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We study the capacity allocation policies of a third-party warehouse center, which supplies several different level services on
different prices with fixed capacity, on revenue management perspective. For the single period situation, we use three different
robust methods, absolute robust, deviation robust, and relative robust method, to maximize the whole revenue.Then we give some
numerical examples to verify the practical applicability. For the multiperiod situation, as the demand is uncertain, we propose a
stochastic model for the multiperiod revenue management problem of the warehouse. A novel robust optimization technique is
applied in this model to maximize the whole revenue. Then we give some numerical examples to verify the practical applicability
of our method.

1. Introduction and Literature Review

In today’s business world, a large number of companies
outscore their warehouse functions to the third-party Ware-
house (3PW) company in order to minimize their operation
costs and focus on their core competencies. Therefore, ware-
housing industry becomes a booming business all over the
world. According to the survey data from National Bureau of
Statistics (NBS) of China, the national warehousing invest-
ment in fixed assets amounted to 69.20 billion dollars in 2013,
increasing 32.7% over 2012. With the fast development of
third-party warehousing industry, the revenue problem has
received considerable attentions from both 3PW practition-
ers and researchers. 3PW company can provide storage
services to different customerswith fixed storage capacity and
then capacity allocation policy plays an important role in
revenue management.

The aim of capacity allocation in 3PW is to pursue a better
fit between storage capacity allocation and market demand
for each level in order to improve the expected revenue. In
addition, customer demands for each level are uncertain. In
this paper, we focus on the capacity allocation policy of a 3PW
company for both single storage period andmultiperiod with

a revenue management perspective and robust optimization
method.

Revenue management (RM) is a useful tool to help
companies sell their products or services to right customers
at right price and right time and make greatest revenue [1].
The field of revenue management is originated in the airline
industry as a way to efficiently allocate fixed capacity to dif-
ferent classes of customers [2]. Talluri and Van Ryzin [3] dis-
cussed the network RM problems extensively, and their work
was based on the independent demand model. The success
of airline revenue management was widely reported, and this
stimulated development of revenue management systems for
other transportation sectors and in other areas of the services
sectors, such as automobile rental [4], broadcasting [5], and
hospitality [6]. Chiang et al. [7] provided an overview paper
on revenuemanagement.The solutionmethods that aremen-
tioned in these papers are mainly mathematical program-
ming, dynamic programming, and heuristics such as genetic
algorithm. Revenuemanagement is applied into many indus-
tries but not warehouse. In this paper, we study the capacity
allocation problem with the perspective on revenue manage-
ment.
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Several researchers have worked at third-party warehous-
ing. Gong and de Koster [8] gave a review on stochastic mod-
els and analysis on warehouse operations. Analysis of third-
party warehousing contracts with commitments was studied
without revenue consideration with capacity allocation in
Chen et al. [9]. Lin [10] studied capacity allocation policy
of third-party warehouse with dynamic optimization in
revenue management perspective. Zhang et al. [11] provided
the mathematical model of allocating customers to different
warehouse spaces with deterministic demand and they solved
this problem with a scheduling approach. Gong et al. [12]
proposed a facility design method to improve the warehouse
revenue with the consideration of stochastic market demand
and the customers arrived according to a Poisson process.
However, it is difficult to characterize the distribution of the
uncertain demand, and robust optimization with uncertain
demand is not included in these papers.

Robust optimization is a usefulmethod to solve stochastic
programming with unknown probability. Soyster [13] first
proposed factor uncertainty in the field of optimization and
gave its robust method. Ben-Tal and Nemirovski [14–16]
proposed several uncertainties regarding the form and its
applications and analyzed the robust methods of the linear
programming and general convex programming. El Ghaoui
et al. [17, 18] derived a similar conclusion and gave the
robust methods to solve optimization problems in practical
application. Bertsimas et al. [19, 20] did a further research
on the basis of their work; they relaxed the conservation of
the robust optimization and introduced the concept of the
price of robust. Vairaktarakis [21] presented robust newsboy
models with uncertain demand and provided an alternative
approach using deterministic optimization models which
could be solved by dynamic programming. Their work
studied the single period problem, and our paper can solve
the capacity allocation problem for both single period and
multiple periods.

