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The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the
thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-
de Sitter (SAdS) black holes due to rainbow gravity model. Using the correspondence between a (𝑑 + 1)-dimensional SAdS black
hole and a conformal filed theory in 𝑑-dimensional spacetime, onemay find the corrections to the Cardy-Verlinde formula from the
modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived
by redefining the Virasoro operator and the central charge.

1. Introduction

Based on the great discovery of black holeHawking radiation,
it seems that there is a deep connection between three
seemingly different branches of science: thermodynamics,
gravity, and quantum mechanics in the black holes. In fact,
Hawking radiation opens an important window to quantum
gravity. Most of the promising candidates for quantum
gravity expect the existence of a minimal observable length
at the order of the Planck length [1–7].Therefore, it is natural
to take the Planck length as a universal constant [8]. On the
other hand, length is obviously not an invariant under linear
Lorenz boost. Therefore, the Lorentz symmetry at Planck
scale may not be preserved. The goal of nonlinear special
relativity or doubly special relativity (DSR) is to preserve
the relativity principle and at the same time treat Planck
length as an invariant [9]. Within nonlinear special relativity,
the usual energy-momentum relation may be modified with
corrections in the order of Planck length 𝑙𝑝 =

√8𝜋𝐺 ≃ 1/𝑀𝑝
as
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where 𝑓1 and 𝑓2 are two general functions of energy with a
constraint that they approach the unit for the energy scales

much less than the Planck scale [10].Themodified dispersion
relationsmay be responsible for threshold anomalies of ultra-
high energy cosmic rays and gamma ray burst [11–17] and
contribute corrections to the black hole thermodynamics [8].
Recently, nonlinear special relativity has been generalized to
incorporate the effects of gravity, leading to the rainbow grav-
ity model. In rainbow gravity, the metric of the background
detected by any probe is not fixed but depends on the energy
of the probe [18].The rainbow gravity can be used to study the
black holes.Of course, the thermodynamical properties of the
black hole aswell as the final fate of the black hole evaporation
may be influenced by the effects of rainbow gravity.

On the other hand, one may relate the black hole
thermodynamics with the properties of the conformal field
theory (CFT) using the 𝐴𝑑𝑆𝑑+1/CFT𝑑 and 𝑑𝑆𝑑+1/CFT𝑑 cor-
respondences. The Cardy-Verlinde (C-V) formula proposed
by Verlinde relates the entropy of a certain conformal field
theory to its total energy and its Casimir energy [19].
Using 𝐴𝑑𝑆𝑑+1/CFT𝑑 and 𝑑𝑆𝑑+1/CFT𝑑 correspondences, this
formula holds exactly for different black holes. It means that
one may find the quantum gravitational corrections to the C-
V formula from themodified thermodynamics of black holes.
Previously, the black holes had been considered to modify
C-V formula from the generalized uncertainty principle [20,
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21], space noncommutativity [22], and modified dispersion
relations [23].

In this paper, we are going to take into account the
corrections to the thermodynamics of a (𝑑 + 1)-dimensional
Schwarzschild anti-de Sitter black hole from the rainbow
gravity. Knowing the corrections to the black hole thermo-
dynamics, we can derive the corrections to the C-V formula.
It is then shown that the modified C-V formula may also
be derived by just redefining the Virasoro operator and the
central charge.

2. A Schwarzschild AdS Black Hole
Thermodynamics within Rainbow Gravity

The metric of a (𝑑 + 1)-dimensional Schwarzschild anti-de
Sitter black hole in the rainbow gravity model can be written
as
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(2)

which is the spherically symmetric solution of 𝐺𝜇](𝐸) =

8𝜋𝐺(𝐸)𝑇𝜇](𝐸) + Λ(𝐸)𝑔𝜇](𝐸). Newton’s constant, 𝐺, and the
cosmological constant, Λ(𝐸) = −3𝑓

2

2
(𝐸)/𝐿

2, are energy
dependent [24, 25]. The parameter 𝜇 is defined as 𝜇 =

16𝜋𝐺𝑑+1𝑀/(𝑑 − 1)Ω𝑑−1 and Ω𝑑−1 = 2𝜋
𝑑/2

/Γ(𝑑/2) is the
volume of a unit (𝑑 − 1)-sphere. The position of the horizon,
𝑟+, can be derived by solving the equation

𝜇
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+

= 1 +
𝑟
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𝐿2
. (3)

Since investigating the black hole radiation and correction to
entropy-area relation is an important subject in theoretical
physics, we are going to study the black hole thermodynamics
within rainbowgravity.On the black hole horizon, the surface
gravity 𝜅 can be obtained by
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, (4)

and it is possible to find the temperature from the surface
gravity by 𝑇 = 𝜅/2𝜋 [25].

