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So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep
rock. Fluid-matrix element (FME) is defined based on rock element in statistical damage model. The properties of FME are
related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block
containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new
statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are
important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion) and the macroscopic
deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only
be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water
but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of

locked-in stress in deep rock mass.

1. Introduction

As the research of rock mechanics gradually develops to deep
and complicated geological conditions, the traditional theory
of rock mechanics has been continuously improved and per-
fected. The application of CT technology in rock mechanics
helps people have a new understanding of microscopic pore
structure of rock, thus establishing a microscopic system of
rock [1-4].

Pores are classified into connected pores and closed pores.
Actually, the theoretical and experimental research on the
connected pores in rock is relatively mature [5-8], and the
theory about it has developed to fluid interaction with all
forms of subsurface materials, whether the materials are
unconsolidated or crystalline [9]. From the perspective of
engineering applications, Gassmann-Biot equation describes
the relationship between rock physical properties and pore
fluid characteristics under the conditions of low frequency
[10]. Besides, it is an important theoretical basis of rock
fluid replacement or seismic wave detection in oil and gas
engineering [11-15]. Compared with the connected pore

problems, theoretical and experimental investigations about
closed pores are relatively few. Closed pore is an important
carrier of locked-in stress. In 1979, the concept of “locked-
in” stress was first proposed by Zongji Chen. Based on the
microscopic rheological analysis of rock, Chen found that
the tectonic loading and thermal loading lead to nonuni-
form stress field, and some of them are retained in the
form of locked-in stress. Additionally, locked-in stress is
considered as an important cause of engineering disaster [16].
Barrows considered that the internal shape of viscoelastic
Earth material possesses an internal equilibrium pressure
over extended periods of geologic time. Internal equilibrium
pressure should be regarded as an intrinsic physical property
of Earth materials [17]. For a long period of time, the locked-
in stress hypothesis has only a few quantitative studies and
developments, but the situation has changed in recent years.
Wang analyzed the complex environment of diagenesis and
the influence of geological processes on the inhomogeneity
and discontinuity of rock based on the geological charac-
teristics of rocks [18]. It is also an important source of
locked-in stress. Using the hypothesis of locked-in stress,
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Yue proposed and demonstrated that high-pressure fluid
inclusions are concrete, measurable, and computational stress
inclusions. Besides, they are prevalent in geological rocks and
minerals. The effect of fluid inclusions on surrounding rock is
calculated. Yue believed that small, confined, and compacted
fluid inclusions are common volume stress of rock burst,
surrounding rock rupture, and large deformation of roadways
in deep rock excavation chambers [19-21].

In general, the research on the constitutive relations
of rock fluid inclusions under deep high pressure is very
few. Therefore, this study attempts to establish a concise
mathematical and physical model that reflects the constitu-
tive relationship between locked-in stress and rock block.
The relationship between microcosmic characteristics and
macroscopic rules has good applicability, which also lays a
good foundation for the mechanical problems of deep rock
mass containing closed fluid inclusions.

2. Related Work

The statistical damage model is a good mathematical tool
for establishing the constitutive relationship between the
microscopic and macroscopic properties of rocks. “Rock
element” is the basic element of the rock statistical damage
model and the “rock element” satisfies the D-P yield criterion.
Rock elements gradually yield under external stress, and
their strength intensity conforms to Weibull distributions.
Moreover, the process can well reflect the stress-strain law of
the rock under external stress.

According to the Lemaitre strain equivalence hypothesis,
the elastic modulus of rock after damage is as follows [22, 23]:

Eleo(l—D)> 1

where E; is modulus of elasticity before rock damage, E; is
modulus of elasticity after rock damage, and D is damage
variable.

The stress-strain curve is consistent with the law of
linear elasticity before material damage. The macroscopic
constitutive relation considering cumulative damage of rock
can be expressed as

0,=Ee; (1-D)+v,(0, +03). (2)

The solution to D is as follows.