The rest of this paper is organized as follows. In Section 2,
we describe the capacity allocation problem of the 3PW com-
pany and the corresponding mathematical model. Then we
propose three different robust models of single period prob-
lem, the corresponding algorithms, andwe give some numer-
ical examples in Section 3. Section 4 presents the robust
capacity allocation policies formultiperiod situation and then
gives some illustrative examples. Finally, Section 5 concludes
the paper with a short summary and future direction.

2. Problem Description

In this paper, we consider such a 3PW company which
provides several different levels of warehousing service for
customers, with fixed capacity 𝐿. The demand in each level
is uncertain. The service price or cost for each storage level is
different; therefore the unit revenue for each level is quite dif-
ferent. Facing such condition, this company should decide the
storage capacity for each level. As the total capacity is fixed, if
we increase one level’s capacity, the opportunity cost of other
levels maybe occur; if not, satisfaction degree of customer in
this level may decrease and give orders to other competitors.

In order to improve the revenue of this warehouse center and
use the storage capacity more appropriately, they should pro-
vide an appropriate capacity allocation policy which canmeet
the market demand more accurately. Therefor, this capacity
allocation problem is how this 3PW company will allocate
its limited warehousing capacity to each storage service level;
then it can maximize the total revenue.

Hypotheses are made as the following:

𝐿: total capacity of the 3PW company;

𝑁: number of the service levels;

𝐿
𝑛
: capacity number of 𝑛th level, 𝑛 = 1, . . . , 𝑁;

𝑃
𝑛
: the unit price of 𝑛th level per period;

𝐶
𝑛
: the unit cost of 𝑛th level per period, and 𝐶

𝑛
⩽ 𝑃
𝑛
;

𝑆
𝑛
: the unit cost of lost sales of 𝑛th level per period;

𝐷
𝑛
: the demand of 𝑛th level capacity, it is an interval

uncertain variable with the probability density func-
tion 𝑓(⋅) and cumulative distribution function 𝐹(⋅);

𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
): the revenue of 𝑛th level capacity with

capacity 𝐿
𝑛
and demand𝐷

𝑛
.

The TPW is a unit-load warehouse; that is, all goods in
this warehouse need to occupy the same storage space (one
pallet); split of the pallet does not exist.

The profit function for the 𝑖th item is given by

𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
) =

{

{

{

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐿
𝑛
, 𝐿

𝑛
⩾ 𝐷
𝑛

𝑃
𝑛
𝐿
𝑛
− (𝐶
𝑛
𝐿
𝑛
+ 𝑆
𝑛
(𝐷
𝑛
− 𝐿
𝑛
)) , 𝐿

𝑛
< 𝐷
𝑛
.

(1)

In a similar way as stochastic knapsack method, dynamic
warehousing capacity allocationmodel is obtained as follows:

max 𝐸 (𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
))

= ∫

𝐿
𝑛

0

(𝑃
𝑛
𝑢
𝑛
− 𝐶
𝑛
𝐿
𝑛
) 𝑓 (𝑢

𝑛
) 𝑑𝑢
𝑛

+ ∫

∞

𝐿
𝑛

(𝑃
𝑛
𝐿
𝑛
− (𝐶
𝑛
𝐿
𝑛
+ 𝑆
𝑛
(𝑢
𝑛
− 𝐿
𝑛
))) 𝑓 (𝑢

𝑛
) 𝑑𝑢
𝑛

s.t.
𝑁

∑

𝑛=1

𝐿
𝑛
⩽ 𝐿

𝐿
𝑛
⩾ 0, 𝑛 = 1, . . . , 𝑁.

(2)

The first constraint is the total capacity constraint, and the
second one implies capacity of each level cannot be negative.

