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This paper studies the initial-boundary value problem of a porous medium equation with a convection term. If the equation is
degenerate on the boundary, then only a partial boundary condition is needed generally. The existence of the weak solution is
proved by the monotone convergent method. Moreover, according to the different boundary value conditions, the stability of the
solutions is studied. In some special cases, the stability can be proved without any boundary value condition.

1. Introduction

Consider the motion of the ideal barotropic gas through a
porous medium. Let 𝜌 be the gas density, 𝑉 the velocity,
and 𝑝 the pressure. The motion is governed by the mass
conservation law

𝜌𝑡 + div (𝜌𝑉) = 0, (1)

the Darcy law

𝑉 = −𝑘 (𝑥) ∇𝑝, (2)

and the equation of stage 𝑝 = 𝑃(𝜌). Here, 𝑘(𝑥) is a given
matrix. We usually assume that 𝑃(𝑠) = 𝜇𝑠𝛼 with 𝜇, 𝛼 = const.
The above laws then lead to a semilinear parabolic equation
for the density 𝜌:

𝜌𝑡 = 𝜇𝛼1 + 𝛼div (𝑘 (𝑥) ∇𝜌1+𝛼) . (3)

If 𝑘(𝑥) = 𝑎(𝑥)𝐼, where 𝑎(𝑥) is a function and 𝐼 is the unit
matrix, then (3) becomes

𝜌𝑡 = 𝜇𝛼1 + 𝛼div (𝑎 (𝑥) ∇𝜌1+𝛼) = 𝜇𝛼 div (𝑎 (𝑥) 𝜌𝛼∇𝜌) . (4)

Also, (4) can be regarded as the generalization of the nonlin-
ear heat equation

𝑢𝑡 = div (ℎ (𝑢, 𝑥) ∇𝑢) , (5)

where the function ℎ(𝑢, 𝑥) has the meaning of nonlinear
thermal conductivity dependent on the temperature 𝑢 =𝑢(𝑥, 𝑡). If 𝑎(𝑥) ≡ 1 in (4) or ℎ(𝑢, 𝑥) ≡ ℎ(𝑢) in (5), that is,

𝑢𝑡 = Δ𝑢𝑚, (6)

which is called the porous medium equation, there are
well-known monographs or textbooks devoting to the well-
posedness problem of (6); one can refer to [1–6] and the
references therein. If 𝑎(𝑥) ≥ 0 in (4) or ℎ(𝑢, 𝑥) depending
on 𝑥 in (5), the situation may be different from that of (6).
For example, if 𝑎(𝑥)|𝑥∈𝜕Ω = 0, we consider the equation

𝑢𝑡 = ∇ (𝑎 (𝑥) ∇𝑢) , (7)

and suppose that there are two classical solutions 𝑢 and V of
(7) with the initial values 𝑢0 and V0, respectively. Then it is
easy to show that

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)|2 𝑑𝑥 ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑥, (8)

which implies that the classical solutions (if there are) of (7)
are controlled by the initial value completely. In other words,
the stability of the classical solutions of (7) is true without any
boundary value condition. Yin andWang [7] also showed that
the non-Newtonian fluid equation with the type

𝑢𝑡 = div (𝑑𝛼 (𝑥) |∇𝑢|𝑝−2 ∇𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇) (9)
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has similar properties, where Ω is a bounded domain in 𝑅𝑁
with appropriately smooth boundary, 𝑑(𝑥) = dist(𝑥, 𝜕Ω), and𝛼 > 0 is a constant. Since the diffusion coefficient 𝑑𝛼(𝑥)
vanishes on the boundary, it seems that there is no heat flux
across the boundary. However, Yin andWang [7] showed that
the fact might not coincide with what we image. In fact, the
exponent 𝛼, which characterizes the vanishing ratio of the
diffusion coefficient near the boundary, does determine the
behavior of the heat transfer near the boundary. They proved
that, if 0 < 𝛼 < 𝑝 − 1, the solution of (9), 𝑢 ∈ 𝐻𝛾0 for some
constant 𝛾 > 1, and the trace of 𝑢 on the boundary can be
defined in the traditional way; then, in physics sense, there
is no heat flux across the boundary actually, while, if 𝛼 ≥𝑝 − 1, the existence and uniqueness of solutions were proved
without any boundary conditions, whichmeans that whether
there is heat flux across the boundary is uncertain. Later, Yin
and Wang [8] had shown that only a partial boundary value
condition matches up with the equation

𝜕𝑢𝜕𝑡 − div (𝑎 (𝑥) |∇𝑢|𝑝−2 ∇𝑢) − 𝑓𝑖 (𝑥)𝐷𝑖𝑢 + 𝑐 (𝑥, 𝑡) 𝑢
= 𝑔 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇) .

(10)

Inspired by Yin andWang [7, 8], we will study the porous
medium equation with a convection term,

𝑢𝑡 = div (𝑑𝛼∇𝑢𝑚) + 𝑁∑
𝑖=1

𝜕𝑏𝑖 (𝑢𝑚)𝜕𝑥𝑖 ,
(𝑥, 𝑡) ∈ 𝑄𝑇 = Ω × (0, 𝑇) ,

(11)

with the initial value

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω, (12)

and with the partial boundary condition

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝑚 × (0, 𝑇) , (13)

where Σ𝑚 is defined as follows. When 0 < 𝛼 < 1, Σ𝑚 = 𝜕Ω;
when 𝛼 ≥ 1, Σ𝑚 = {𝑥 ∈ 𝜕Ω : 𝑏󸀠𝑖 (0)𝑛𝑖(𝑥) < 0} and {𝑛𝑖} is the
inner normal vector of Ω. The expression of Σ𝑚 is derived in
[9], we do not repeat the details here.

We suppose that 𝑏𝑖(𝑠) is a 𝐶1 function, and
𝑑𝛼/2∇𝑢𝑚0 ∈ 𝐿2 (Ω) , 0 ≤ 𝑢0 ∈ 𝐿∞ (Ω) . (14)

Definition 1. A nonnegative function 𝑢(𝑥, 𝑡) is said to be the
weak solution of (11) with the initial value (12), if

𝑑𝛼/2 󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨 ∈ 𝐿∞ (0, 𝑇; 𝐿2 (Ω)) , 𝑢 ∈ 𝐿∞ (𝑄𝑇) ; (15)

for any function 𝜑 ∈ 𝐶1(𝑄𝑇), 𝜑|𝑡=𝑇 = 0, 𝜑|𝜕Ω = 0, there holds
∬
𝑄𝑇

(−𝜕𝜑𝜕𝑡 𝑢 + 𝑑𝛼∇𝑢𝑚∇𝜑)𝑑𝑥𝑑𝑡
+∬
𝑄𝑇

𝑏𝑖 (𝑢𝑚) 𝜑𝑥𝑖 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= ∫
Ω
𝑢0𝜑 (𝑥, 0) 𝑑𝑥,

(16)

and the initial condition is satisfied in the sense that

lim
𝑡→0

∫
Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 = 0. (17)

If 𝑢(𝑥, 𝑡) satisfies (13) in the sense of the trace in addition,
then we say it is a weak solution of the initial-boundary value
problem of (11).