According to the study of Wengui Cao, the yield judgment
of rock element is appropriate with Drucker-Prager criterion,
and the strength intensity of rock elements conforms to
Weibull distribution [24, 25]
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where « is the parameter related to cohesion ¢ and internal
friction angle ¢; I, is the spherical tensor invariant; J, is the

deviator tensor invariant; & = sin /19 + 3sin’e, I, = o, +

0y + 05 =0, + 203, ], = (0, —03)*/3.
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Assuming that the strength of rock element obeys the
Weibull distribution, its probability density function is

m—1 m
ro-2 (5 (5] o
0 0 0

where m and F,, in (4) are Weibull distribution parameters:

D:LFP(x)dle—exp[—<§>m]. (5)

0

According to (2), the constitutive relation of rock is as
follows:

F m
0, =E, & exp [— <—> ] + 21,05, (6)
Fy
where o3 is confining pressure of rock and E,, is the elasticity
modulus of rock matrix. F, and m can be obtained with value
method of multivariate function. It uses the mathematical

nature that the derivative of the highest point of the curve is
0:
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The parameters a, b in (7) need to be gotten from fitting
methods by experiment date and conform to the linear rule.

However, the damage defined in the traditional statistical
model essentially reflects the damage caused by the yielding
of the nondestructive matrix due to the external stress.
Besides, the initial damage of the “fluid inclusions,” cracks,
and holes existing in the rock before the external loading are
not reflected in the model. Obviously, these are important
factors influencing the initial elastic modulus of the rock.
To establish the relationship between fluid inclusions and
macroscopic constitutive relations of rocks, the initial factors
of these rocks must be clearly described.

To solve this problem, it is necessary to establish the “rock
element” which can reflect the constitutive relation of the
rock part representatively, so fluid inclusion-matrix element
(FME) is defined [26]. Theoretical basis of FME is RVE, which
originates from rock element. Representative volume element
(RVE) is an effective method to study such problems, which
has been widely used in theoretical and numerical simulation
of voids, fractured composites, and so on [27-31]. FME differs
from rock element because a typical element of the same
size contains a fluid inclusion, and the size is 3 to 5 times
of the diameter around the inclusion. There are two types
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F1GURE 1: FME (a) and rock element (b).

of pores in FME. One is connected pore, which indicates
that the pore is connected with each other or connected with
the cracks in the matrix. This kind of problem includes the
pore which has fluid exchange with the outside, whether it
has obvious boundary with the matrix or not. It covers the
scope of fluid solid coupling, fluid replacement, and other
engineering problems. Another kind is the closed pore, which
has obvious boundary with matrix or no external exchange of
fluid (gas) under certain confining pressure. This kind of FME
contains rock pressure existing in the formation of geology,
and it is an important carrier of the locked-in stress. Special
statement is that pores mixed up with fluid inside FME are
collectively referred to as “fluid inclusions” in this study.

3. Model

FME is mixed up with a fluid inclusion and rock matrix
around a finite range, as shown in Figure 1 (0 is matrix; 1 is
inclusion).

Figure 1 shows the difference between FME and rock
element.

3.1. Fluid Inclusion Volume Modulus of FME. Pore fluid
volume modulus of FME kpy; is not only related to porosity
but also associated with bulk modulus of fluid k; and bulk
modulus of skeleton k,,. The relationship between kpy; and
fluid inclusion compressibility Cpyg is as follows:

1
kpne = —- (10)
CEME

Cpume can be expressed as [32, 33]

AVeme
Vimedo’

CpME = (11)
where Vi is the volume of FME and its rate of volume
change is consistent with the overall rate of volume of the rock
block V,,. Therefore,

av,,
CpME = Vodo (12)

The compression factor of rock matrix can be defined as

c. = _di (13)
"y, da,’

where 0,,, is the stress acting on the rock skeleton. From (12)
and (13),

av,, do,, do,,

PME = _deom do  do ™ (14)

From the point of the whole point of FME, the change of
fluid inclusion volume is equal to the volume of fluid. So,

ndo,, = csdp, (15)

and external stress on the rock o; has the relationship
between fluid inclusion pressure p and skeleton pressure o,,,,

oy =¢p+(1-¢)0,, (16)
where ¢ is the ratio of the rock block. Based on (16),
do = ¢dp + (1 - ¢)do,,. (17)
Based on (14) and (17),
do,, Cr
o (1= g+ de, "
From (12) and (17),
- Y 19)

T = 9)es + e
From (10) and (19),
kene = (1 =)k, + Pk (20)

According to the theory of solid mechanics, the compres-
sion coeflicient of the skeleton under the condition of elastic
deformation can be expressed as

Em

k, = —"—,
" 3(1-2y)

(1)

where v, is Poisson’s ratio of the rock matrix. In general, E,,
is not obtained experimentally, while the overall modulus of

matrix elasticity (E...) is experimentally obtained [32]