Theorem 1. There exists the optimum solution in formula (2)
without constraint.
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Proof. Analyzing formula (2), we can get the first-order deriv-
ative as follows:

𝜕𝐸

𝜕𝐿
𝑛

=
𝜕

𝜕𝐿
𝑛

(∫

𝐿
𝑛

0

(𝑃
𝑛
𝑢
𝑛

− 𝐶
𝑛
𝐿
𝑛
) 𝑓 (𝑢

𝑛
) 𝑑𝑢
𝑛

+ ∫

∞

𝐿
𝑛

(𝑃
𝑛
𝐿
𝑛
− (𝐶
𝑛
𝐿
𝑛

+ 𝑆
𝑛
(𝑢
𝑛
− 𝐿
𝑛
))) 𝑓 (𝑢

𝑛
) 𝑑𝑢
𝑛
)

=
𝜕

𝜕𝐿
𝑛

(𝑃
𝑛
∫

𝐿
𝑛

0

𝑢
𝑛
𝑓 (𝑢
𝑛
) 𝑑𝑢
𝑛
− 𝑆
𝑛
∫

∞

𝐿
𝑛

𝑢
𝑛
𝑓 (𝑢
𝑛
) 𝑑𝑢
𝑛

+ (𝑃
𝑛
+ 𝑆
𝑛
) 𝐿
𝑛
(1 − 𝐹 (𝐿

𝑛
)) − 𝐶

𝑛
𝐿
𝑛
)

= 𝑃
𝑛
𝐿
𝑛
𝑓 (𝐿
𝑛
) + 𝑆
𝑛
𝐿
𝑛
𝑓 (𝐿
𝑛
) + (𝑃

𝑛
+ 𝑆
𝑛
) (1 − 𝐹 (𝐿

𝑛
))

− (𝑃
𝑛
+ 𝑆
𝑛
) 𝐿
𝑛
𝑓 (𝐿
𝑛
) − 𝐶
𝑛

= (𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) − (𝑃

𝑛
+ 𝑆
𝑛
) 𝐹 (𝐿

𝑛
) .

(3)

And the second-order derivative is

𝜕
2

𝐸

𝜕𝐿
𝑛

2
= − (𝑃

𝑛
+ 𝑆
𝑛
) 𝑓 (𝐿

𝑛
) ⩽ 0. (4)

Nowweknow that the expected revenue function is a con-
cave function about variable 𝐿

𝑛
, so there exists the optimum

solution if there is no constraint condition, and it should
satisfy the following condition:

𝐹 (𝐿
𝑛

∗

) =
𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛

𝑃
𝑛
+ 𝑆
𝑛

. (5)

However, in practice we can hardly know the cumulative
distribution function 𝐹(⋅) of the demand variable 𝐷

𝑛
. On

the contrary, the maximum and minimum value of 𝐷
𝑛
can

easily be got. In the rest of this paper, we discuss the interval
demand condition with𝐷

𝑛
∈ [𝐷
𝑛
, 𝐷
𝑛
].

3. Robust Optimization for Single Period

There exist many methods to describe the uncertainty in
management optimization problems. One of the most classic
versions is the assumption that the probability distribution
of the random variable is known. However, it is always not
realistic in the actual problem. Robust optimization is a useful
method to solve stochastic programming with unknown
probability.

According to Vairaktarakis [21], there are three different
types of robust methods: absolute robust, deviation robust,
and relative robust method. Applying these three robust
methods in warehousing capacity allocation, we can get the
following three models.

3.1. Absolute Robust Model. In case that the demand realiza-
tions for item 𝑛 take values from the interval 𝐷

𝑛
∈ [𝐷
𝑛
, 𝐷
𝑛
],

our absolute robust formulation with a budget constraint
becomes

max
𝐿
𝑛

min
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
) . (6)

Analyzing the objective function, we can get

min
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
)

= min
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

{{{{

{{{{

{

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐿
𝑛
, 𝐿

𝑛
⩾ 𝐿
𝐴

𝑛
⩾ 𝐷
𝑛

𝑃
𝑛
𝐿
𝑛

− (𝐶
𝑛
𝐿
𝑛
+ 𝑆
𝑛
(𝐷
𝑛
− 𝐿
𝑛
)) , 𝐿

𝑛
⩽ 𝐿
𝐴

𝑛
⩽ 𝐷
𝑛

=

{

{

{

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐿
𝑛
, 𝐿

𝑛
⩾ 𝐿
𝐴

𝑛
⩾ 𝐷
𝑛

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
− 𝑆
𝑛
𝐷
𝑛
, 𝐿
𝑛
⩽ 𝐿
𝐴

𝑛
⩽ 𝐷
𝑛
.

