8, there is a
nonnegative solution of the initial-boundary value problem
(11)-(13). Then, we prove its uniqueness. Let u,v be two
solutions of equation (11) with

u(x,0)=v(x,0),

(47)
u(x,t) =v(,t)=0, (xt)€oQx(0,T).
Forall 0 < ¢ € Cy(Qy),
o(u—v)
«”QT(P 5 dxdt
=- d* (Vu™ - ") - Ve dx dt
”QT ( u v ) pax (48)

S -6 ) g
i=179Qr
For any given positive integer n, let g,(s) = jos h,(t)dT,
h,(s) = 2n(1 — n|s|), . Then h,(s) € C(R), and we have
h, (s) 20,
sy )] < 1,
|g. () < 1, (49)
10,9 () = sgns,
Jl%sg; (s) =0.

Since 0 < « < I, by Lemma 8, we can define the traces
of u, v on the boundary. By a process of limit, we can choose
g, (W™ — ") as the test function; then

J g, " =v") de + J d* (vu™ - vv")
o o
V" =v") gl (u" - v")dx

(50)

é”% [ (")~ by (V)] (" = V"),

g, (W™ =v")dxdt = 0.

5
Moreover, we can prove that
tim | (8 ") - 507 gh (6" =)
n—eo Jo (51)

(W =v")_dx =0.

In detail, the limitation (51) is established by the following
calculations.

”Q b W) -6 (™) g, W™ =V") (W™ - Vm)xi dx

—b (V)] g, (" = V")

| b, (")
{xeQ:|lu™—v"|<1/n}

(" =v") dx

b, -b
$CJ (u m(v “ )xb|dx
{xeQ:lu™-v"|<1/n} -V i
(52)
— CJ d a2 b ( ) bl
{xeQ:lu™-v"|<1/n} um — ym

. |d°‘/2 (u™ - vm)xi| dx

<c J. d
{xeQ:|lu—v|<1/n}

) 1/2
. “ a*|v (™ -v")| dx] .
{xeQ:|u™—v"|<1/n}

Since0 < x < 1,
2
) dx

J <‘ 2B (") =5 (V")
{xeQ:|lu™—v"|<1/n} um —ym

47 (x) dix < cj ddx < c.
Q

o b (")~ 5, (V")

um —ym

2 1/2
) dx:|

(53)
Sc J
{xeQ:|u™—v"|<1/n}

In (52),letn — co. If {x € Q) :
0 measure, by 0 < a < 1, we have

|t — ™| = 0} is a set with

lim J d*(x)dx
=00 JixeQuum—vm|<1/n}
(54)
_ J 4™ (x)dx = 0,
{xeQ:|u™—v™|=0}

If the set {x € Q : [u™ —+"| = 0} has a positive measure, then,

lim

| PO
=00 JixeQ:lum—vn|<1/n}

— V") dx
(55)

d* |V (u™ = v} dx = 0.

a J{er;Iu’”—v’”I:O}

Therefore, in both cases, the right hand side of inequality (52)
goes to 0 asn — ©o.



Clearly,
,}Lngoj g (" =) 2 (Lgt_ D g
= J sgn (u" — ") () dx (56)
Q ot
- [ snw-n D - Ly
~ ), ot dt b

Now, let n — 00 in (50). Then

J [t (x,t) —v(x, 1) dx < J |uo (%) = v, (x)| dx
Q Q (57)

=0.
‘We have the conclusion. O

By Theorems 7 and 9, we clearly have the following.

Corollary 10. Theorem 2 is true.

3. The Stability without the Boundary
Value Condition

Consider a simpler equation than (11).
u, = div(d“Vu™), (x,t) €Qr=Qx(0,T), (58)

with the initial value (12), but without any boundary value
condition. For a small positive constant A > 0, let

Q) ={x € Q:d(x)=dist(x,0Q) > A}, (59)
and let
1, lfx € QZ/\’
¢ (x) = %(d )-A), xeQ\Q, (60
0, if x € 0\Q,.