E = Eoverall. (22)

In engineering applications, the contents of water, oil, and

gas in the fluid inclusions are often different. When there
are many kinds of fluid, the effect of fluid components on
the fluid inclusion modulus should be considered. In the
study of fluid replacement process, Murphy obtained the
calculation method of fluid bulk modulus in fluid inclusion

under different saturation [34]
1 S 1-S
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FIGURE 2: FME.

where Sy is saturation. k¢, is a fluid volume modulus of fluid
inclusion, and k , is the second fluid bulk modulus of fluid
inclusion. In engineering applications, common reference
for determination of fluid elastic parameters is presented in
Table 1.

According to Table 1, different fluid or saturation has
an important influence on the bulk modulus of elasticity in
fluid inclusions. Based on the measured values of Table 1,
the volume modulus of elasticity in fluid inclusions includes
gas water condition 1.5~3.5 GPa, oil condition 0.9~2 GPa, and
water condition 2~4 GPa.

Table 1 is an experiential value used in oil and gas
engineering, which is convenient and quick to use. In most
cases, there exists a situation that fluid inclusion pressure
rather than fluid elastic modulus on rock stress-strain relation
is the main consideration. Related researches demonstrate
that the fluid inclusion pressure has a positive correlation
with the pore compressibility, and the relation between the
fluid inclusion volume modulus and the pressure can be
depicted as follows [38]:

v,
ks = BApln 70 (24)

where Ap is the pressure increment relative to the original
pore pressure. V,/V is the ratio of the initial volume to the
actual volume of the fluid inclusions in the FME, and f is
the correction factor under different geological conditions or
environment.

Study on compression coeflicient or bulk modulus of
FME is important for the equivalent elastic modulus based
on Eshelby equivalent inclusion theory. It makes the fluid
inclusion have practical meaning and physical meaning of
certain form, which is different from the traditional solid
mechanic problems or traditional inclusion damage model
from this point. In addition, it is also a very important reason
why this model is suitable to analyze locked-in stress.

3.2. Constitutive Relation of FME. The constitutive rela-
tionship of the FME containing different pore types is
described by a uniform “equivalent elastic modulus,” which
is based on the Eshelby equivalent inclusion theory and M-
T homogenization method. In 1957, Eshelby studied the law
of stress around a phase in an infinite homogeneous matrix
[39]. Since then, Eshelby equivalent inclusion theory and
related analytical solutions have been developed into various
forms with wide application in the study of composite and
discontinuous medium mechanics [40-47].

As shown in Figure 2, according to the Eshelby inclusion
theory, it is firstly assumed that the fluid inclusion in the
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FME is homogeneous with the matrix and free from external
stress. If the inclusion has a strain &* due to some physical
action (thermal expansion, etc.) in unconstrained condition
(equivalent to the inclusion gotten from the matrix, as
presented in Figure 1), it is called the intrinsic strain. The
matrix will produce a bound strain £ on the inclusion due
to the existence of intrinsic strain. Eshelby has proved that
the relation between intrinsic strain and bound strain is as
follows [41]:

£=85:¢", (25)

where §;;,,, is a constant tensor related to the shape of
inclusions and the Poisson ratio of the matrix; it is called the

Eshelby tensor and (25) can be expressed as

re ] c
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Ifitis a spherical inclusion in FME, S;,,,,, can be expressed
as
St = Sx2 = Sa333 = %’
S1122 = $2233 = S3311 = S1zz = Soan1 = Saam
_ Wl (26)
15(1 = v,)’
Si212 = S2323 = S3131 = %)

where v, is matrix Poisson ratio and other tensor projects are
0.