(7)

Thus, the absolute robust allocation 𝐿
𝐴

𝑛
should satisfy the

following equation:

𝜋
𝑛
(𝐿
𝐴

𝑛
, 𝐷
𝑛
) = 𝜋
𝑛
(𝐿
𝐴

𝑛
, 𝐷
𝑛
) . (8)

That implies

𝐿
𝐴

𝑛
=

𝑃
𝑛
𝐷
𝑛
+ 𝑆
𝑛
𝐷
𝑛

𝑃
𝑛
+ 𝑆
𝑛

. (9)

Now,we can get the absolute robust allocationmodel with
uncertain interval demand as follows:

max
𝐿
1
,...,𝐿
𝑁

min
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝑁

∑

𝑛=1

𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
)

s.t.
𝑁

∑

𝑛=1

𝐿
𝑛
⩽ 𝐿.

(10)

The following observations can be made for model AR.

Theorem 2. There exists an optimal solution {𝐿
𝐴∗

1
, . . . , 𝐿

𝐴∗

𝑁
}

for this AR model, and 𝐿
𝐴∗

𝑛
∈ [𝐷
𝑛
, 𝐿
𝐴

𝑛
], 𝑛 = 1, . . . , 𝑁.

With this theorem, we can get the equivalent form of
formula (10):

max
𝐿
1
,...,𝐿
𝑛

𝑁

∑

𝑛=1

((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
− 𝑆
𝑛
𝐷
𝑛
) . (11)

The optimal solution of (11) maximizes the quantity
∑
𝑁

𝑛=1
(𝑃
𝑛
+𝑆
𝑛
−𝐶
𝑛
)𝐿
𝑛
, and therefore ARmodel can be reduced

to a continuous knapsack problem. The corresponding algo-
rithm will be introduced in the next section.



4 Mathematical Problems in Engineering

3.2. Deviation Robust Model. The deviation robust-order
quantity is the solution of

min
𝐿
𝑛

max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

(𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
) − 𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
)) . (12)

This formulation provides a solution that minimizes over
all choices of order quantities the maximum profit loss due
to demand uncertainty. This is a mini-max regret approach
where the regret is captured by the difference 𝜋

𝑛
(𝐷
𝑛
, 𝐷
𝑛
) −

𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
). The profit could be realized if there is no demand

uncertainty in which case we would order 𝐿
𝑛
= 𝐷
𝑛
.

That equals

max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

(𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
) − 𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
))

= max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

{{{{{{{{{{

{{{{{{{{{{

{

(𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛
) − (𝑃

𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐿
𝑛
) ,

𝐿
𝑛
⩾ 𝐿
𝐷

𝑛
⩾ 𝐷
𝑛

((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
− 𝑆
𝑛
𝐷
𝑛
)

− ((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
− 𝑆
𝑛
𝐷
𝑛
) ,

𝐿
𝑛
⩽ 𝐿
𝐷

𝑛
⩽ 𝐷
𝑛

= max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

{{{{

{{{{

{

𝐶
𝑛
𝐿
𝑛
− 𝐶
𝑛
𝐷
𝑛
, 𝐿

𝑛
⩾ 𝐿
𝐷

𝑛
⩾ 𝐷
𝑛

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛

− (𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
, 𝐿
𝑛
⩽ 𝐿
𝐷

𝑛
⩽ 𝐷
𝑛

=

{{{{

{{{{

{

𝐶
𝑛
𝐿
𝑛
− 𝐶
𝑛
𝐷
𝑛
, 𝐿

𝑛
⩾ 𝐿
𝐷

𝑛
⩾ 𝐷
𝑛

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛

− (𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
, 𝐿
𝑛
⩽ 𝐿
𝐷

𝑛
⩽ 𝐷
𝑛
.