First of all, we will study the well-posedness problem of
(11).

Theorem 2. If 𝑚 > 0, 2 > 𝛼 > 0, 𝑢0(𝑥) ≥ 0 satisfy (15),
then (11) with initial value (12) has a nonnegative solution.
Moreover, if 0 < 𝛼 < 1, then Σ𝑚 = 𝜕Ω; the solution is unique.

Then, we will study the stability of the solutions.

Theorem 3. If 𝑏𝑖(𝑢) ≡ 0, i.e. equation (11) is not with the
convection term, 𝑢 and V are two solutions of equation (11) with
the initial value 𝑢0(𝑥), V0(𝑥) respectively, 𝛼 > 1, then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| ≤ 𝑐 ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥. (18)

Since 𝑏𝑖(𝑢) ≡ 0 inTheorem 3, there are some regrets more
or less. For (11) itself, we cannot prove the same conclusion for
the time being. However, as compensation, we can consider a
more complicate equation than (11),

𝑢𝑡 = div (𝑑𝛼∇𝑢𝑚) + 𝑁∑
𝑖=1

𝜕𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡)𝜕𝑥𝑖 . (19)

Theorem4. Let 𝑢 and V be two solutions of (19) with the initial
values 𝑢0(𝑥), V0(𝑥), respectively, if 1 < 𝛼 < 2, and

󵄨󵄨󵄨󵄨𝑏𝑖 (⋅, 𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑥) , 𝑎 (𝑥)|𝑥∈𝜕Ω = 0; (20)

𝑎(𝑥) satisfies
∫
Ω
𝑎 (𝑥) 𝑑−𝛼𝑑𝑥 ⩽ 𝑐; (21)

then the stability of the weak solutions is true in the sense of
(18).

It ismore or less strange that the case𝛼 = 1 is not included
inTheorems 3 and 4.

At last, we will probe the stability of the weak solutions
based on the partial boundary value condition.

Theorem 5. Let 𝑢, V be two solutions of (11) with the initial
values 𝑢0(𝑥), V0(𝑥), respectively. If 2 > 𝛼 ≥ 1,𝑚 > 0,

∫
Ω
𝑑𝛼−1 󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨 < ∞,

∫
Ω
𝑑𝛼−1 󵄨󵄨󵄨󵄨∇V𝑚󵄨󵄨󵄨󵄨 < ∞,

(22)
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and the partial boundary condition (12) is satisfied in the sense
of trace, then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥
≤ 𝑐∫
Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 + ∫
Σ󸀠𝑚

󵄨󵄨󵄨󵄨𝑢𝑚 − V𝑚󵄨󵄨󵄨󵄨 𝑑Σ,
(23)

where Σ󸀠𝑚 = 𝜕Ω\Σ𝑚.
Theorem 6. If Ω is a 𝐶2 domain, 𝛼 ≥ 2, and 𝑚 ≥ 1, then (11)
with the initial value 𝑢0 and the partial boundary condition
(13) has a BV solution.Moreover, let 𝑢, V be two solutions of (11)
with the different initial values 𝑢0(𝑥), V0(𝑥), respectively. Then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥
+ ∫
Σ󸀠𝑚

|𝑢 − V| 𝑑Σ, (24)

where Σ󸀠𝑚 = 𝜕Ω\Σ𝑚, Σ𝑚 = {𝑥 ∈ 𝜕Ω : 𝑏󸀠𝑖 (0)𝑛𝑖(𝑥) < 0}, and {𝑛𝑖}
is the inner normal vector of Ω.

If 𝑏𝑖 ≡ 0, Theorem 6 has been included in Theorem 3,
while, if 𝑏𝑖 ≡ 0 is not true, thenTheorem6has its independent
sense. Such phenomena that the solution of a degenerate
parabolic equation may be free from the limitation of the
boundary condition also can be found in [7–14]. We will use
some ideas in [9, 14]. The uniqueness of the weak solutions
whenΣ𝑚 = 𝜕Ωhad been proved in [14]. Since [14]waswritten
in Chinese, for the completeness of the paper, we still give its
proof in what follows. In addition, how to obtain the stability
(23) without condition (22) is a very interesting problem. Last
but not least, roughly speaking, in this paper, we can show
that if 𝑜 < 𝛼 < 1 or 𝛼 ≥ 2, then the weak solution 𝑢 can be
defined the trace on the boundary in the traditional sense; it
is surprising that if 1 ≤ 𝛼 < 2, whether 𝑢 can be defined the
trace on the boundary is unknown for the time being.

2. The Well-Posedness Problem

We consider the following regularized problem:

𝑢𝑛𝑡 = div((𝑑 + 1𝑛)
𝛼 ∇𝑢𝑚𝑛 ) + 𝑁∑

𝑖=1

𝜕𝑏𝑖 (𝑢𝑚𝑛 )𝜕𝑥𝑖 ,
(𝑥, 𝑡) ∈ 𝑄𝑇,

𝑢𝑛 (𝑥, 𝑡) = 1𝑛 , (𝑥, 𝑡) ∈ 𝑆𝑇 = 𝜕Ω × (0, 𝑇) ,
𝑢𝑛 (𝑥, 0) = 𝑢0𝑛 (𝑥) = 𝑢0 (𝑥) + 1𝑛 , 𝑥 ∈ Ω.

(25)

According to the standard parabolic equation theory,
there is a weak solution

𝑢𝑛 ∈ 𝐿∞ (𝑄𝑇) ,
∇𝑢𝑚𝑛 ∈ 𝐿2 (𝑄𝑇) , (26)

which satisfies1𝑛 ⩽ 𝑢𝑛 (𝑥, 𝑡) ≤ 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩𝐿∞(Ω) + 1𝑛 , (𝑥, 𝑡) ∈ 𝑄𝑇, (27)

by the maximum principle.

Theorem 7. If 𝑚 > 0, 2 > 𝛼 > 0, and 𝑢0(𝑥) ≥ 0 satisfy (14),
then (11) with initial value (12) has a nonnegative solution.

Proof. First we suppose that 𝑢0 ∈ 𝐶∞0 (Ω) and 0 ≤ 𝑢0 ≤ 𝑀,
and consider the following normalized problem

𝑢𝑛𝑡 = div (𝑎𝑛 (𝑢𝑛) ∇𝑢𝑛) + 𝑁∑
𝑖=1

𝜕𝑏𝑖 (𝑢𝑚𝑛 )𝜕𝑥𝑖 ,
(𝑥, 𝑡) ∈ 𝑄𝑇,

𝑢𝑛 (𝑥, 𝑡) = 1𝑛 , (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,
𝑢𝑛 (𝑥, 0) = 𝑢0𝑛 (𝑥) , 𝑥 ∈ Ω.