For a (𝑑 + 1)-dimensional Schwarzschild AdS black hole
in the rainbow gravity, one can find the temperature as
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] , (5)

where 𝑇
󸀠 is the modified temperature via rainbow gravity. It

can be seen that the temperature of the modified black hole is
different for probes with different energies. The temperature
can be written as

𝑇
󸀠

𝑑+1
=

𝑓2

𝑓1

𝑇𝑑+1, (6)

where

𝑇𝑑+1 =
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𝐿2
] (7)

is the black hole entropy without any corrections from rain-
bow gravity and 𝑇

󸀠

𝑑+1
is the temperature which is modified by

taking into account the effects of 𝑓1 and 𝑓2.
Now we are going to define an intrinsic temperature

for large modified black holes by identifying probes with
radiation particles in the vicinity of the horizon of the black
hole. Using the radiation photons with average energy 𝐸 =

⟨𝐸⟩ and 𝑚0 = 0 to make the measurements, the temperature
of the black hole can be identified with the energy of the
photons emitting from the black hole as 𝑇 ≃ 𝐸 [25].

To find the black hole temperature, it is necessary to
introduce the specific forms of the functions 𝑓1 and 𝑓2.
According to [8, 25, 26], we can write
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,
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2
= 1,

(8)

where 𝛼 is a positive quantity of order one which has been
input to distinguish the correction terms arising from the
rainbow gravity effects from the others. For𝛼 = 0, the energy-
momentum relation reduces to its standard form in special
relativity. By the definitions of 𝑓1 and 𝑓2 and plugging 𝑇 ≃ 𝐸,
(6) yields to
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which can be solved to find the Schwarzschild AdS black hole
temperature as

𝑇
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=

[
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. (10)

For large black holes with 4𝛼𝑙
2

𝑝
𝑇
2

𝑑+1
≪ 1, the modified

temperature reduces to the temperature of an ordinary
Schwarzschild AdS black hole, 𝑇

󸀠

𝑑+1
≃ 𝑇𝑑+1. For small

black holes with extremely high temperature, the temperature
reaches its maximal value 𝑇

󸀠

(𝑑+1)max ≃ 1/√2𝛼𝑙𝑝 as 𝑇𝑑+1 ≃

1/2√𝛼𝑙𝑝. Correspondingly the radius of the black hole hori-
zon is bounded frombelow by 𝑟+ ≥ √𝛼𝑙𝑝/2𝜋.The existence of
a minimum radius leads to the possibility of the existence of
the black hole remnant at the late moment of the evaporating
process which can be a suitable candidate for dark matter.

By substituting 𝑇𝑑+1 into (10), the modified temperature
can be written as
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Assuming that the correction terms are small, one may find
by some manipulations that
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󸀠
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For large black holes, the first law of thermodynamics
accompanying (10) yields to
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(13)

which can be integrated to find 𝑆
󸀠

𝑑+1
as the modified entropy

of a (𝑑+1)-dimensional black hole within rainbow gravity. In
(13), we have considered only the correction terms containing
the first power of 𝛼, without any loss of generality.

In the case of 𝑑 = 3, the entropy of a (3 + 1)-dimensional
Schwarzschild AdS black hole can be written as
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where 𝐴4 = Ω2𝑟
2

+
= 4𝜋𝑟
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+
. It is clear from (3) that 𝑟+

can be obtained from 𝜇/𝑟+ = 1 + 𝑟
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+
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2. Furthermore, (12)

can be expanded to find the temperature for a large (3 +

1)-dimensional Schwarzschild AdS black hole as
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It is possible to write entropy in an alternative form as
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𝑆4 is the standard entropy in the absence of rainbow gravity
effects andΔ𝑆4 implies the corrections to entropy via rainbow
gravity. The temperature can also be written as
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𝑇4 is the standard temperature in the absence of rainbow
gravity effects and Δ𝑇4 implies the corrections to the temper-
ature via rainbow gravity.

In the case of 𝑑 = 4, the entropy of a (4 + 1)-dimensional
Schwarzschild AdS black hole can be written as
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where 𝐴5 = Ω3𝑟
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and the temperature is
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The entropy can be written alternatively as
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The temperature can also be written as
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The quantities with prime refer to the modified ones in
rainbow gravity while the quantities without prime do not
imply any corrections from rainbow gravity. In the case of
𝑑 = 4, it is clear from (3) that the radius of the horizon can be
derived by 𝜇/𝑟

2

+
= 1 + 𝑟

2

+
/𝐿
2.