In fact, the pore fluid inclusions in the FME are hetero-
geneous with the rock matrix and are subjected to external
stress, which can be foundin Figure 3. The strain produced
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TaBLE 1: Bulk modulus inside fluid inclusions.
Serial number Depthp(())filrlrtl/e;surmg Rock species fluid inclusion elIZIs Oti(ililtl;rl/sé)lfa source
1 1335-1338 Sandstone Gas, water 1.6~3.5 [35]
1430-1438 Carbonate Gas, water 2~4 [35]
3 — Dolomite Qil 1.3 [35]
4 — Dolomite Water 2.6 [35]
5 — Sand mudstone Oil 1.38 [36]
6 — Sand mudstone Water 2.25 [36]
7 2355-2360 Sand mudstone Water 2.5 [36]
8 3206-3210 Sand mudstone 47% oil 53% water 1.8~4 [36]
9 3166-3170 Sand mudstone Qil 0.9~2.0 [36]
10 — - oil 1.7~2.4 [37]
1 — — 80% oil 20% water 1.75~2.3 [37]
12 — — 60% oil 40% water 1.85~2.2 [37]
by a heterogeneous inclusion with an external stress can be where I is unit tensor; from (25), (29), and (31),
divided into the following three sections:
(1) Compared with homogeneous material, the perturba- 1B+ (B = En): oI+ (1-9) S|} er (33a)
tion strain tensor produced by the substrate on the = (B - E,) : &a,
heterogeneous inclusions under the action of external
stress is &,. and its simple form is
(2) Confinement strain tensor of matrix to inclusion is . 1
er=A :B:g,, (33b)

(3) Common strain tensor is &4, and it is produced by
homogeneous inclusions and matrix due to external
stress, conforming to the generalized Hooke’s law.

As is shown in Figure 3, the average stress tensor in
inclusion is as follows:

6,=0,+0,+0c=E;: (g4 +& +&c), (27)

where @, is total stress tensor of inclusion; ¢, is perturbation
stress tensor of matrix on inclusion; o is the restraint stress
tensor of matrix on inclusion; and E; is elastic modulus tensor
of inclusion.

Average stress tensor of matrix in FME is
0-0:O-a\+o-e:Em:(sA"'se)’ (28)

where g is total inclusion stress tensor; E , is elastic constants
of matrix.
With Eshelby inclusion theory, (27) can be written as

0,=E;:(gy+e,+ec)=E, : (e, +& +&c—&1). (29)

According to the Mori-Tanaka equivalent stress analysis
method, the overall mean stress remains unchanged, which
can be expressed as [46]

05 =90, +(1-9)a,, (30)
where ¢ is volume ratio of pore in FME. It depends on 3~5
times of fluid inclusion diameter [26].

It can be obtained from (25), (27), and (30) that

O, = —Q0c, (31)
g =—@(S-1I): e, (32)

where A= —{E_ +(E;-E_): [¢p+(1-9)S]},B=E,-E,

Under the action of an external stress tensor o4, an
average strain tensor ¢ is generated, which can be obtained
in accordance with Hooke’s law:

O-A = E T E
B (34)
=E:[p(es+e. +2c) +(1-9)(ea + )],
where E is equivalent elastic modulus tensor of FME.

From (25), (32), and (34),
" =E:e=E: (g, +¢er). (35)

From (33b) and (35),
E=E,:(I+9A:B)" (36)

3.3. Statistical Damage Model Based on Double M-T Homog-
enization Theory. The stress-strain relationship of the “fluid
inclusions-matrix part” and the “matrix part containing no
initial damage” has been obtained. The composition of the
rock block is shown in Figure 4.

The stress-strain relationship between the two parts can
be unified by the M-T homogenization method [44]. It should
be noted that the porosity of rock is ¢p and the ratio of the fluid
inclusions to the FME mentioned above is ¢. The method of
double M-T homogenization method is that the equivalent
elastic modulus of FME is considered as an inclusion, and
then the equivalent elastic modulus is solved in a wider range
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Matrix part

FIGURE 4: FME, rock element, “matrix part,” and “fluid inclusion-matrix part.”

of rock matrix with FMEs. Therefore, the equivalent elastic
modulus of rock block after double M-T homogenization
method is

E:$E+<1—$>Em, (37)

where E is equivalent elastic modulus tensor of rock matrix
based on double M-T homogenization method.

According to (30), (31), (36), and (37), the statistical
damage model of the initial fluid inclusions of the rock is
expressed as

oo B [g5 (-2

where 0, 05 are stress tensors and &, is strain tensor.

In this way, the equivalent elastic modulus of FME and
the constitutive equation of rock are combined, and the
equivalent elastic modulus of FME is closely related to the
fluid properties and pressure of fluid inclusions in FME. Then,
the relationship between stress-strain curve of rock and fluid
inclusions is established.