(28)

Here, 𝑎𝑛(𝑢) ⩾ 𝑐(𝑛) > 0, and
𝑎𝑛 (𝑢) = 𝑚(𝑑 + 1𝑛)

𝛼 𝑢𝑚−1, if 𝑢 ∈ [1𝑛 ,𝑀 + 1𝑛] . (29)

Thus, the solution of the problem 𝑢𝑛 is also a solution of
problem (25). Moreover, by comparison theorem, we clearly
have

𝑢𝑛+1 (𝑥, 𝑡) ⩽ 𝑢𝑛 (𝑥, 𝑡) , (30)
which yields

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑡) . (31)

Now, we can prove that the limit function 𝑢 is a weak solution
of (6) with the initial value (8).

Multiplying both sides of the first equation in (25) by 𝜙 =𝑢𝑚𝑛 − (1/𝑛)𝑚 and integrating it over 𝑄𝑇, we have
∫
𝑄𝑇

𝑢𝑛𝑡 (𝑢𝑚𝑛 − (1𝑛)
𝑚)𝑑𝑥𝑑𝑡

= ∫
Ω
𝑢𝑛 (𝑢𝑚𝑛 − (1𝑛)

𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡=𝑇

𝑡=0

𝑑𝑥
−∬
𝑄𝑇

𝑢𝑛 𝜕𝜕𝑡 (𝑢𝑚𝑛 − (1𝑛)
𝑚)𝑑𝑥𝑑𝑡

= ∫
Ω
𝑢𝑛 (𝑥, 𝑇) (𝑢𝑚𝑛 (𝑥, 𝑇) − (1𝑛)

𝑚)𝑑𝑥
− ∫
Ω
𝑢0𝑛 (𝑥) (𝑢𝑚0𝑛 (𝑥) − (1𝑛)

𝑚)𝑑𝑥
−∬
𝑄𝑇

𝑚𝑢𝑚𝑛 𝑢𝑛𝑡𝑑𝑥 𝑑𝑡
= ∬
𝑄𝑇

div [(𝑑 + 1𝑛)
𝛼 ∇𝑢𝑚𝑛 ] (𝑢𝑚𝑛 − 1𝑛𝑚 ) 𝑑𝑥 𝑑𝑡

+ 𝑁∑
𝑖=1

∬
𝑄𝑇

𝜕𝑏𝑖 (𝑢𝑚𝑛 )𝜕𝑥𝑖 (𝑢𝑚𝑛 − (1𝑛)
𝑚)𝑑𝑥𝑑𝑡.

(32)
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By the fact

∬
𝑄𝑇

𝜕𝑏𝑖 (𝑢𝑚𝑛 )𝜕𝑥𝑖 (𝑢𝑚𝑛 − (1𝑛)
𝑚)𝑑𝑥𝑑𝑡

= −∬
𝑄𝑇

𝑏𝑖 (𝑢𝑚𝑛 ) 𝜕𝜕𝑥𝑖 (𝑢
𝑚
𝑛 − (1𝑛)

𝑚)𝑑𝑥𝑑𝑡
= −∬

𝑄𝑇

𝜕𝜕𝑥𝑖 ∫
𝑢𝑚𝑛

(1/𝑛)𝑚
𝑏𝑖 (𝑠) 𝑑𝑠 𝑑𝑥 𝑑𝑡 = 0,

(33)

then we have

(𝑚 + 1)∬
𝑄𝑇

(𝑑 + 1𝑛)
𝛼 󵄨󵄨󵄨󵄨∇𝑢𝑚𝑛 󵄨󵄨󵄨󵄨2 𝑑𝑥 𝑑𝑡

= ∫
Ω
(𝑢𝑚0𝑛 (𝑥) − 1𝑛𝑚 ) 𝑢0𝑛 (𝑥) 𝑑𝑥

− ∫
Ω
𝑢𝑛 (𝑥, 𝑇) (𝑢𝑚𝑛 (𝑥, 𝑇) − 1𝑛𝑚 )𝑑𝑥

+∬
𝑄𝑇

𝜕𝑏𝑖 (𝑢𝑚𝑛 )𝜕𝑥𝑖 (𝑢𝑚𝑛 − (1𝑛)
𝑚)𝑑𝑥𝑑𝑡

⩽ ∫
Ω
(𝑢𝑚0 (𝑥) + 1𝑛)

𝑚+1 𝑑𝑥 + 1𝑛 (𝑀 + 1𝑛)∫Ω 𝑑𝑥.

(34)

Thus, we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑑 + 1𝑛)

𝛼/2 ∇𝑢𝑚𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿2(𝑄𝑇) ≤ 𝑐. (35)

By choosing a subsequence, we can assume that

(𝑑 + 1𝑛)
𝛼/2 ∇𝑢𝑚𝑛 ⇀ 𝜁, (36)

weakly in 𝐿2. We need to prove that

𝜁 = 𝑑𝛼/2∇𝑢𝑚. (37)

For any ∀𝜓 ∈ 𝐶∞0 (Ω), denoting that 𝑑𝑛 ≜ 𝑑+1/𝑛, we have
∬
𝑄𝑇

𝑑𝛼/2𝑛 ∇𝑢𝑚𝑛 ⋅ 𝜓 𝑑𝑥 𝑑𝑡
= ∬
𝑄𝑇

∇ (𝑑𝛼/2𝑛 𝑢𝑚𝑛 ) ⋅ 𝜓 𝑑𝑥 𝑑𝑡
− 𝛼2 ∬

𝑄𝑇

𝑑𝛼/2−1𝑛 ∇𝑑 ⋅ 𝑢𝑚𝑛 𝜓𝑑𝑥𝑑𝑡
= −∬

𝑄𝑇

𝑑𝛼/2𝑛 𝑢𝑚𝑛 ⋅ ∇𝜓 𝑑𝑥 𝑑𝑡
− 𝛼2 ∬

𝑄𝑇

𝑑𝛼/2−1𝑛 ∇𝑑 ⋅ 𝑢𝑚𝑛 𝜓𝑑𝑥𝑑𝑡.

