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on the Enzymatic Activity and Metabolism of Escherichia coli
and Staphylococcus aureus
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The chemical composition and antimicrobial mechanism of action of black pepper chloroform extract (BPCE) were investigated,
as well as the potential antibacterial activities of BPCE against Escherichia coli and Staphylococcus aureus. The results showed
that 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1a𝛼,4a𝛼,7𝛽,7a,𝛽,7b𝛼.)]- (8.39%) and 2-methylene-
4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane (6.92%) were identified as the two primary components of BPCE. The release of
intracellular transaminases from bacteria after being incubated with BPCE revealed that the bacterial cell walls and membranes
were degraded and that protein synthesis was inhibited to some extent. The inhibition of bacterial Na+/K+-ATPase activity upon
the addition of BPCE also indicated an enhanced permeability of bacterial cell membranes. Moreover, an analysis of hexokinase
and pyruvate kinase activities showed that BPCE affected the metabolic rate of glycolysis and disrupted the normal metabolism of
bacteria. This phenomenon was supported by an observed accumulation of lactic acid (LA) in the treated bacterial cells. Overall,
our results indicated that BPCE damaged bacterial cell walls and membranes, which was followed by a disruption of bacterial cell
respiration.

1. Introduction

Natural antimicrobial agents are increasingly being used
in food industries because of the serious health risks that
chemical preservatives pose [1]. Plant essential oils exhibit
various antibacterial activities. For instance, essential oils
from oregano, thyme, and marjoram contain many active
compounds that have good antimicrobial activities against
gram-positive and gram-negative bacteria [2, 3]. China is
very rich in endogenous aromatic and medicinal plants,
which are used as natural health care products in traditional
medicine.Anumber of these plants have been investigated for
their biological and antibacterial activities, such as Buddleia
officinalis Maxim,Osmanthus fragrans, and clove [4, 5]. Since
ancient times, black pepper has been commonly used as
spice in cooking. Moreover, black pepper is highly valued in
folk medicine because of its antibacterial and physiological

benefits, particularly in treating pain, the flu, muscle aches,
and rheumatism [6–8].

Recent studies have shown that black pepper extracts
can inhibit food spoilage and food pathogens [9–13]. We
previously explored the optimumextraction process for black
pepper using chloroform and investigated the inhibitory
effects and minimal inhibition concentration (MIC) of black
pepper chloroform extract (BPCE) against Escherichia coli
and Staphylococcus aureus. However, the antibacterialmecha-
nisms of action of BPCE against these strains remain unclear.

Therefore, in the present study, we evaluated the antibac-
terial mechanism of action of BPCE against E. coli and S.
aureus. Furthermore, we analyzed the modulation of key
metabolic enzyme activities and assessed the leakage of
the intracellular constituents of bacterial cells after being
incubated with BPCE. Finally, to analyze the respiration of
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bacterial strains, we examined the lactic acid (LA) content in
bacterial cells.

2. Materials and Methods

2.1. Materials and Chemicals. The black pepper used in this
study was purchased from Nanguo Supermarket (Haikou,
China), grown in Wanning, Hainan province, China, and
picked in June 2016 (nine months after flowering). Hex-
okinase (HK), pyruvate kinase (PK) and Na+/K+-ATPase
assay kits were purchased from Nanjing JianCheng Bio-
engineering Institute (Nanjing, China). LA was purchased
from Sigma–Aldrich Chemical Co. (St. Louis, MO), and 2,4-
dinitrophenylhydrazine (DNP) was purchased from Aladdin
Industrial Corporation. All other chemicals used in this study
were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).

2.2. Bacterial Strains. E. coli (ATCC8739) and S. aureus
(ATCC6538) were provided by our laboratory. Both strains
were cultured at 37∘C for 24 h on nutrient agar medium,
which contained 3.0 g of beef extract, 10.0 g of peptone, 5.0 g
ofNaCl, and 15.0 g of agar in 1000mL of deionizedwater, with
the pH adjusted to 7.2–7.3. Next, the bacteria were washed
twice with 0.9% sterile NaCl and resuspended in 9mL of
the same NaCl solution. Bacterial suspensions were prepared
at a density of 1-2 × 107 cfu/mL in 0.9% sterile NaCl, after
which 1.0mL of an E. coli or S. aureus suspension was added
to 48mL of nutrient broth medium. BPCE (predissolved in
ethanol) was added to the treatment group to determine the
finalMIC concentrations.The control group was provided an
equivalent volume ethanol without BPCE. Both groups were
incubated at 37∘C and shaken at 130 rpm.