Proof of Theorem 3. Suppose u,, v, only satisfy (7), & > 1. Let
u, v be two solutions of (58) with the initial-boundary values

Uy, Vo, respectively. For all 0 < ¢ € Cy(Qy),

o(u—v)
JJQT LY dxdt

=- ” d* (Vu™ - vv") - Ve dxdt.
Qr

(61)

By a process of limit, we can choose ¢g, (1™ — v"") as the
test function; then

m m a(u_v)
JQ¢(x)gn(u —y )de

+ J d* (v - vv™)
Q (62)
SOV (U™ = V") g; (™ —v")dx

+ J d* (Vu™ = vv™) - Vg, (u™ —v") dx = 0.
o

Discrete Dynamics in Nature and Society
Clearly, we have

J d* (Vi = vv") - ¢V (u" = v") gl (W - V") dx
Q

>0,
lim }\m%) J ¢ (x) g, (W =v") g (Lgt_ ) dx
n—00 10 Jq
T m m a(u—v) (63)
2
_ m__m o(u-v)
= JQ sgn (U —v™) = dx
3 _ow-v) d
= JQ sgn (u—v) 5 4 lu =, .

As for the term

J a* (vu" —vv™) - Vég, (u™ - v") dx, (64)
0

we have
lim J d* (Vu" = vv") - Vg, (u™ —v") dxl
A-01Jo
2 2 12
< (j a* (v + |97 ') dx) (65)
Q

172
(J d"‘|v¢|2dx> -0,
Q\Qp

The last equality of (65) is due to that since &« > 1, we have

. « 2 . a |Vd|2
lim J d* |V¢|” dx = 41im J A ——dx
A=0 Jon0y A=0Jo\ay A (66)

< climA*! =o.
A—0

Now, after letting A — 0, let n — oo in (62). Then

J [u(x,t) —v(x,t)|dx < J |u0 (%) =, (x)l dx. (67)
Q Q

Theorem 3 is proved. O

Consider a more complicated equation than (11).

S ob, (u™, x, t
Uy = div (V™) + 2%
X; (68)

i=1
(x,1) €eQr=Qx(0,T),

with the initial value (12), but without any boundary value
condition.
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Proof of Theorem 4. Suppose u,, v, only satisty (7), 1 < a <
2. Let u, v be two solutions of equation (11) with the initial-
boundary values u, v,, respectively. For all 0 < ¢ € C}(Qy),

R

=- d* (Vu™ —=vv™) - Vo dx dt
”QT ( ) Vo (69)

N
- ” [b; (u™, x,t) = b, (v"', x,t)] @, dx dt.
i=1 Qr

By a process of limit, we can choose g, (¢ —v")) as the
test function; then

L g, (¢ (™ =) de + J;) a* (vu™

UGV () g (8 7 )
+ J d* (Vu™ = ") -V (u" - v") gl (U™
0

-v")dx (70)

Y| CICEEORTA)

i=1

b @ =V 1 g (" =), ]

i

gh (@ (W™ = V™)) dxdt = 0.

Let us analyze every term in the left hand side of (70). For the
first term, we clearly have

o(u—v)

d
ot

Jim lim L G (¢ (" =v™))
o(u—v)

d
or ¥

= lim J g, (™ =v"™)
o

n—o00 (71)
o(u—v)

d
ot ¥

= JQ sgn (U™ —v™)

0wy _d
ot dt r

= J sgn (u—v)
Q
For the second term, we have

J da“ (vu™ - vv'™)
. (72)

PV (" =) g, (B (" = ")) dx 2 0.

For the third term, since

lim J 'd“/z_l W =v") g, (¢ (" - vm))|2 dx
A=0Jo,\0y

< lim JQ de? '(um ~v") g (¢ (u™ - m))|2 dx  (73)

A—0
< J d*?dx <,
Q
by 0 >« —2 > -1, we have

lim J d* (vu™ = vv") -V (u" - ")
A—0 Jo

ACICAEOIEE:

c
= lim J —d*|vu™ - v (" = V"
=0 Jana,, A | l '( )

g, (¢ (" —v"))|dx <c

- lim J a7 v - v |(um -v")
=0 Jo 0, (74)

g, (¢ (" —v"))|dx <c

5 1/2
- lim (J [d“/z |Vu™ - val] dx)
A=0\J,\0,,

. <J 'da/z—l (um _ Vm)
2\

5 1/2
g -vfax) -0,

by lim,,_, ., g, (s)s = 0.
Now, we deal with the terms related to the convection
function b, in (70). In the first place, by (20),

b (™, x,t) = b (V" x,t)| < 2a(x); (75)

according to the definition of the trace, we have

RO R AT PACITASD)

lim
A—0

W =" ¢y (%) dxl < lim< J a(x)
i =0 Jana,

- (76)
U =" gl (¢ (" = V™)) dx < cj a(x)dz
o0
=0.
Moreover, we can prove that
lim lim J (b (", x,t) = b (V" x, 1))
A—0 Jo (77)

19 ($ (" = V")) (" =), $(x)dx = 0.