(38)

Let 𝑛 → ∞. The left hand side is

lim
𝑛→∞

∬
𝑄𝑇

𝑑𝛼/2𝑛 ∇𝑢𝑚𝑛 ⋅ 𝜓 𝑑𝑥 𝑑𝑡 = ∬
𝑄𝑇

𝜁𝜓 𝑑𝑥 𝑑𝑡. (39)

while on the right hand side, by

󵄨󵄨󵄨󵄨∇𝑑 ⋅ 𝑢𝑚𝑛 󵄨󵄨󵄨󵄨 ≤ 𝑐 |∇𝑑| ⋅ 󵄨󵄨󵄨󵄨𝑢𝑚𝑛 󵄨󵄨󵄨󵄨 ≤ 𝑐 (𝑀 + 1𝑛)
𝑚 ≤ 𝑐, (40)

and by the condition 0 < 𝛼 < 2,
∫
Ω
𝑑𝛼/2−1𝑛 𝑑𝑥 ≤ 𝑐, (41)

using the control convergent theorem,
𝛼2 lim
𝑛→∞

∬
𝑄𝑇

𝑑𝛼/2−1𝑛 ∇𝑑 ⋅ 𝑢𝑚𝑛 ⋅ 𝜓 𝑑𝑥 𝑑𝑡
= 𝛼2 ∬

𝑄𝑇

𝑑𝛼/2−1∇𝑑 ⋅ 𝑢𝑚𝜓𝑑𝑥𝑑𝑡,
(42)

we have

lim
𝑛→∞

[−∬
𝑄𝑇

𝑑𝛼/2𝑛 𝑢𝑚𝑛 ⋅ ∇𝜓 𝑑𝑥 𝑑𝑡
− 𝛼2 ∬

𝑄𝑇

𝑑𝛼/2−1𝑛 ∇𝑑 ⋅ 𝑢𝑚𝑛 𝜓𝑑𝑥𝑑𝑡] = −∬
𝑄𝑇

𝑑𝛼/2𝑢𝑚

⋅ ∇𝜓 𝑑𝑥 𝑑𝑡 − 𝛼2 ∬
𝑄𝑇

𝑑𝛼/2−1∇𝑑 ⋅ 𝑢𝑚𝜓𝑑𝑥𝑑𝑡
= ∬
𝑄𝑇

𝑑𝛼/2∇𝑢𝑚 ⋅ 𝜓 𝑑𝑥 𝑑𝑡.

(43)

Thus we obtain (37).
At the same time, since 𝑏𝑖 ∈ 𝐶1, by (31), we have

lim
𝑛→∞

𝑏𝑖 (𝑢𝑚𝑛 ) = 𝑏𝑖 (𝑢𝑚) . (44)

Thus, 𝑢 is a solution of (11) with the initial value (12).
If 𝑢0 only satisfies (14), by considering the problem of (25)

with the initial value 𝑢0𝜀 which is the mollified function of𝑢0, then we can get the conclusion by a process of limitation.
Certainly, the solution 𝑢(𝑥, 𝑡) generally is not continuous at𝑡 = 0, but satisfies (15) and (17). Theorem 7 is proved.

Lemma 8. Let 𝑢0 satisfy (14). If 0 < 𝛼 < 1 and 𝑢 is a solution
of (11) with the initial value (12), then there exists a constant𝛾 > 1 such that

∬
𝑄𝑇

󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨𝛾 𝑑𝑥 𝑑𝑡 ≤ 𝑐. (45)

Proof. Since 𝛼 < 1, there exists constant 𝛽 ∈ (𝛼, 1), 𝛽 < (𝛼 +1)/2 such that 2 − 𝛼/𝛽 > 1. Therefore, there exists 𝛾 ∈ (1, 2 −𝛼/𝛽) such that 𝛽𝛾 < 1. Therefore,

∬
𝑄𝑇

󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨𝛾 𝑑𝑥 𝑑𝑡
= ∬
{(𝑥,𝑡)∈𝑄𝑇;𝑑

𝛽|∇𝑢𝑚|⩽1}

󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨𝛾 𝑑𝑥 𝑑𝑡
+∬
{(𝑥,𝑡)∈𝑄𝑇;𝑑

𝛽|∇𝑢𝑚|>1}

󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨𝛾 𝑑𝑥 𝑑𝑡
⩽ ∬
𝑄𝑇

𝑑−𝛽𝛾𝑑𝑥 𝑑𝑡 +∬
𝑄𝑇

𝑑𝛼 󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨𝛼/𝛽+𝛾 𝑑𝑥 𝑑𝑡
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⩽ ∬
𝑄𝑇

𝑑−𝛽𝛾𝑑𝑥 𝑑𝑡 +∬
𝑄𝑇

𝑑𝛼 (1 + 󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨2) 𝑑𝑥 𝑑𝑡
⩽ 𝑐.

(46)

Thus 𝑢𝑚 can be defined the trace on the boundary in the
traditional way. By the definition of the trace, we also know
that 𝑢 can be defined as the trace on the boundary in the
traditional way. The lemma is proved.

Theorem 9. If 𝑚 > 0, 1 > 𝛼 > 0 and 𝑢0(𝑥) ≥ 0 satisfies (14),
then Σ𝑚 = 𝜕Ω, and the solution of the initial-boundary value
problem (11)–(13) is unique.

Proof. First of all, by Theorem 7 and Lemma 8, there is a
nonnegative solution of the initial-boundary value problem
(11)–(13). Then, we prove its uniqueness. Let 𝑢, V be two
solutions of equation (11) with

𝑢 (𝑥, 0) = V (𝑥, 0) ,
𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) . (47)

For all 0 ≤ 𝜑 ∈ 𝐶10(𝑄𝑇),
∬
𝑄𝑇

𝜑𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 𝑑𝑡
= −∬

𝑄𝑇

𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜑 𝑑𝑥 𝑑𝑡

− 𝑁∑
𝑖=1

∬
𝑄𝑇

[𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)] 𝜑𝑥𝑖𝑑𝑥 𝑑𝑡.
(48)

For any given positive integer 𝑛, let 𝑔𝑛(𝑠) = ∫𝑠
0
ℎ𝑛(𝜏)𝑑𝜏,ℎ𝑛(𝑠) = 2𝑛(1 − 𝑛|𝑠|)+. Then ℎ𝑛(𝑠) ∈ 𝐶(R), and we have

ℎ𝑛 (𝑠) ≥ 0,
󵄨󵄨󵄨󵄨𝑠ℎ𝑛 (𝑠)󵄨󵄨󵄨󵄨 ≤ 1,
󵄨󵄨󵄨󵄨𝑔𝑛 (𝑠)󵄨󵄨󵄨󵄨 ≤ 1,

lim
𝑛→∞

𝑔𝑛 (𝑠) = sgn 𝑠,
lim
𝑛→∞

𝑠𝑔󸀠𝑛 (𝑠) = 0.

(49)

Since 0 < 𝛼 < 1, by Lemma 8, we can define the traces
of 𝑢, V on the boundary. By a process of limit, we can choose𝑔𝑛(𝑢𝑚 − V𝑚) as the test function; then

∫
Ω
𝑔𝑛 (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 + ∫

Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚)

⋅ ∇ (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥
+ 𝑁∑
𝑖=1

∬
𝑄𝑇

[𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)] (𝑢𝑚 − V𝑚)𝑥𝑖
⋅ 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥 𝑑𝑡 = 0.

(50)

Moreover, we can prove that

lim
𝑛→∞

∫
Ω
(𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚)

⋅ (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥 = 0. (51)

In detail, the limitation (51) is established by the following
calculations.