(13)

Thus, the deviation robust allocation should satisfy the
following equation:

𝐿
𝐷

𝑛
=

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
+ 𝐶
𝑛
𝐷
𝑛

𝑃
𝑛
+ 𝑆
𝑛

. (14)

Now,we can get the absolute robust allocationmodel with
uncertain interval demand as follows:

min
𝐿
1
,...,𝐿
𝑁

max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝑁

∑

𝑛=1

(𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
) − 𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
))

s.t.
𝑁

∑

𝑛=1

𝐿
𝑛
⩽ 𝐿.

(15)

Just as AR model, the objective function equals

min
𝐿
1
,...,𝐿
𝑛

𝑁

∑

𝑛=1

((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
− (𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
) . (16)

It makes us maximize ∑
𝑁

𝑛=1
(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐿
𝑛
. Therefore

DR model reduces to a continuous knapsack problem. The
corresponding algorithm will be introduced in the next
section.

3.3. Relative Robust Model. The third robust formulation is
called relative robustness and the corresponding formulation
is given by

min
𝐿
𝑛

max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
) − 𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
)

𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
)

(17)

which minimizes the relative profit loss per unit of profit that
could be made if there was no demand uncertainty. Note that
the relative profit loss measures the lost profit as a percentage
of the profit that could bemade if we knew the actual demand.

In the rest of our analysis it will become clear that the
three objectives result in very different choices of order quan-
tities. Similar formulations can bewritten for the case of inter-
val scenarios.The only difference inmodeling the continuous
case is that there is a constraint𝐷

𝑛
∈ [𝐷
𝑛
, 𝐷
𝑛
].

As we have analyzed above, it equals

max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
) − 𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
)

𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
)

= max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛
) − (𝑃

𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐿
𝑛
)

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛

,

𝐿
𝑛
⩾ 𝐿
𝑅

𝑛
⩾ 𝐷
𝑛

(((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
− 𝑆
𝑛
𝐷
𝑛
)

− ((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛
− 𝑆
𝑛
𝐷
𝑛
))

⋅ ((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
− 𝑆
𝑛
𝐷
𝑛
)
−1

,

𝐿
𝑛
⩽ 𝐿
𝑅

𝑛
⩽ 𝐷
𝑛

=

{{{{

{{{{

{

𝐶
𝑛
𝐿
𝑛
− 𝐶
𝑛
𝐷
𝑛

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛

, 𝐿
𝑛
⩾ 𝐿
𝑅

𝑛
⩾ 𝐷
𝑛

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
− (𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛

, 𝐿
𝑛
⩽ 𝐿
𝑅

𝑛
⩽ 𝐷
𝑛
.

(18)

The last equation has the optimum solution if and only if
𝐿
𝑅

𝑛
= (𝑃
𝑛
+ 𝑆
𝑛
)𝐷
𝑛
𝐷
𝑛
/((𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
+ 𝐶
𝑛
𝐷
𝑛
).

Finally, we can get the RR model:

min
𝐿
1
,...,𝐿
𝑁

max
𝐷
𝑛
∈[𝐷
𝑛
,𝐷
𝑛
]

𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
) − 𝜋
𝑛
(𝐿
𝑛
, 𝐷
𝑛
)

𝜋
𝑛
(𝐷
𝑛
, 𝐷
𝑛
)

s.t.
𝑁

∑

𝑛=1

𝐿
𝑛
⩽ 𝐿.

(19)

That equals

min
𝐿
1
,...,𝐿
𝑁

𝑁

∑

𝑛=1

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛
− (𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
) 𝐿
𝑛

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛

= min
𝐿
1
,...,𝐿
𝑁

𝑁

∑

𝑛=1

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)𝐷
𝑛

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛

−
(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)

𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛

𝐿
𝑛
.

(20)
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Table 1: Each cost of warehouse 𝐴.