In detail, the limitation (77) is established by the following
calculations.



lim
A—0

[, @) -5 (7x0) g, (8 (4" -

J{xGQ |lu™—v™|<1/n}

B J’ b (u™, x,t) - b (V", x,t) '( m

<c -
xe€Q:|u"—v"|<1/n} um —ym

=CJ' da/zb(” %, 1) = b (V™ x,t)
{xeQ:|um—v"|<1/n} um — ym

sty ("%, 1) < B (V"5 1)

[ Id_ m y
{xeQ:lu—v|<1/n} u-—-v
By (21),

J ( d—lx/z

{xeQ:|u™—v"|<1/n}

m m 2
LRG| PR
um — ym

< CJ a(x)d %dx <c.
Q

Letn — ooin (78). If {x € Q : [t —V"|
measure, then

= 0} is a set with 0

lim a(x)d *dx

n—00 J’{xEQzlumfval/n}
(80)

a(x)d %dx = 0.

J{xeﬂ:lum—vmlzo}
If the set {x € Q : [u™ —+"| = 0} has a positive measure, then,

lim

j -
n=00 JixeQulum—vn|<1/n}

m)|2 dx
(81)

d* |V (u" = v dx = 0.

B J{er:|u"‘—v’"|=0}

Therefore, in both cases, the right hand side of inequality (74)
goes to 0 asn — ©0o.

At last, Now, after letting A — 0, let n — oo in (71). By
(72), (73), (74), (76), (77), (78), (79), (80), and (81), then

J | (x,t) —v(x, 1) dx < J |u0 (%) = v, (x)| dx. (82)
Q Q

Theorem 4 is proved. O

4. The Stability Based on the Partial Boundary
Value Condition

In this section, we will prove Theorem 5; the proof is similar
as that of Theorem 4

Vi) (" -

(6, (", x,1) = b, (V"% 1)] g, (W™ = V") (" = V"), dx

Vm)x,.' dx

2 1/2
> dx| - U |d“/2V (u™ - vm)|2 dx]
{xeQ:|u™—v™|<1/n}
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vm)xi ¢ (x) dx|

=[], ) b 0 0) gl ) =), ]

(78)

|d°‘/2 (7 Vm)x,.' dx

1/2

Proof of Theorem 5. Suppose u,, v, only satisfy (7), 1 < « <
2. Let u, v be two solutions of (11) with the initial-boundary
values u, v,, respectively, and with the same homogeneous
partial boundary value condition

u(x,t)=v(xt)=0, (xt)ex, x(0,7T), (83)

Forall 0 < ¢ € C}(Qp),

o(u—v)
”QT P, dx dt

=- d* (Vu™ - vv") - Vo dxdt
”QT (Vu V™) - Ve dx (84)

iﬂ (6, (") = b, ()] g, dx .

By a process of limit, we can choose g, (¢t —v™)) as the
test function as in Theorem 4; then

[, 0.t —my 2

~V") g (@ (" -

V") gl ("

dx + J a* (vu™
0
- ¢V (U™

[
Q

V™)) dx

RTICE
(85)

ALY | CICORIICE)
gy (=) 4 (=), ]

g, (" — ")) dxdt = 0.
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Let us analyze every term in (85). By |b,(u™) -b,(v™)| < c|u™ -
v""| and then according to the definition of the trace, by (83),
we have

tm [ 18 =8 (7)) g, (6 647 =) (" =)

¢, (%) dx| < lim< L o b (™) - b, (v")|

A—0
(86)
o @@ =) @ =) dx e[ )
-b(vV")|dz < cJ [ =" dz.
z,
Moreover, we can prove that
lim tim | (8 (") =5 (") g, (6 (4" =)
n—00 10 Jo (87)

(" - Vm)x,» ¢ (x)dx = 0.