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω (𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛} [𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)] 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚)
⋅ (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ 𝑐 ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

= 𝑐∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−𝛼/2 𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨𝑑𝛼/2 (𝑢𝑚 − V𝑚)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
⩽ 𝑐 [∫

{𝑥∈Ω:|𝑢−V|<1/𝑛}
(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−𝛼/2 𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
2 𝑑𝑥]

1/2

⋅ [∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑𝛼 󵄨󵄨󵄨󵄨∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨2 𝑑𝑥]
1/2 .

(52)

Since 0 < 𝛼 < 1,
∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−𝛼/2 𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
2 𝑑𝑥

⩽ 𝑐∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑−𝛼 (𝑥) 𝑑𝑥 ⩽ 𝑐∫
Ω
𝑑−𝛼𝑑𝑥 ⩽ 𝑐.

(53)

In (52), let 𝑛 → ∞. If {𝑥 ∈ Ω : |𝑢𝑚 − V𝑚| = 0} is a set with0measure, by 0 < 𝛼 < 1, we have
lim
𝑛→∞

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑−𝛼 (𝑥) 𝑑𝑥
= ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|=0}

𝑑−𝛼 (𝑥) 𝑑𝑥 = 0.
(54)

If the set {𝑥 ∈ Ω : |𝑢𝑚−V𝑚| = 0} has a positive measure, then,

lim
𝑛→∞

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑𝛼 󵄨󵄨󵄨󵄨∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨2 𝑑𝑥
= ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|=0}

𝑑𝛼 󵄨󵄨󵄨󵄨∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨2 𝑑𝑥 = 0.
(55)

Therefore, in both cases, the right hand side of inequality (52)
goes to 0 as 𝑛 → ∞.
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Clearly,

lim
𝑛→∞

∫
Ω
𝑔𝑛 (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= ∫
Ω
sgn (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= ∫
Ω
sgn (𝑢 − V) 𝜕 (𝑢 − V)𝜕𝑡 = 𝑑𝑑𝑡 ‖𝑢 − V‖1 .

(56)

Now, let 𝑛 → ∞ in (50). Then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 ⩽ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥
= 0.

(57)

We have the conclusion.

ByTheorems 7 and 9, we clearly have the following.

Corollary 10. Theorem 2 is true.

3. The Stability without the Boundary
Value Condition

Consider a simpler equation than (11).

𝑢𝑡 = div (𝑑𝛼∇𝑢𝑚) , (𝑥, 𝑡) ∈ 𝑄𝑇 = Ω × (0, 𝑇) , (58)

with the initial value (12), but without any boundary value
condition. For a small positive constant 𝜆 > 0, let

Ω𝜆 = {𝑥 ∈ Ω : 𝑑 (𝑥) = dist (𝑥, 𝜕Ω) > 𝜆} , (59)

and let

𝜙 (𝑥) =
{{{{{{{{{

1, if 𝑥 ∈ Ω2𝜆,1𝜆 (𝑑 (𝑥) − 𝜆) , 𝑥 ∈ Ω𝜆\Ω2𝜆
0, if 𝑥 ∈ Ω\Ω𝜆.

(60)

Proof of Theorem 3. Suppose 𝑢0, V0 only satisfy (7), 𝛼 > 1. Let𝑢, V be two solutions of (58) with the initial-boundary values𝑢0, V0, respectively. For all 0 ≤ 𝜑 ∈ 𝐶10(𝑄𝑇),
∬
𝑄𝑇

𝜑𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 𝑑𝑡
= −∬

𝑄𝑇

𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜑 𝑑𝑥 𝑑𝑡.
(61)

By a process of limit, we can choose 𝜙𝑔𝑛(𝑢𝑚 − V𝑚) as the
test function; then

∫
Ω
𝜙 (𝑥) 𝑔𝑛 (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥
+ ∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚)

⋅ 𝜙∇ (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥
+ ∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙𝑔𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥 = 0.

(62)

Clearly, we have

∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ 𝜙∇ (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥
≥ 0,

lim
𝑛→∞

lim
𝜆→0

∫
Ω
𝜙 (𝑥) 𝑔𝑛 (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= lim
𝑛→∞

∫
Ω
𝑔𝑛 (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= ∫
Ω
sgn (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= ∫
Ω
sgn (𝑢 − V) 𝜕 (𝑢 − V)𝜕𝑡 = 𝑑𝑑𝑡 ‖𝑢 − V‖1 .

(63)

As for the term

∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙𝑔𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥, (64)

we have

lim
𝜆→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω 𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙𝑔𝑛 (𝑢𝑚 − V𝑚) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (∫
Ω
𝑑𝛼 (󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨∇V𝑚󵄨󵄨󵄨󵄨2) 𝑑𝑥)1/2

⋅ (∫
Ω𝜆\Ω2𝜆

𝑑𝛼 󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨2 𝑑𝑥)
1/2 = 0.

(65)

The last equality of (65) is due to that since 𝛼 > 1, we have
lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

𝑑𝛼 󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨2 𝑑𝑥 = 4 lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

𝜆𝛼 |∇𝑑|2𝜆2 𝑑𝑥
≤ 𝑐lim
𝜆→0

𝜆𝛼−1 = 0.
(66)

Now, after letting 𝜆 → 0, let 𝑛 → ∞ in (62). Then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 ⩽ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥. (67)

Theorem 3 is proved.

Consider a more complicated equation than (11).

𝑢𝑡 = div (𝑑𝛼∇𝑢𝑚) + 𝑁∑
𝑖=1

𝜕𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡)𝜕𝑥𝑖 ,
(𝑥, 𝑡) ∈ 𝑄𝑇 = Ω × (0, 𝑇) ,

(68)

with the initial value (12), but without any boundary value
condition.
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Proof of Theorem 4. Suppose 𝑢0, V0 only satisfy (7), 1 < 𝛼 <2. Let 𝑢, V be two solutions of equation (11) with the initial-
boundary values 𝑢0, V0, respectively. For all 0 ≤ 𝜑 ∈ 𝐶10(𝑄𝑇),

∬
𝑄𝑇

𝜑𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 𝑑𝑡
= −∬

𝑄𝑇

𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜑 𝑑𝑥 𝑑𝑡

− 𝑁∑
𝑖=1

∬
𝑄𝑇

[𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)] 𝜑𝑥𝑖𝑑𝑥 𝑑𝑡.

(69)

By a process of limit, we can choose 𝑔𝑛(𝜙(𝑢𝑚−V𝑚)) as the
test function; then

∫
Ω
𝑔𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 + ∫

Ω
𝑑𝛼 (∇𝑢𝑚

− ∇V𝑚) ⋅ 𝜙∇ (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥
+ ∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝑢𝑚

− V𝑚) 𝑑𝑥
+ 𝑁∑
𝑖=1

∬
𝑄𝑇

[𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)]
⋅ [𝜙𝑥𝑖 (𝑢𝑚 − V𝑚) + 𝜙 (𝑢𝑚 − V𝑚)𝑥𝑖]
⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥 𝑑𝑡 = 0.