Level 𝑃
𝑛

𝐶
𝑛

𝑆
𝑛

𝐷
𝑛

𝐷
𝑛

𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛

(𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
)/(𝑃
𝑛
𝐷
𝑛
− 𝐶
𝑛
𝐷
𝑛
)

1 10 4 4 500 700 10 0.00238
2 8 2 3 600 700 9 0.00214
3 12 5 5 200 300 12 0.00686
4 14 4 3 300 450 13 0.00289

Table 2: The capacity allocation policies of 3 types of robust model.

Level Prior (A/DR) Prior (RR) 𝐿
𝐴

𝑛
𝐿
𝐴∗

𝑛
𝐿
𝐷

𝑛
𝐿
𝐷∗

𝑛
𝐿
𝑅

𝑛
𝐿
𝑅∗

𝑛

1 3 3 557 557 643 643 628 628
2 4 4 627 388 682 171 679 207
3 2 1 229 229 271 271 262 262
4 1 2 326 326 415 415 403 403

3.4. Algorithm and Illustrative Examples. In this section, we
adapt the continuous knapsack procedure to the three robust
formulations.

Algorithm for AR Model

Step 1. Define the weight 𝑤𝐴
𝑛

= 𝑃
𝑛
+ 𝑆
𝑛
− 𝐶
𝑛
, 𝑛 = 1, . . . , 𝑁,

and index the items such that 𝑤𝐴
1
⩾ 𝑤
𝐴

2
⩾ ⋅ ⋅ ⋅ ⩾ 𝑤

𝐴

𝑁
.

Step 2. If 𝐿 ⩾ ∑
𝑁

𝑛=1
𝐿
𝐴

𝑛
, then 𝐿

𝐴∗

𝑛
= 𝐿
𝐴

𝑛
, 𝑛 = 1, . . . , 𝑁.

Otherwise identify the critical item 𝑡 such that

𝑡 = arg
𝑖

min
{

{

{

𝑁

∑

𝑗=1

𝐷
𝑗
+

𝑖

∑

𝑗=1

(𝐿
𝐴

𝑗
− 𝐷
𝑗
) ⩾ 𝐿

}

}

}

. (21)

Step 3. If 𝑖 < 𝑡, 𝐿𝐴∗
𝑖

= 𝐿
𝐴

𝑖
; if 𝑖 > 𝑡, 𝐿𝐴∗

𝑖
= 𝐷
𝑖
; if 𝑖 = 𝑡, 𝐿𝐴∗

𝑖
=

𝐿 − ∑
𝑗 ̸=𝑡

𝐿
𝐴∗

𝑗
.

As the algorithm for DR model is the same as the above
algorithm, we do not show it again here.

3.5. Algorithm for RR Model

Step 1.Define the weight𝑤𝑅
𝑛
= (𝑃
𝑛
+𝑆
𝑛
−𝐶
𝑛
)/(𝑃
𝑛
𝐷
𝑛
−𝐶
𝑛
𝐷
𝑛
),

𝑛 = 1, . . . , 𝑁, and index the items such that 𝑤𝑅
1
⩾ 𝑤
𝑅

2
⩾ ⋅ ⋅ ⋅ ⩾

𝑤
𝑅

𝑁
.

Step 2. If 𝐿 ⩾ ∑
𝑁

𝑛=1
𝐿
𝑅

𝑛
, then 𝐿

𝑅∗

𝑛
= 𝐿
𝑅

𝑛
, 𝑛 = 1, . . . , 𝑁.

Otherwise identify the critical item 𝑡 such that

𝑡 = arg
𝑖

min
{

{

{

𝑁

∑

𝑗=1

𝐷
𝑗
+

𝑖

∑

𝑗=1

(𝐿
𝑅

𝑗
− 𝐷
𝑗
) ⩾ 𝐿

}

}

}

. (22)

Step 3. For 𝑖 < 𝑡, 𝐿𝑅∗
𝑖

= 𝐿
𝑅

𝑖
; for 𝑖 > 𝑡, 𝐿𝑅∗

𝑖
= 𝐷
𝑖
; for 𝑖 = 𝑡,

𝐿
𝑅∗

𝑖
= 𝐿 − ∑

𝑗 ̸=𝑡
𝐿
𝑅∗

𝑗
.