Numerous studies have demonstrated that rock poros-
ity changes under different confining pressures should be
considered. For example, in the study of rock pore seepage
process, it was found that the pore porosity will change with
the confining pressure. Additionally, the correlation study
shows that the porosity changes with the different confining
pressure change can be expressed as [48, 49]

¢ = ¢poe ™, (39)

where ¢, is initial porosity of rock sample and m reflects
the whole process of rock pore changes. The value of m is
generally 1/10, which is consistent with the actual situation
and can be determined according to the actual change of
porosity in the experimental data.

It can be obtained from (32) that

el (2)]

. [—%e—mm E+ (1 _ b ™ ) Em] g (0
¢ ¢

+ 2v,07;.

If the influence of fluid inclusion pressure of the initial FME
on the partial elastic modulus is considered,

orenl (2]

.[%e CEH<A>+<1_¢06 E>Em]:£1 w
¢ ' ¢

+ 2v4073,

where EH(A,,) reflects the effect of pressure on tensor.

According to (41), the effect of porosity on the full stress-
strain curve is discussed as follows.

(1) Confining pressure g, is 6.9 MPa, v, = 0.25, E,,
= 90 GPa, and E; = 2GPa, internal friction angle of rock
Qrock = 31.3039°, ¢ = 54.89, m = 1/10, ¢ = 0.35 remains
unchanged, and ¢ = 0.35 changes with confining pressure.

Figure 5 shows the results. Compared with the situation
that the effect of confining pressure on porosity is not
considered, the effect of confining pressure on porosity can
make the curve more faithfully reflect the strain softening
characteristics of rock, and the slope of post-peak curve is
steeper. Besides, an important feature of the model lies in the
establishment of the relationship between the microscopic
and macroscopic rocks. We will confirm whether the model’s
macroscopic curve is consistent with the true experimental
trend of stress-strain curves of rock. Combined with the
experimental data of paper [50], the experimental and model
data with different confining pressures are compared in later
words.

(2) The initial porosity is not mentioned in the reference.
When confining pressure is 6.9 MPa, the porosity ¢ = 0.35
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FIGURE 6: Comparison with experimental data; confining pressure
is 6.9 MPa.

remains unchanged and the initial porosity ¢ = 0.35 changes
with confining pressure. Additionally, the porosity ¢ = 0.15
remains unchanged and the initial porosity ¢ = 0.15 changes
with confining pressure, E; = 2GPa, m = 1/10. Results are
shown in Figure 6.

(3) When confining pressure is 13.8 MPa, the porosity
¢ = 0.35 remains unchanged and the initial porosity ¢ =
0.35 changes with confining pressure. The porosity ¢ = 0.15
remains unchanged and the initial porosity ¢ = 0.15 changes
with confining pressure, E; = 2GPa, m = 1/10. Results are
shown in Figure 7.

Since the porosity in the original references was not
considered or given, two sets of numerical values were
selected for simulation. Through comparing Figures 6 and
7, when the confining pressure is 6.9 MPa, the data of ¢ =
0.25 is similar to the experimental data. When the confining

7
250 -
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—a— ¢ =035
—e— ¢ = 0.35 changes with confining pressure of rock
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—v— ¢ = 0.25 changes with confining pressure of rock
—a— Experimental data

FIGURE 7: Comparison with experimental data; confining pressure
is 13.8 MPa.

pressure is 13.8 MPa, the data of ¢ = 0.25 is similar to
the experimental data. Because initial porosities in initial
references are not given for different samples, the initial
porosity can be assumed for different confining pressures.
The model of porosity changing with confining pressure
can not only guarantee the accuracy of the variation law
before the stress peak but also simulate the law of post-
peak variation. It shows the rationality of considering fluid
inclusion with confining pressure changing. Besides, there
exists the possibility of explaining the influence of FME on
the mechanical properties of rock.

Compared with the experimental data of the stress-
strain curve, it is reasonable and effective in combining
the Eshelby equivalent inclusion theory and the method of
statistical mathematics to establish the model. The model
has practicality and physical meaning. However, the figure
also shows that there is a certain gap between the model
curves beyond the yield limit and the development trend of
the test curve and that the rock strain softening part is not
well modeled. The theoretical establishment of this part is a
direction that needs to be conducted in the future.

Meanwhile, on the basis of verification rationality, this
model should not only verify the general rock compression
experiment, but also validate the rock containing different
types of fluid inclusions, especially for the constitutive model
of rock mixed up with closed fluid inclusions or locked-in
stress. Actually, experimental and verification work in this
area is relatively few but significant.