(70)

Let us analyze every term in the left hand side of (70). For the
first term, we clearly have

lim
𝑛→∞

lim
𝜆→0

∫
Ω
𝑔𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= lim
𝑛→∞

∫
Ω
𝑔𝑛 (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= ∫
Ω
sgn (𝑢𝑚 − V𝑚) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= ∫
Ω
sgn (𝑢 − V) 𝜕 (𝑢 − V)𝜕𝑡 = 𝑑𝑑𝑡 ‖𝑢 − V‖1 .

(71)

For the second term, we have

∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚)
⋅ 𝜙∇ (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥 ≥ 0.

(72)

For the third term, since

lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

󵄨󵄨󵄨󵄨󵄨𝑑𝛼/2−1 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ lim
𝜆→0

∫
Ω
𝑑𝛼−2 󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥

≤ ∫
Ω
𝑑𝛼−2𝑑𝑥 ≤ 𝑐,

(73)

by 0 > 𝛼 − 2 > −1, we have
lim
𝜆→0

∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙 (𝑢𝑚 − V𝑚)

⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥
= lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

𝑐𝜆𝑑𝛼 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚)
⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑐
⋅ lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

𝑑𝛼−1 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚)
⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑐
⋅ lim
𝜆→0

(∫
Ω𝜆\Ω2𝜆

[𝑑𝛼/2 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨]2 𝑑𝑥)
1/2

⋅ (∫
Ω𝜆\Ω2𝜆

󵄨󵄨󵄨󵄨󵄨𝑑𝛼/2−1 (𝑢𝑚 − V𝑚)

⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥)
1/2 = 0,

(74)

by lim𝑛→∞𝑔󸀠𝑛(𝑠)𝑠 = 0.
Now, we deal with the terms related to the convection

function 𝑏𝑖 in (70). In the first place, by (20),󵄨󵄨󵄨󵄨𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 2𝑎 (𝑥) ; (75)

according to the definition of the trace, we have

lim
𝜆→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω (𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))
⋅ (𝑢𝑚 − V𝑚) 𝜙𝑥𝑖 (𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ lim

𝜆→0

𝑐𝜆 ∫
Ω𝜆\Ω2𝜆

𝑎 (𝑥)
⋅ 󵄨󵄨󵄨󵄨𝑢𝑚 − V𝑚󵄨󵄨󵄨󵄨 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) dx ≤ 𝑐∫

𝜕Ω
𝑎 (𝑥) 𝑑Σ

= 0.

(76)

Moreover, we can prove that

lim
𝑛→∞

lim
𝜆→0

∫
Ω
(𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡))

⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) (𝑢𝑚 − V𝑚)𝑥𝑖 𝜙 (𝑥) 𝑑𝑥 = 0.
(77)

In detail, the limitation (77) is established by the following
calculations.
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lim
𝜆→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω (𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) (𝑢𝑚 − V𝑚)𝑥𝑖 𝜙 (𝑥) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω (𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛} [𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)] 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑐 ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

= 𝑐∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−𝛼/2 𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑑𝛼/2 (𝑢𝑚 − V𝑚)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

⩽ 𝑐 [∫
{𝑥∈Ω:|𝑢−V|<1/𝑛}

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−𝛼/2 𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
2 𝑑𝑥]

1/2

⋅ [∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨𝑑𝛼/2∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥]
1/2 .

(78)

By (21),

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−𝛼/2

⋅ 𝑏𝑖 (𝑢𝑚, 𝑥, 𝑡) − 𝑏𝑖 (V𝑚, 𝑥, 𝑡)𝑢𝑚 − V𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
2 𝑑𝑥

⩽ 𝑐∫
Ω
𝑎 (𝑥) 𝑑−𝛼𝑑𝑥 ⩽ 𝑐.

(79)

Let 𝑛 → ∞ in (78). If {𝑥 ∈ Ω : |𝑢𝑚 − V𝑚| = 0} is a set with 0
measure, then

lim
𝑛→∞

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑎 (𝑥) 𝑑−𝛼𝑑𝑥
= ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|=0}

𝑎 (𝑥) 𝑑−𝛼𝑑𝑥 = 0.
(80)

If the set {𝑥 ∈ Ω : |𝑢𝑚−V𝑚| = 0} has a positive measure, then,

lim
𝑛→∞

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑𝛼 󵄨󵄨󵄨󵄨∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨2 𝑑𝑥
= ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|=0}

𝑑𝛼 󵄨󵄨󵄨󵄨∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨2 𝑑𝑥 = 0.
(81)

Therefore, in both cases, the right hand side of inequality (74)
goes to 0 as 𝑛 → ∞.

At last, Now, after letting 𝜆 → 0, let 𝑛 → ∞ in (71). By
(72), (73), (74), (76), (77), (78), (79), (80), and (81), then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 ⩽ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥. (82)

Theorem 4 is proved.

4. The Stability Based on the Partial Boundary
Value Condition

In this section, we will prove Theorem 5; the proof is similar
as that of Theorem 4

Proof of Theorem 5. Suppose 𝑢0, V0 only satisfy (7), 1 ≤ 𝛼 <2. Let 𝑢, V be two solutions of (11) with the initial-boundary
values 𝑢0, V0, respectively, and with the same homogeneous
partial boundary value condition

𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝑚 × (0, 𝑇) , (83)

For all 0 ≤ 𝜑 ∈ 𝐶10(𝑄𝑇),

∬
𝑄𝑇

𝜑𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 𝑑𝑡
= −∬

𝑄𝑇

𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜑 𝑑𝑥 𝑑𝑡

− 𝑁∑
𝑖=1

∬
𝑄𝑇

[𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)] 𝜑𝑥𝑖𝑑𝑥 𝑑𝑡.
(84)

By a process of limit, we can choose 𝑔𝑛(𝜙(𝑢𝑚−V𝑚)) as the
test function as inTheorem 4; then

∫
Ω
𝑔𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥 + ∫

Ω
𝑑𝛼 (∇𝑢𝑚

− ∇V𝑚) ⋅ 𝜙∇ (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥
+ ∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝑢𝑚

− V𝑚) 𝑑𝑥 + 𝑁∑
𝑖=1

∬
𝑄𝑇

[𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)]
⋅ [𝜙𝑥𝑖 (𝑢𝑚 − V𝑚) + 𝜙 (𝑢𝑚 − V𝑚)𝑥𝑖]
⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥 𝑑𝑡 = 0.