2.3. Preparation of Black Pepper Chloroform Extract (BPCE).
Black pepper powder (100 g) was immersed and stirred in 2 L
of 80% ethanol at 50∘C for 12 h. This process was repeated
three times according our previous study. The mixture was
then filtered, and the solvent of the combined extracts was
vacuum evaporated using a rotary vacuum evaporator (RV
10, IKA, Germany) (0.098MPa, 50∘C). The remaining water
was evaporated at 50∘C in a thermostat-controlled water
bath. BPCE was prepared according to our previous study
[14]. Briefly, 100mL of distilled water was added to the
dried extract to obtain a turbid suspension. Next, 100mL of
petroleum ether was added to the suspension in a separatory
funnel. The lower turbid suspension was transferred into
another separatory funnel, after which 100mL of chloroform
was added to perform the extraction. Finally, the black pepper
dissolved in chloroform was collected and concentrated, and
the BPCE was obtained and stored at 4∘C for further analysis.

2.4. Determination of Transaminase Activities. The activities
of alanine transaminase (ALT) and aspartate transaminase
(AST) in soluble fractions of cell lysates were measured. The
treatment and control group samples were centrifuged at 4∘C
(21,621𝑔, 10min). Supernatants were obtained and collected
in ice until transaminase measurements were made using the

classical Reitman-Frankel colorimetric endpoint reaction (Lv,
1967). Subsequently, 0.5mL of ALT substrate [containing L-
alanine (0.2mol/L), 𝛼-ketoglutarate (2.0mmol/L), and phos-
phate buffer (0.1mol/L, pH 7.4)] and AST substrate [contain-
ing L-aspartate (0.2mol/L), 𝛼-ketoglutarate (2.0mmol/L),
and phosphate buffer (0.1mol/L, pH 7.4)] were transferred
into test tubes and incubated in a water bath at 37∘C for
5min. Supernatants (0.1mL) were added to the test tubes,
mixed, and incubated in a water bath at 37∘C for 30 or 60min
for ALT and AST assays, respectively. Next, 0.5mL DNP
(0.1mmol/L) was added and the reactions were mixed and
incubated for another 20min at 37∘C. Subsequently, 5mL of
NaOH (0.5mol/L) was added as color developer and mixed
after heating the mixture in a water bath at 37∘C for 10min.
The absorbance was measured at 505 nm after the mixture
was cooled at room temperature for 10min. The ALT and
AST activities were calculated using a pyruvic acid calibration
curve.

2.5. ATPase Activity and Key Enzymes Activities in Glycolysis
Pathway. The Na+/K+-ATPase, HK, and PK activities were
assessed using the appropriate assay kits. Bacterial cells
were collected by centrifugation at 4∘C (21,621𝑔, 10min),
then washed thrice, and resuspended in phosphate-buffered
saline solution (0.1mol/L, pH 7.4). Bacterial cells were lysed
with lysozyme (2 g/L) in a water bath for 10–20min at
37∘C until the bacteria aggregated, after which samples were
immediately placed in an ice bath and 1mL of Tris-SDS was
added. Cell debris was removed by centrifugation at 21,621𝑔
for 10min at 4∘C. Supernatants were collected and stored on
ice prior to ATPase, HK, and PK measurements.