4, Validation

Experimental verification includes two types of situations:
one is the rock which contains fluid-connected pores and the
other is to simulate the rock containing closed pores (locked-
in stress) in rock-like materials.



4.1. Comparison with Experimental Results of Rock Mixed Up
with Pore Water (Experimental Verification of the Connected
Pore in FME). The influence of the fluid inclusion on the
total stress-strain curve of rock is rarely involved in the
traditional statistical model of rock damage. In recent years,
there are more studies about the influence of fluid inclusion
on the overall characteristics of rock. Therefore, in this
paper, the rationality of the model is validated by the three-
axis experiment data of rock containing pore water. If the
influence of pore pressure variation on the total stress and
strain of rock can be obtained, the applicability of the model
with the connected pore in FME will be validated.

Through comparing the model with the sample data of
rockin [51, 52], the unknown parameter is determined by the
experimental data at the pore pressure of 0. At this time, the
equivalent elastic modulus of the fluid inclusion is 0, and the
independent variable is few. Based on the two sets of data, the
parameters are recognized and corrected, and the unknown
parameters of the original text are inversed. Rock parameters
are as follows: E,, = 14 GPa, v = 0.2, internal friction angle
@rock = 20°, initial porosity ¢ = 0.2, m = 1/10.

(1) Fluid inclusion pressure of FME is 4 MPa and confin-
ing pressure is 20 MPa.

(2) Fluid inclusion pressure of FME is 12MPa and
confining pressure is 20 MPa.

Figures 8 and 9 show that the model data is in good
agreement with the experimental data of rock containing
pore water. Before reaching the yield limit of the rock, the
model basically agrees with the experimental data of rock
containing pore water. Additionally, the model can simulate
the law of full stress and strain and reflect the influence of
pore water in FME on the total stress and strain of rock. That
is to say, the relationship between the different pore water or
the fluid state in the pore and the macroscopic characteristics
of the rock can be analyzed using the model. Therefore, the
model has practicality in analyzing rock mechanics problems
with connected pore with an advantage in back analysis of
pore properties through macroscopic phenomena.

4.2. Comparison with the Test Results of the Locked-In Stress
in Rock (Experimental Validation of the Closed Pore in FME).
If the fluid state in FME can be reasonably reflected, the
model not only can be used to analyze the rock block
containing connected pores, but also has good applicabil-
ity to the rock containing locked-in stress. However, the
experimental researches about locked-in stress are few, and
the experimental simulation itself is also confronted with a
lot of difficulties. The change of equivalent fluid inclusion
modulus of FME has mature application in fluid replacement
in oil and gas engineering, while the experimental date
about the constitutive relation of rock in this process is
few. Consequently, in this part, the locked-in stress in rock
is validated by simulating the closed pores with different
equivalent modulus of elasticity in FME.

The experiment is designed that nitrile rubber inside rock
matrix (rock-like material) can produce different expansion
pressure at different temperature control conditions to sim-
ulate the different locked-in stress in rock. The equivalent
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fluid inclusion pressure of FME is 12 MPa; confining pressure is
20 MPa.

elastic modulus of different inclusions in FME can be
achieved from the above analysis. Besides, the matrix material
consists of Portland cement and fine quartz sand in a certain
proportion. The parameters are as follows: E,, = 2.5GPa,
E, = 02GPa, v, = 0.25, internal friction angle ¢,
0.25, ¢ = 50 MPa, and 0; = 0. The experimental data of
pore rubber materials were 2% and 4% respectively, and the
locked-in stress was 0.8 MPa and 1.2 MPa, respectively. The
transformation relationship between date of experimental
situation and theoretical transformation value is presented in
Table 2.

Figure 10 shows the result of the situation that porosity
is 2% and equivalent elastic modulus of fluid inclusion is
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TABLE 2: Transformation relationship.

Proportion of rubber material in matrix:

29/4% Locked-in stress: 0.8 MPa/1.2 MPa

Experimental situation

Equivalent elastic modulus of fluid

Theoretical transformation value porosity: 2%/4%

inclusion: 0.2 GPa/0.5 Gpa

0.5 GPa. Figure 11 shows the result of the situation that poros-
ity is 4% and equivalent elastic modulus of fluid inclusion is
0.2 GPa.

The locked-in stress exerts significant influence on the
experiment. The data in Figures 10 and 11 shows that the
model curve reflects the change law before and after the
peak in the actual experiment. Additionally, the random error
control is within a certain range. However, it is undeniable
that there is a certain difference between the model curve
and the final part of the test date. Therefore, there are factors
affecting the curve changes which have not been fully taken
into consideration.