As an important point, one may conclude that the
predicted entropy within our formalism is smaller than
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that of the standard Bekenstein-Hawking entropy while the
predicted temperature within our formalism is greater than
that of the standard one. Furthermore, the entropy and
the temperature of the black hole can be derived for any
other dimensionality in the same manner. By continuing the
procedure for higher dimensionality, one can deduce that the
appearance of the logarithmic correction term in the entropy-
area relation is restricted to even black hole dimensionality.
In fact, if one tries to consider the higher order correction
terms for different values of 𝑑, the emergence of a logarithmic
term in the entropy relation for even-dimensional black
hole (odd 𝑑’s) will be certain. Using 𝐴𝑑𝑆𝑑+1/CFT𝑑 and
𝑑𝑆𝑑+1/CFT𝑑 correspondences, one can utilize the modified
thermodynamics to have a more deep insight into CFT. Of
course, insisting on the presence of a logarithmic term will
put a constraint on the dimensionality of the black hole and
its dual CFT. In particular, in the case of𝑑 = 3, the appearance
of logarithmic correction term in the entropy-area relation is
consistent with the results obtained in string theory and loop
quantum gravity [27–30].

On the other hand, themodified dispersion relation is not
confined only to rainbow gravity. In other words, MDR is a
common feature to most of the quantum gravity candidates
and, in particular, to the study of loop quantumgravity (LQG)
and of models based on noncommutative geometry. In fact
there has been strong interest in modifications to the energy-
momentum dispersion relation [10, 31–37]. Therefore, the
results obtained viaMDR, which can be thought as themodel
independent results, seem to be of importance.

3. Cardy-Verlinde Formula

The well-known Cardy formula gives the entropy of a 2-
dimensional CFT as

𝑆CFT = 2𝜋√
𝑐

6
(𝐿0 −

𝑐

24
), (26)

where 𝐿0 = 𝐸𝑅 is the product of energy and radius and the
shift of 𝑐/24 is caused by the Casimir effect [38]. Aftermaking
the appropriate identifications for 𝐿0 and 𝑐, the same Cardy
formula is also valid for CFT in an arbitrary 𝑑-dimensional
spacetime as

𝑆CFT =
2𝜋𝑅

𝑑 − 1
√𝐸𝑐 (2𝐸 − 𝐸𝑐), (27)

which is called Cardy-Verlinde formula [19].𝑅 is the radius of
the system, 𝐸 is the total energy, and 𝐸𝑐 is the Casimir energy
defined as

𝐸𝑐 = 𝑑𝐸 − (𝑑 − 1) 𝑇𝑆. (28)

We have computed the modified thermodynamics of a
(𝑑 + 1)-dimensional Schwarzschild anti-de Sitter black hole
described by the C-V formula (27) from rainbow gravity.

Within rainbow gravity, by using equation
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to obtain the modified C-V formula as
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It is necessary to point that we have replaced 𝐸 by 𝑇 from
𝐸 = (2𝜋/(𝑑 − 2))𝑇 [23]. Assuming that the correction
terms are small, we have ignored their product and used
Taylor expansion to derive (31). Now we can represent the
entropy of the conformal field theory which lives in a 𝑑-
dimensional spacetime by 𝑆CFT𝑑 and it can be derived using

the thermodynamical properties of a (𝑑 + 1)-dimensional
black hole.

In the case 𝑑 = 3, the modified C-V formula can be
written as
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where 𝑆4, 𝑇4, Δ𝑆4, and Δ𝑇4 can be substituted from (17)
and (19) in terms of the related 𝑟+. The modified entropy of
the conformal field theory which lives in a 3-dimensional
spacetime has been represented by 𝑆

󸀠

CFT3 while 𝑆CFT3 is the

entropy of the CFT in the absence of the rainbow gravity
effects.

In the case 𝑑 = 4, the modified C-V formula will be

𝑆
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5
)

] , (33)

where 𝑆5, 𝑇5, Δ𝑆5, and Δ𝑇5 can be substituted from (23)
and (25) in terms of the related 𝑟+. The modified entropy
of the conformal field theory which lives in a 4-dimensional
spacetime is represented by 𝑆

󸀠

CFT4 while 𝑆CFT4 is the entropy
of the CFT in the absence of the rainbow gravity effects.

In 2-dimensional conformal field theory, when the con-
formal weight of the ground state is zero, the valid form of
C-V formula is

𝑆 = 2𝜋√
𝑐𝐿0

6
, (34)

where 𝑐 is the central charge and 𝐿0 is the Virasoro operator
[21, 39]. If we use 𝐸𝑐𝑅 = (𝑑−1)(𝑆𝑐/2𝜋) in (27), where 𝑆𝑐 is the
Casimir entropy, and drop 𝐸𝑐 in analogy with (34), we obtain
the generalization to (34) for a 𝑑-dimensional CFT [21, 39] as

𝑆 =
2𝜋

𝑑 − 1
√

𝑐𝐿0

6
, (35)

where

𝐿0 = 𝑅𝐸,

𝑐

6
=

(𝑑 − 1) 𝑆𝑐

𝜋
= 2𝐸𝑐𝑅.