2.6. LA Content Determination. LA was measured by high-
performance liquid chromatography (HPLC) according to
the methodology described by Soria and Audisio [15]. Cell
free supernatants were centrifuged at 4∘C (17,297𝑔, 10min),
filter sterilized (0.22 𝜇m), and maintained at 4∘C until used.
The supernatants were deproteinized prior to the assay [16].
Samples (1mL) were added to 2mL of Ba(OH)

2
(1.8%) and

2mL of ZnSO
4
(2%). Next, the mixture was centrifuged,

and each supernatant was filter sterilized (0.22 𝜇m) before
the HPLC analyses. HPLC was performed using a Waters
Alliance 2695 system (USA) equipped with a 2489 UV detec-
tor (Milford, MA, USA) connected in series with a Thermo
Betasil C

18
chromatography column (300 × 7.8mm). The

HPLC conditions used were as follows: column temperature
30∘C; ratio of 0.1% orthophosphoric acid and methanol used
for the mobile phase 99 : 1; and flow rate 0.5mL/min. The
injection volume was 20 𝜇L.

2.7. GC-MSAnalysis. Thechemical composition of BPCEwas
determined by gas chromatography-mass spectrometry (GC-
MS). GC-MS experiments were performed on an Agilent
Technologies 7890A gas chromatograph (Santa Clara, CA)
and an Agilent 7683B autoinjector coupled with a 240 Agilent
Ion Trap mass spectrometer (MS/MS). The mass spectral
scan rate was 2.86 scans/s. The GC was operated with a
helium (ultrahigh purity) flow rate of 0.7mL/min under a
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Figure 1: Transaminase activities in E. coli (a, b) and S. aureus (c, d).

head pressure of 10 psi, and the injection volume of 1𝜇L.
The MS was operated in the electron ionization (EI) mode
using an ionization voltage of 70 eV and a source temperature
of 230∘C. The scan type used was the automated method
development function (AMD) and the optimum MS/MS
excitation amplitude was 1.20V. Relative percentages of the
primary components were calculated by integrating the
registered peaks.

2.8. Statistical Analysis. All experiments were performed in
triplicate. Data are presented as the means ± SD. Data were
analyzed with SAS 9.0, and significance was assessed using
Duncan’s one-waymultiple comparison. Differences between
groups were considered significant at 𝑝 ≤ 0.05.

3. Results and Discussion
3.1. TransaminaseActivities. Transaminase is an endoenzyme
that catalyzes a reaction between an amino acid and 𝛼-
ketoglutaric acid and is often used as a general indicator

of bacterial injury [17]. The ALT activity in the treatment
group was higher than that of the control within the initial
12 h. However, the AST activity in the treatment group was
lower than that of control at 12 h for E. coli (Figures 1(a) and
1(b)). The activities of transaminases for S. aureus samples
were lower in the control culture without the BPCE treatment
(Figures 1(c) and 1(d)). By contrast, the control group slightly
changed, particularly for AST. Under normal physiological
conditions, the intracellular enzymes will not release from
the cell. It illustrates the cell wall and cell membrane are
injured, once the intracellular enzyme was determined in the
extracellular fluid [18, 19]. The current results indicated that
the overall cellular structure was damaged by the leakage
of transaminase, which may have been caused by BPCE.
Recent studies have shown that a number of essential oils
affect fungal cell permeability by directly interacting with the
cytomembrane [20–22]. Using extracellular ALT and AST
activities as indicators of membrane damage, the membrane
structure of the bacteria was observed to be significantly
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Figure 2: ATPase activity in E. coli (a) and S. aureus (b).

damaged by BPCE, especially for S. aureus. The MICs of
BPCE for E. coli and S. aureus were 2.5mg/mL. In addition,
transaminases disrupt the normal degradation and synthesis
of cell peptides and proteins.