In detail, the limitation (87) is established by the following
calculations.

L (B (") = b (V")) g, (¢ (™ = ™)) (" = V"),

9@ = || 66 -5 g )

lim
A—0

i

(b (") =6 (V)]

. (um _ Vm)xi dX‘ =

j{xeﬂ:lum—v’"kl/n}

1G9, (" =) (" =), dx

(88)

um —ym

b (u™) - b (V"
SCJ 1(” ) 1(V )||(um_vm)xvldx
{xeQ:|u™—v"|<1/n} !

d—(a—l)/Zbi (”m) - b (Vm)

e J
{xeQ:lum—v"|<1/n} u™ —ym

. |d(0‘_1)/2 " - vm)xi| dx

<c J <‘d—(o¢—l)/2 b, (u™) - b (v")
{xeQ:|u—v|<1/n} u™ ="

o—1 m my|? 1
|d V(" - )| dx] .

1/2

o

[J.{xeﬂzlum—vmkl/n}

Sincel <« < 2,

J (’d—((x—l)/z b (") -4 (V")
{xeQ:|lum—v"|<1/n} um — ym

1-a
st d “dx<ec.
Q

2
)dx

In (88),letn — oco. If {x € Q : [u™ —v""| = 0} is a set with 0
measures, then

(89)

lim J d'™ (x) dx
=00 JixeQilum—v"|<1/n}
(90)

= J d7% (x)dx = 0.
{xeQ:|u™-v"|=0}

If the set {x € Q : [ —+"| = 0} has a positive measure, then,
by (22),

lim

J v (" - vm)|2 dx
n=00 JixeQ:lum—vm|<1/n}

(o1
< d*! (|Vum|2 + |va|2) dx =0.

J-{xe0:|um—vm|:0}

Therefore, in both cases, the right hand side of inequality (88)
goes to 0 asn — ©o.
At the same time, then,

lim IQ d* (Vu™ = V") - Vg (" - V") g, (¢ (u”

—v"))dx = lim J 4 |V — vy
)) A=0J0,\,, A | |

3 (GO PACICAES )
< climj d*H|vu" - vy |(um -v")
A=0 J0,0\0,,

gl (¢ (" = v")|dx ©

A—0

i (J |d(a—l)/2 (um _ Vm)
2\ Q)

B 1/2
g =) ax)

1/2
< clim(J [d D v - va|]2dx>
D\

Since

lim J |d(“71)/2 W™ =" gl (¢ (" - vm))|2 dx
A=0Jo,\0,

< lim j @2 o =y gl (¢ " =) dx (93)
A—0 Jo

< J d“ldx <,
Q
and by (22)
lim J [d(“fl)/z |Vu™ - va”Z dx=0, (94)
A=0 Jo,\0,,
then we have

lim J- a* (vu™" - vv™)
A—0 J

(95)
Ve (" = v") g, (¢ (u" = v")) dx = 0.
Clearly,
lim lim J- G (P (W™ =™)) 9u-v) dx
n—00 10 Jq ot
(96)

= —lu-v|;.
==,
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Now, after letting A — 0, let n — oo in (85). Then

J | (x,t) —v(x,t)| dx
Q
< JQ |uo (x) = v (x)] dx + ¢ Lr’n lu—v|dz (97)

+cJ-tJ- | (x,t) — v(x,t)| dxdt.

0JQ

By Gronwall Lemma, the stability (23) is true. Theorem 5 is
proved. O

5. The BV Solution of Equation

Recently, Zhan considered the initial-boundary value prob-
lem of the following equation in [9]

g—l: = aii <a(u x,t) E?x, ) + div (b (u)), %)
(x,t) € Qr,
with
u(x,0) =uy(x), xeQ, (99)
u(x,t)=0, (x,t)e€ Zp x (0,T), (100)
where
2, ={xeQ:b 0)n(x) <0},
Al x,t) = L” a(s,x%1)ds, (10)

a(s,x,t)>0, a(0,x,£)=0

Definition 11. A function u € BV(Qp) N L™(Qy) is said
to be the entropy solution of equation (98) with the initial-
boundary values (99)-(100), if we have the following.