(85)
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Let us analyze every term in (85). By |𝑏𝑖(𝑢𝑚)−𝑏𝑖(V𝑚)| ≤ 𝑐|𝑢𝑚−
V𝑚| and then according to the definition of the trace, by (83),
we have

lim
𝜆→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω [𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)] 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) (𝑢𝑚 − V𝑚)
⋅ 𝜙𝑥𝑖 (𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ lim

𝜆→0

𝑐𝜆 ∫
Ω𝜆\Ω2𝜆

󵄨󵄨󵄨󵄨𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨󵄨 dx ≤ 𝑐∫

𝜕Ω

󵄨󵄨󵄨󵄨𝑏𝑖 (𝑢𝑚)
− 𝑏𝑖 (V𝑚)󵄨󵄨󵄨󵄨 𝑑Σ ≤ 𝑐∫

Σ󸀠𝑚

󵄨󵄨󵄨󵄨𝑢𝑚 − V𝑚󵄨󵄨󵄨󵄨 𝑑Σ.

(86)

Moreover, we can prove that

lim
𝑛→∞

lim
𝜆→0

∫
Ω
(𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))

⋅ (𝑢𝑚 − V𝑚)𝑥𝑖 𝜙 (𝑥) 𝑑𝑥 = 0. (87)

In detail, the limitation (87) is established by the following
calculations.

lim
𝜆→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω (𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) (𝑢𝑚 − V𝑚)𝑥𝑖
⋅ 𝜙 (𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω (𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)) 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚)
⋅ (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛} [𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)]

⋅ 𝑔󸀠𝑛 (𝑢𝑚 − V𝑚) (𝑢𝑚 − V𝑚)𝑥𝑖 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑐 ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

= 𝑐∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−(𝛼−1)/2 𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨𝑑(𝛼−1)/2 (𝑢𝑚 − V𝑚)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
⩽ 𝑐 [∫

{𝑥∈Ω:|𝑢−V|<1/𝑛}
(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−(𝛼−1)/2 𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
2 𝑑𝑥]

1/2

⋅ [∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

󵄨󵄨󵄨󵄨󵄨𝑑𝛼−1∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥]
1/2 .

(88)

Since 1 ≤ 𝛼 < 2,
∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑
−(𝛼−1)/2 𝑏𝑖 (𝑢𝑚) − 𝑏𝑖 (V𝑚)𝑢𝑚 − V𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
2 𝑑𝑥

⩽ 𝑐∫
Ω
𝑑1−𝛼𝑑𝑥 ⩽ 𝑐.

(89)

In (88), let 𝑛 → ∞. If {𝑥 ∈ Ω : |𝑢𝑚 − V𝑚| = 0} is a set with 0
measures, then

lim
𝑛→∞

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑1−𝛼 (𝑥) 𝑑𝑥
= ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|=0}

𝑑1−𝛼 (𝑥) 𝑑𝑥 = 0.
(90)

If the set {𝑥 ∈ Ω : |𝑢𝑚−V𝑚| = 0} has a positive measure, then,
by (22),

lim
𝑛→∞

∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|<1/𝑛}

𝑑𝛼−1 󵄨󵄨󵄨󵄨∇ (𝑢𝑚 − V𝑚)󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ ∫
{𝑥∈Ω:|𝑢𝑚−V𝑚|=0}

𝑑𝛼−1 (󵄨󵄨󵄨󵄨∇𝑢𝑚󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨∇V𝑚󵄨󵄨󵄨󵄨2) 𝑑𝑥 = 0.
(91)

Therefore, in both cases, the right hand side of inequality (88)
goes to 0 as 𝑛 → ∞.

At the same time, then,

lim
𝜆→0

∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚) ⋅ ∇𝜙 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚

− V𝑚)) 𝑑𝑥 = lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

𝑐𝜆𝑑𝛼 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝑐 lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

𝑑𝛼−1 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(𝑢𝑚 − V𝑚)
⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝑐 lim
𝜆→0

(∫
Ω𝜆\Ω2𝜆

[𝑑(𝛼−1)/2 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨]2 𝑑𝑥)
1/2

⋅ (∫
Ω𝜆\Ω2𝜆

󵄨󵄨󵄨󵄨󵄨𝑑(𝛼−1)/2 (𝑢𝑚 − V𝑚)

⋅ 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥)
1/2 .

(92)

Since

lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

󵄨󵄨󵄨󵄨󵄨𝑑(𝛼−1)/2 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ lim
𝜆→0

∫
Ω

󵄨󵄨󵄨󵄨󵄨𝑑(𝛼−1)/2 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ ∫
Ω
𝑑𝛼−1𝑑𝑥 ≤ 𝑐,

(93)

and by (22)

lim
𝜆→0

∫
Ω𝜆\Ω2𝜆

[𝑑(𝛼−1)/2 󵄨󵄨󵄨󵄨∇𝑢𝑚 − ∇V𝑚󵄨󵄨󵄨󵄨]2 𝑑𝑥 = 0, (94)

then we have

lim
𝜆→0

∫
Ω
𝑑𝛼 (∇𝑢𝑚 − ∇V𝑚)

⋅ ∇𝜙 (𝑢𝑚 − V𝑚) 𝑔󸀠𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝑑𝑥 = 0.
(95)

Clearly,

lim
𝑛→∞

lim
𝜆→0

∫
Ω
𝑔𝑛 (𝜙 (𝑢𝑚 − V𝑚)) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥

= 𝑑𝑑𝑡 ‖𝑢 − V‖1 .
(96)
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Now, after letting 𝜆 → 0, let 𝑛 → ∞ in (85). Then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥
⩽ ∫
Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 + 𝑐∫
𝜎󸀠𝑚

|𝑢 − V| 𝑑Σ
+ 𝑐∫𝑡
0
∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 𝑑𝑡.

(97)

By Gronwall Lemma, the stability (23) is true. Theorem 5 is
proved.

5. The BV Solution of Equation

Recently, Zhan considered the initial-boundary value prob-
lem of the following equation in [9]

𝜕𝑢𝜕𝑡 = 𝜕𝜕𝑥𝑖 (𝑎 (𝑢, 𝑥, 𝑡)
𝜕𝑢𝜕𝑥𝑖) + div (𝑏 (𝑢)) ,

(𝑥, 𝑡) ∈ 𝑄𝑇,
(98)

with

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω, (99)

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝑝 × (0, 𝑇) , (100)

where

Σ𝑝 = {𝑥 ∈ Ω : 𝑏󸀠𝑖 (0) 𝑛𝑖 (𝑥) < 0} ,
𝐴 (𝑢, 𝑥, 𝑡) = ∫𝑢

0
𝑎 (𝑠, 𝑥, 𝑡) 𝑑𝑠,

𝑎 (𝑠, 𝑥, 𝑡) ≥ 0, 𝑎 (0, 𝑥, 𝑡) = 0.
(101)

Definition 11. A function 𝑢 ∈ BV(𝑄𝑇) ∩ 𝐿∞(𝑄𝑇) is said
to be the entropy solution of equation (98) with the initial-
boundary values (99)-(100), if we have the following.