3.2. Na+/K+-ATPase Activity. Na+/K+-ATPase is a common
sodium pump in the membrane of eukaryotic cells and is
important for establishing and maintaining high K+ and
reducing Na+ concentrations in the cytoplasm [23]. An elec-
trochemical gradient for Na+ across the plasma membrane
is essential for diverse cellular functions, such as the loss
of DNA, polysaccharide, and ions, inhibition of nutrient
absorption, and pH regulation [24, 25]. Figure 2(a) shows
that the Na+/K+-ATPase activity in the control increased
for 12 h, whereas ATPase activity increased from 0 to 8 h
and then decreased from 8 to 12 h before increasing again
from 12 to 24 h when treated with BPCE. In the control
groups, the high activity of Na+/K+-ATPase observed may
due to bacterial growth during the initial 12 h, at which
time cells require more nutrition and energy. In addition,
a certain amount of time is required for ethanol to kill
bacterial cells, which cannot affect the activity of Na+/K+-
ATPase. When the bacterial culture was in the stationary
phase and the death phase, most of the bacteria gradually
died, and the Na+/K+-ATPase activity decreased, with the
same rationale applying to the test groups. Moreover, the
decreased ATP level is also probably due to excessive cell
apoptosis and excessive ATP consumption, because apoptosis
is an ATP-dependent process [26]. Figure 2(b) illustrates
that the control and treatment groups demonstrated similar
changing trends compared with Figure 2(a). ATPase activity
was reduced when BPCE was added from 8 to 24 h. These
results indicated the degradation of the cell membrane and
inhibition of ATPase in the presence of BPCE. Liu et al.
[27] observed the effects of 𝜀-polylysine and nisin on the
changes in Na+/K+-ATPase activity in Bacillus subtilis when

𝜀-polylysine and nisin were added, where Na+/K+-ATPase
activity decreased. ATPase was inhibited when added in the
presence of the 𝜀-polylysine and/or nisin. In addition, Wang
et al. [24] demonstrated that chlorine dioxide can inhibit the
ATPase activity of Nosema bombycis spores, which destroyed
the inner structure of the spores. Thus, cell membrane
dysfunction induces the depolarization of the cytoplasmic
membrane and leads to a rapid termination of all biosynthetic
processes [28].

3.3. Key Enzymatic Activities in Glycolysis Pathway. PK and
HK are key enzymes in glycolysis, which is an important
pathway for cellular energymetabolism and biosynthesis.The
utilization of glycolytic enzymes also enables the controlled
production of pyruvate and acetaldehyde, which are vital for
synthesizing other biomolecules [29].The effects of BPCE on
the activities of HK and PK in E. coli and S. aureus cells are
shown in Figure 3. For E. coli, although the HK activity of
the treatment group was higher than that of the control, the
final HK activity in treatment group was blocked when BPCE
was added (Figure 3(a)). A similar variation was observed
in the PK groups (Figure 3(b)). HK activity in the S. aureus
treatment group slightly changed during the first 8 h, whereas
the HK activity in the control group significantly increased
within the initial 4 h and then decreased. Subsequently, the
groups exhibited similar changing trends (Figure 3(c)). The
PK activity slightly changed in the treatment group, whereas
remarkable variations were observed in the control group.
For bacterial growth, PK activity reached 424.2U/g protein.
A lower HK activity resulted in an impaired oxidation of
glucose via glycolysis and decreased ATP production. The
observed decline in PK activity in bacteria was responsible
for the reduced glycolysis and amplified gluconeogenesis,
indicating that these two pathways were disrupted [30].
These results suggested that BPCE affected glycolysis, which
decreased the synthesis of energetic substances and vital
intermediate materials, such as ATP and pyruvate.
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Figure 3: Activities of key enzymes in E. coli (a, b) and S. aureus (c, d).

3.4. Lactic AcidContent. LA is produced by glucose oxidation
when available oxygen is insufficient for a microorganism to
perform aerobic respiration.The LA content in the treatment
group slightly changed when BPCE was added to both
bacteria (Figures 4(a) and 4(b)). In comparison, the LA
content in the control group increased initially before severely
decreasing in E. coli cells (Figure 4(a)), which was similarly
observed in S. aureus. However, the LA content of S. aureus
decreased (Figure 4(b)). The large amount of LA in the treat-
ment cells indicated that aerobic respiration was inhibited
in the presence of BPCE, indicating that the TCA cycle was
hindered. Thus, the bacterial cells obtained energy though
anaerobic respiration to maintain their growth. Additionally,
LA cannot normally accumulate in cells. However, LA only
slightly decreased in our experiments. Moreover, high LA
concentration inhibited bacterial cell growth, resulting in
bacterial cell death [31, 32]. These findings were consistent
with our previous report, in which BPCE treatment of cells
led to the accumulation of pyruvate and inhibited the TCA
cycle in bacterial cell respiration [14].