(1) There exists gi € LZ(QT), i=1,2,...,N, such that, for
any @(x,t) € C(l)(QT),

” @ (x,t) gi (x,t)dxdt
o (102)

=” o (x, t)\/m dxdt

where +a(u, x, t) is composite mean value of v/a(u, x, t).
(2) Forany ¢ € Cé(QT), @ > 0, for any k € R, and for any
small 7 > 0, u satisfies

”Q [1,7 (u-k) o, - B; w,k) g, + A, (1, x,t,k) Ag
N ) .
- ;Sn (u—k) |g’| (p] dxdt (103)

+” J a, (s, x,1)S, (s — k) dsg, dxdt > 0.

Discrete Dynamics in Nature and Society

(3) The boundary condition (100) is true in the sense of
trace. The initial value is true in the sense of

limj |t (x, 1) = uy (x)] dx = 0.
Q

lim (104)

The existence of the BV solution of equation (98) is by
considering the following regularized problem:

du _ 9 b (W)
e ax, <a(uxt)—)+sA le

X Xi (105)
in Qr,
with the initial-boundary conditions
u(x,0) =uy(x), xeQ, (106)
u(x,t)=0, (x,t)€0Qx(0,T). (107)
If there is a constant § > 0 such that
N+1
a(,x,t)— SZ( ) 0, (108)

s=1

where x,,; = t, then we have the following important

estimate.

Theorem 12 (see [9]). Let u, be the solution of (105) with (106)
and (107). Ifaxi = oa(u,x,t)/0x; and a, are all bounded,
assumption (108) is true; then

|grad u£|L1(Q) <c, (109)
where | grad ul* = Zfil IE)u/axil2 +|0u/ot)? and cis independ-
ent of €.

By the theorem, we can prove the existence of the entropy
solution u € BV(Q;) of equation (98) in the sense of
Definition 11.

Theorem 13 (see [9]). Suppose that A(s, x, ) is c, b.(s) is o
uy(x) € L(Q) N CY(Q), and there is a constant & > 0 such
that (108) is true. Then (98) with the initial condition (99) has
an entropy solution in the sense of Definition 11. Moreover, let
u, v be two solutions of (6) with the initial value uy(x), vy(x)
satisfying (7). Then

J | (x,t) — v (x, 1) SJ |u0 (x) =, (x)|dx
Q Q
(110)
—y|ds,
+L, |u—v|dZ

m

where Z,'n =00\%,, 2, = {x € 0Q): bi'(O)n,-(x) < 0}, and {n;}
is the inner normal vector of Q). In particular, if by(s) = 0, then
X, = 0; we have

J [ (x,t) —v(x,t)] < J |u0 (x) = vy (x)| dx. (111)
Q Q
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If (s) = 0, Theorem 13 implies that the solution of
(98) is controlled by the initial condition. In other words, no
boundary value condition is needed.

Now, let
a(u, x,t) = md*u™ . (112)
Then, forany 0 < u < M,
a, =0,
(113)
a, = mocd“_ldxium_l,
by the fact that [Vd|* = 1ae.in Q,
N+1 2
a(u,x,t) — 52 (axs)
s=1
(114)

_ mdtxum—l _ 6m2(x2d2(x—2u2(m—1)
= md*u"! (1 - Sm(xdafzumfl) .

Ifo > 2,m > 1, there exists 0 such that inequality (108) is true.
But, in general, the distance function d only is a continuous
function and is differential for almost everywhere in Q; then

a(s,x,t) = md*s™

(115)
does not belong to C?, so we can not have Theorems 12 and 13
directly. However, if we check the proof of Theorems 12 and 13,
only if we assume that Q) is a appropriately smooth such that
d (x) is integral on Q) then similar to the proof of Theorems
12 and 13, we can prove Theorem 4; we omit the details here.

Remark 14. 1If Q is a C* domain, then d(x) is differential near
the boundary 0Q, so d, (x) is a continuous function on 0Q
and is integral on 0Q.

Remark 15. If « > 2, m > 1, by Theorem 12, u € BV(Qy), we
can define the trace of u on the boundary 0Q.
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