(36)

Now (35) can be applied to a Schwarzschild anti-de Sitter
black hole. In fact, The C-V formula is the outcome of a
striking resemblance between the thermodynamics of CFTs
with asymptotically AdS duals and CFTs in two dimensions
[21, 39]. Therefore, it is possible to take into account the
corrections to C-V formula by just redefining the Virasoro
operator and the central charge, the quantities entering the
C-V formula. Using 𝐸 = (2𝜋/(𝑑−2))𝑇, the Virasoro operator
can be modified to

𝐿
󸀠

0
= 𝑅 (𝐸 + Δ𝐸) = 𝐿0 +

2𝜋

(𝑑 − 2)
𝑅Δ𝑇. (37)

The modified central charge

𝑐
󸀠
= 12 [𝑑 (𝐸 + Δ𝐸) − (𝑑 − 1) (𝑇 + Δ𝑇) (𝑆 + Δ𝑆)] 𝑅 (38)

can be written as

𝑐
󸀠
= 𝑐

+ 12𝑅 [
2𝜋𝑑

(𝑑 − 2)
Δ𝑇 − (𝑑 − 1) 𝑇Δ𝑆 − (𝑑 − 1) 𝑆Δ𝑇] ,

(39)

where the second orders of the corrections terms have been
neglected and the relation𝐸 = (2𝜋/(𝑑−2))𝑇has been applied.

In the case of 𝑑 = 3,

𝐿
󸀠

0
= 𝐿0 +

𝜋𝛼𝑙
2

𝑝

(4𝜋)
3
𝑅[

1

𝑟+

+
3𝑟+

𝐿2
]

3

,

𝑐
󸀠
= 𝑐 + Δ𝑐,

(40)

where

Δ𝑐 =
36𝜋𝛼𝑙

2

𝑝
𝑅

(4𝜋)
3

[
1

𝑟+

+
3𝑟+

𝐿2
]

3

−
6𝑅

𝜋
[

1

𝑟+

+
3𝑟+

𝐿2
]

⋅ [−
3𝛼𝑙
2

𝑝

64𝜋2𝐺4𝐿
2
𝐴4

−
𝛼𝑙
2

𝑝

32𝜋𝐺4

ln 𝐴4

4𝐺4

−
9𝛼𝑙
2

𝑝

1024𝜋3𝐺4𝐿
4
𝐴
2

4
]

−
3𝛼𝑙
2

𝑝
𝑅𝐴4

(4𝜋)
3
𝐺4

[
1

𝑟+

+
3𝑟+

𝐿2
]

3

.

(41)

In the case of 𝑑 = 4,

𝐿
󸀠

0
= 𝐿0 +

𝜋𝛼𝑙
2

𝑝
𝑅

2 (4𝜋)
3
[

2

𝑟+

+
4𝑟+

𝐿2
]

3

,

𝑐
󸀠
= 𝑐 + Δ𝑐,

(42)

where

Δ𝑐 =
24𝜋𝑅𝛼𝑙

2

𝑝

(4𝜋)
3

[
2

𝑟+

+
4𝑟+

𝐿2
]

3

−
9𝑅

𝜋
[

2

𝑟+

+
4𝑟+

𝐿2
]

⋅ [

[

−
𝛼𝑙
2

𝑝

8𝜋2𝐺5𝐿
2
𝐴5

−
3𝛼𝑙
2

𝑝
(2𝜋
2
)
2/3

32𝜋2𝐺5

𝐴
1/3

5
−

3𝛼𝑙
2

𝑝

40𝜋2𝐺5𝐿
4 (2𝜋2)

2/3
𝐴
5/3

5
]

]

−
9𝑅𝛼𝑙
2

𝑝
𝐴5

2𝐺5 (4𝜋)
3
[

2

𝑟+

+
4𝑟+

𝐿2
]

3

.

(43)

Using (35), the modified Virasoro operator and the modified
central charge can be applied to find the corrections to C-
V formula for a 𝑑-dimensional CFT. It is clear that one can
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find the corrections to the C-V formula for any other CFT
dimensionality in the same manner.

4. Conclusions

We have computed the thermodynamical properties of a
(𝑑 + 1)-dimensional Schwarzschild anti-de Sitter black hole
within rainbow gravity. The corrected entropy, temperature,
and energy of the black hole have been used to modify the
C-V formula. Since the C-V formula refers to the entropy of
a dual conformal field theory living on the 𝑑-dimensional
boundary space, the modified entropy of the CFT has been
obtained. We also stressed the point that the C-V formula is
the outcome of a resemblance between the thermodynamics
of CFTs with asymptotically AdS duals and CFTs in two
dimensions. Then we have derived the corrections to the
Virasoro operator and the central charge, the quantities
which are entering the C-V formula. We have shown the pos-
sibility of taking into account the rainbow gravity corrections
to the C-V formula by just redefining the Virasoro operator
and the central charge.
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