3.5. GC-MS Analysis of the Chemical Composition of BPCE.
The results of a GC-MS analysis of the constituents of
BPCE identified 152 chemical constituents (presented in
Figure 5), and the 41 primary substances are presented in
Table 1.The results revealed that 1H-cycloprop[e]azulen-7-ol,
decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1a𝛼,4a𝛼,7𝛽,
7a,𝛽,7b𝛼.)]- (8.39%) and 2-methylene-4,8,8-trimethyl-4-
vinyl-bicyclo[5.2.0]nonane (6.92%) were the two primary
components of BPCE. In addition, BPCE was rich in olefinic
acids [n-hexadecanoic acid (5.12%), trans-2-octadecenoic
acid (4.90%), 10,13-octadecadienoic acid (4.89%), 6-
octadecenoic acid (4.88%), 9,12-octadecadienoic acid (Z,Z)-
(3.11%), 4-hexadecenoic acid (1.34%), cis-13-octadecenoic
acid (0.90%), 13-eicosenoic acid (0.58%), and cis-2-
dicarboxylic acid (0.84%)], alkenes, or oxygenated alkenes
[cyclohexene (0.69%), 𝛼-copaene (0.98%), caryophyllene
oxide (4.11%), and alloaromadendrene oxide (3.53%)], esters
[ethyl 6,9,12-hexadecatrienoate (0.81%), hexadecanoic acid
methyl ester (0.91%), octadecanoic acid ethyl ester (0.92%),
ethyl oleate (3.64%), ethyl cis-9, trans-11-octadecadienoate
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Figure 4: Lactic acid (LA) content in E. coli (a) and S. aureus (b).
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(4.00%), ethyl 9,12,15-octadecatrienoate (1.91%), isonipecotic
acid, N-acryloyl-, undecyl ester (0.93%), and furan-2-car-
boxylic acid 2,2,6,6-tetramethyl-4-(2,2,2-trifluoro-acetylamino)-
piperidin-1-yl ester (1.52%)] and piperonal (3.06%). A
previous study assessed the antimicrobial activity of
the volatile oil from Fusarium tricinctum, containing
12.0% 2-methylene-4,8,8-trimethyl-4-vinyl bicyclo[5.2.0]
nonane, against eight bacteria and two fungi [33]. In
addition, some alkenes, such as caryophyllene oxide [34],
alloaromadendrene oxide [35], and 𝛼-copaene [36], showed
strong antibacterial activity.

4. Conclusion

The results of this study showed that 1H-cycloprop[e]azulen-
7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1a𝛼,4a𝛼,
7𝛽,7a,𝛽,7b𝛼.)]- (8.39%) and 2-methylene-4,8,8-trimethyl-4-
vinyl-bicyclo[5.2.0]nonane (6.92%) were the two primary

components of BPCE. The antibacterial activity of BPCE
primarily occurred via two pathways. The first pathway was
the alteration of membrane potential and inhibition pep-
tide or protein synthesis. The second pathway involved the
hindering of metabolic pathways, such as glycolysis and the
TCA cycle. Based on the results, the following antibacterial
mechanism of BPCE is proposed: BPCE rapidly destroys
bacterial cell walls andmembranes and decreases the ATPase
level.This phenomenon resulted in a remarkably rapid loss in
cell contents, such as transaminase proteins, polysaccharides,
and ions.The active ingredients of BPCE entered the cells and
interacted with key glycolysis enzymes, eventually hindering
and disrupting cell metabolism. Furthermore, an accumu-
lation of LA indicated that bacteria obtained ATP through
anaerobic respiration, probably because BPCE blocked the
TCA cycle and weakened the electron transport chain to
generate ATP. The results of the current investigation will
facilitate the development of antibacterial agents targeting
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Table 1: The chemical components of BPCE.