(1) There exists 𝑔𝑖 ∈ 𝐿2(𝑄𝑇), 𝑖 = 1, 2, . . . , 𝑁, such that, for
any 𝜑(𝑥, 𝑡) ∈ 𝐶10(𝑄𝑇),

∬
𝑄𝑇

𝜑 (𝑥, 𝑡) 𝑔𝑖 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= ∬
𝑄𝑇

𝜑 (𝑥, 𝑡) ̂√𝑎(𝑢, 𝑥, 𝑡) 𝜕𝑢𝜕𝑥𝑖 𝑑𝑥 𝑑𝑡,
(102)

where ̂√𝑎(𝑢, 𝑥, 𝑡) is composite mean value of√𝑎(𝑢, 𝑥, 𝑡).
(2) For any 𝜑 ∈ 𝐶20(𝑄𝑇), 𝜑 ≥ 0, for any 𝑘 ∈ R, and for any

small 𝜂 > 0, 𝑢 satisfies

∬
𝑄𝑇

[𝐼𝜂 (𝑢 − 𝑘) 𝜑𝑡 − 𝐵𝑖𝜂 (𝑢, 𝑘) 𝜑𝑥𝑖 + 𝐴𝜂 (𝑢, 𝑥, 𝑡, 𝑘) Δ𝜑

− 𝑁∑
𝑖=1

𝑆󸀠𝜂 (𝑢 − 𝑘) 󵄨󵄨󵄨󵄨󵄨𝑔𝑖󵄨󵄨󵄨󵄨󵄨2 𝜑]𝑑𝑥𝑑𝑡
+∬
𝑄𝑇

∫𝑢
𝑘
𝑎𝑥𝑖 (𝑠, 𝑥, 𝑡) 𝑆𝜂 (𝑠 − 𝑘) 𝑑𝑠𝜑𝑥𝑖𝑑𝑥 𝑑𝑡 ≥ 0.

(103)

(3) The boundary condition (100) is true in the sense of
trace. The initial value is true in the sense of

lim
𝑡→0

∫
Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 = 0. (104)

The existence of the BV solution of equation (98) is by
considering the following regularized problem:

𝜕𝑢𝜕𝑡 = 𝜕𝜕𝑥𝑖 (𝑎 (𝑢, 𝑥, 𝑡)
𝜕𝑢𝜕𝑥𝑖) + 𝜀Δ𝑢 + 𝑁∑

𝑖=1

𝜕𝑏𝑖 (𝑢)𝜕𝑥𝑖 ,
in 𝑄𝑇,

(105)

with the initial-boundary conditions

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω, (106)

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) . (107)

If there is a constant 𝛿 > 0 such that

𝑎 (⋅, 𝑥, 𝑡) − 𝛿𝑁+1∑
𝑠=1

(𝑎𝑥𝑠)2 ≥ 0, (108)

where 𝑥𝑁+1 = 𝑡, then we have the following important
estimate.

Theorem 12 (see [9]). Let 𝑢𝜀 be the solution of (105) with (106)
and (107). If 𝑎𝑥𝑖 = 𝜕𝑎(𝑢, 𝑥, 𝑡)/𝜕𝑥𝑖 and 𝑎𝑡 are all bounded,
assumption (108) is true; then

󵄨󵄨󵄨󵄨grad 𝑢𝜀󵄨󵄨󵄨󵄨𝐿1(Ω) ≤ 𝑐, (109)

where | grad 𝑢|2 = ∑𝑁𝑖=1 |𝜕𝑢/𝜕𝑥𝑖|2+|𝜕𝑢/𝜕𝑡|2 and 𝑐 is independ-
ent of 𝜀.

By the theorem, we can prove the existence of the entropy
solution 𝑢 ∈ BV(𝑄𝑇) of equation (98) in the sense of
Definition 11.

Theorem 13 (see [9]). Suppose that𝐴(𝑠, 𝑥, 𝑡) is 𝐶3, 𝑏𝑖(𝑠) is 𝐶2,𝑢0(𝑥) ∈ 𝐿∞(Ω) ∩ 𝐶1(Ω), and there is a constant 𝛿 > 0 such
that (108) is true. Then (98) with the initial condition (99) has
an entropy solution in the sense of Definition 11. Moreover, let𝑢, V be two solutions of (6) with the initial value 𝑢0(𝑥), V0(𝑥)
satisfying (7). Then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥
+ ∫
Σ󸀠𝑚

|𝑢 − V| 𝑑Σ, (110)

where Σ󸀠𝑚 = 𝜕Ω\Σ𝑚, Σ𝑚 = {𝑥 ∈ 𝜕Ω : 𝑏󸀠𝑖 (0)𝑛𝑖(𝑥) < 0}, and {𝑛𝑖}
is the inner normal vector of Ω. In particular, if 𝑏𝑖(𝑠) ≡ 0, thenΣ𝑝 = 0; we have

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥. (111)
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If 𝑏𝑖(𝑠) ≡ 0, Theorem 13 implies that the solution of
(98) is controlled by the initial condition. In other words, no
boundary value condition is needed.

Now, let

𝑎 (𝑢, 𝑥, 𝑡) = 𝑚𝑑𝛼𝑢𝑚−1. (112)

Then, for any 0 ≤ 𝑢 ≤ 𝑀,

𝑎𝑡 = 0,
𝑎𝑥𝑖 = 𝑚𝛼𝑑𝛼−1𝑑𝑥𝑖𝑢𝑚−1,

(113)

by the fact that |∇𝑑|2 = 1 a.e. inΩ,

𝑎 (𝑢, 𝑥, 𝑡) − 𝛿𝑁+1∑
𝑠=1

(𝑎𝑥𝑠)2

= 𝑚𝑑𝛼𝑢𝑚−1 − 𝛿𝑚2𝛼2𝑑2𝛼−2𝑢2(𝑚−1)
= 𝑚𝑑𝛼𝑢𝑚−1 (1 − 𝛿𝑚𝛼𝑑𝛼−2𝑢𝑚−1) .

(114)

If𝛼 ≥ 2,𝑚 ≥ 1, there exists 𝛿 such that inequality (108) is true.
But, in general, the distance function 𝑑 only is a continuous
function and is differential for almost everywhere inΩ; then

𝑎 (𝑠, 𝑥, 𝑡) = 𝑚𝑑𝛼𝑠𝑚−1 (115)

does not belong to𝐶3, so we can not haveTheorems 12 and 13
directly.However, if we check the proof ofTheorems 12 and 13,
only if we assume that Ω is a appropriately smooth such that𝑑𝑥𝑖(𝑥) is integral on 𝜕Ω, then similar to the proof ofTheorems
12 and 13, we can proveTheorem 4; we omit the details here.

Remark 14. IfΩ is a 𝐶2 domain, then 𝑑(𝑥) is differential near
the boundary 𝜕Ω, so 𝑑𝑥𝑖(𝑥) is a continuous function on 𝜕Ω
and is integral on 𝜕Ω.

Remark 15. If 𝛼 ≥ 2, 𝑚 ≥ 1, by Theorem 12, 𝑢 ∈ BV(𝑄𝑇), we
can define the trace of 𝑢 on the boundary 𝜕Ω.
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