Therefore, from the experimental verification results of
this part, it can be seen that the influence of locked-in stress in
the deep rock mass on the macroscopic constitutive relation-
ship should not be ignored. High-pressure and high-energy
fluid inclusions in deep rock mass are the important reasons
for such phenomena as rock burst and large deformation.
Based on the model, we can analyze the fluid inclusions in the
deep rock mass to predict or analyze some rock phenomenon.
Additionally, the model provides a new idea for the solution
of deep rock mechanics problems.

5. Conclusions

With the development of deep rock mechanics, more and
more attention has been paid to the locked-in stress in rocks.
High-pressure fluid inclusions are important parts of the
locked-in stress in deep rock mass. Nevertheless, there are
few studies on the mechanical properties of rock mixed up
with closed pores. Based on RVE, this paper unifies the
analysis methods of closed pore and connected pore, and
FME is defined. Based on FME, the relationship between the
microscopic fluid inclusions and the macroscopic mechanical
properties of the rock is established using the statistical
mathematical method.

The main works of this paper are as follows: on the
basis of the traditional damage model, firstly, the constitutive
relation of FME is built on Eshelby equivalent inclusions
theory, and the stress-strain relation of FME is then deter-
mined. Secondly, the influence of FME on initial modulus
of elasticity of rock mass is analyzed and the relationship
between FME and the whole stress and strain of the matrix
is established based on the Weibull distribution. The effect
of fluid inclusions in FME on the stress-strain curve of rock
is analyzed. Compared with the general rock compression
experimental data, the model is proved to be reasonable.
On this basis, the model is compared with the three-axis
confining pressure experimental date and locked-in stress
simulation experiment of rock mass. Moreover, the model
results are in good agreement with experimental date.

o, (MPa)
o~
T

0- 1 1 1 1 1
0 2 4 6 8 10

g % 10°?

—=— Experimental date
—— Model date

FIGURE 10: Comparison between experimental date and model date
and fluid inclusion pressure of FME is 0.8 MPa.
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o, (MPa)
S
T

& x107°
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—— Model date

FIGURE 11: Comparison between experimental date and model date;
fluid inclusion pressure of FME is 1.2 MPa.

The main conclusions are as follows:

(1) FME is the medium of establishing the fluid inclusion
and macroscopic stress-strain curve of rock. Combined with
the principle of Eshelby equivalent inclusion, the FME can
reflect the fluid state of the fluid inclusion and other factors
with the concept of equivalent elastic modulus. FME is a basis
of rock statistical damage model. It is an improvement of the
traditional statistical damage model which cannot effectively
reflect the initial fluid inclusion, crack, and other damage.
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(2) The stress of the same strain changes with the increas-
ing elastic modulus of the FME, but it does not influence
the variation trend before and after the peak. However, the
increase of porosity affects the gradient of the curve behind
the peak, and the stress-strain curve becomes slow with the
increase of porosity. The assumption that porosity varies with
confining pressure can reflect the law of post-peak variation,
which is greatly consistent with the experimental data.

(3) Compared with the different experimental data, the
model based on FME and the mathematical statistics model
is reasonable. Based on FME, it can reflect the influence of
initial porosity or initial damage in a wider sense on rock
mechanical properties, whether it is connected pore or closed
pore in FME. As long as the initial damage can be reflected in
FME, the influence of initial damage can be obtained from
the model.

The innovations of the model are as follows:

(1) Using the Eshelby equivalent inclusion theory and
M-T uniform theory, the initial elastic modulus of rock is
analyzed. Besides, it is an improvement of the traditional
damage model, which cannot reflect the initial hole and
damage of the rock, making the new statistical damage model
more practical and reasonable.

(2) Based on FME, the relationship between rock micro-
cosmic and macroscopic is established. The macroscopic
constitutive relation of rock is analyzed by fluid inclusions
in FME. Few studies have been conducted from this point of
view.

(3) The model is employed to analyze the locked-in
stress in deep rock mass, and the locked-in stress simulation
experiment is carried out, which is groundbreaking for
analyzing geological phenomena through the point of locked-
in stress. Briefly, one important reason why we call it a
new model is the effect of the locked-in stress on the rock.
Therefore, the mathematical statistics model built on it is
reasonable and effective.
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