NO. Name of compound RT (min) Area%
(1) Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)- 8.959 0.69
(2) 𝛼-Copaene 9.406 0.98
(3) 2-Methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane 11.622 6.92
(4) 1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- 13.010 0.97
(5) 1-Piperidinecarboxaldehyde 14.959 0.93
(6) Caryophyllene oxide 19.006 4.11
(7) Ethyl 6,9,12-hexadecatrienoate 20.051 0.81
(8) 1,3,3-trimethyl-2-Oxabicyclo[2.2.2]octan-6-ol 22.482 1.60
(9) Hexadecanoic acid, methyl ester 22.968 0.91
(10) Piperonal 23.193 3.06
(11) 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1a𝛼,4a𝛼,7𝛽,7a,𝛽,7b𝛼.)]- 23.584 8.39
(12) 4,4-dimethyl-tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol 24.167 1.29
(13) Tricyclo[5.2.2.0(1,6)]undecan-3-ol, 2-methylene-6,8,8-trimethyl- 24.262 3.94
(14) Alloaromadendrene oxide-(1) 25.477 3.53
(15) (+-)-1-Isopropylcyclopropane-trans-1,cis-2-dicarboxylic acid 25.689 0.84
(16) Octadecanoic acid, ethyl ester 26.821 0.92
(17) Ethyl oleate 27.144 3.64
(18) Ethyl 9.cis.,11.trans.-octadecadienoate 27.871 4.00
(19) Vanillin lactoside 28.302 0.83
(20) n-Tetracosanol-1 28.600 0.83
(21) Ethyl 9,12,15-octadecatrienoate 28.840 1.91
(22) Phytol 29.020 2.45

(23) 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-,
[1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.alpha.)]- 30.599 2.81

(24) n-Hexadecanoic acid 33.037 5.12
(25) Naphthalene, decahydro-2,2-dimethyl- 33.36 0.63
(26) 1-(1-(2-Thienyl)cyclohexyl)pyrrolidine 33.948 2.85
(27) (8R,Z)-8-Methyl-6-((R)-2-methylpentylidene)octahydroindolizine 34.544 3.17
(28) 2-Ethyl-5-undecyl-.𝛿.1- -pyrroline 34.662 3.02
(29) 6-Octadecenoic acid 36.080 4.88
(30) 9,12-Octadecadienoic acid (Z,Z)- 36.744 3.11
(31) (3S,5R,7aS)-3-(But-3-en-1-yl)-5-(hex-5-en-1-yl)hexahydro-1H-pyrrolizine 36.889 1.12
(32) Piperidine, 1-(1-oxo-3-phenyl-2-propenyl)- 37.403 1.62
(33) 2-Cyclohexen-3-ol-1-one, 2-[1-iminotetradecyl]- 39.279 2.21
(34) Isonipecotic acid, N-acryloyl-, undecyl ester 39.574 0.93
(35) 4-Hexadecenoic acid, pyrrolidide 39.763 1.34
(36) cis-13-Octadecenoic acid, 4,4-dimethyloxazoline derivative 40.171 0.90
(37) trans-2-Octadecenoic acid 41.804 4.90
(38) 13-Eicosenoic acid, pyrrolidide 42.444 0.58
(39) Furan-2-carboxylic acid 2,2,6,6-tetramethyl-4-(2,2,2-trifluoro-acetylamino)-piperidin-1-yl ester 42.520 0.88
(40) 4,5,6,7-Tetrahydrobenz[z]isoxazole-5-ol-4-one, 3-[9-tridecenyl]- 42.650 1.52
(41) 10,13-Octadecadienoic acid 42.950 4.89

bacterial energy metabolism. However, further studies are
needed to determine whether antibacterial agents affect the
transcriptome. The experimental results also provided a
basis to develop promising natural antimicrobial agents with
potential applications in manufacturing industries.

Additional Points

Highlights. (1) The antimicrobial mechanism of action of
black pepper chloroform extract (BPCE) was investigated.
(2) Bacterial intracellular transaminases andNa+/K+-ATPase
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activity were inhibited by BPCE. (3) Bacterial cell walls and
membranes were degraded in response to BPCE. (4) The
normal metabolism of bacteria was disrupted by BPCE.
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