3.6. Illustrative Examples. There is a third-party warehouse
company 𝐴, the total capacity is 1500, and the service price
and cost for each level are shown as Table 1. Assume that, for
each level 𝑛, we are given a scenario𝐷

𝑛
of demand quantities

that may be realized. The number of likely minimum and
maximumdemand of𝐷

𝑛
is𝐷
𝑛
and𝐷

𝑛
.Thenwe can calculate

the weights 𝑤𝐴
𝑛
/𝑤
𝐷

𝑛
and 𝑤

𝑅

𝑛
, which are shown in the last two

columns.
By Table 1, we can get the prior list of each robust model.

Then using the algorithm that we have proposed in last sec-
tion, we can get the formulation for the three types of robust
policies which are shown as Table 2.

Table 2 indicates that level 4 receives top priority by
AR/DR because it results in the highest (profit + lost sale)
ratio; level 3 receives top priority by RR as it holds the higher
(profit + lost sale) ratio and lower 𝐷; level 3 is favored by the
RR objective while its priority is lower for the AR and DR
objectives. Similar conclusions can bemade for the remaining
items.

As a result, for any budget level and for every one of the
three objectives, our formulations result to order the max-
imum possible number of units starting with high priority
items and continue on with items of lower priority. For exam-
ple, in the relative robust policy, we should first satisfy the
first three highest priority levels: level 4, level 3, and level 1
with the capacity allocations 326, 529, and 557. For level 4, the
only left capacity is 388. Similarly, we can get the deviation
robust policy and relative robust policy, which are shown as
the seventh and ninth column in Table 2.

3.7. Analysis of the Three Robust Policies. In this section,
we analyze the effect of these three robust policies on the
company revenue. In general, we use three scenarios to
simulate the demand market: scenario 1, the lowest situation,
the demand of each level is the minimum demand, that is,
500, 600, 200, and 300; scenario 2, the highest situation,
the demand of each level is the maximum demand, that is,
700, 700, 300, and 450; scenario 3, the middle situation, the
demand of each level is 600, 650, 250, and 375. Using the three
robust policies in Table 2, we can get the total revenue of the
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Table 3: The revenue of each policy.

Robust
policy Scenario 1 Scenario 2 Scenario 3 Average revenue

AR 8615 8298 9323 8745.3
DR 5752 8866 8594 7737.3
RR 6229 8776 8729 7911.3

third-party warehouse company under each robust policy in
Table 3.

From Table 3, we can get that, for scenario 1 (the min-
imum demand situation), the best policy is absolute robust
policy, and the best revenue is 8615, while the worst revenue
of the deviation robust policy is 5752. For the maximum
demand situation, the best policy is the deviation robust
policy, and the best revenue is 8866, while the worst revenue
of the absolute robust policy is 8298. For the middle demand
situation, the best revenue (9323) comes from the absolute
robust policy, while the worst revenue (8594) comes from
the deviation robust policy. And we can express Table 3 by
Figure 1.

By Figure 1, we can observe that, in both the minimum
and middle demand situation, the absolute robust policy is
better than the relative robust policy, while the relative robust
policy is better than deviation robust policy. However, the
opposite result appears in themiddle demand situation. From
the average revenue, the best policy is absolute robust policy
while the worst policy is the deviation robust policy.

The results make sense for the 3PW company holder. On
one hand, if the demand market is not so high, that is, the
demand for each level is lower, he should choose the absolute
robust policy and avoid deviation robust policy. Otherwise,
he should choose deviation robust or relative robust policy
when the demand for each level is high. On the other hand,
from the perspective of average revenue, the absolute robust
policy is the best policy for the conservative holders, whose
managements are risk aversion.

4. Robust Optimization for Multiple Periods

In this section, we extend this capacity allocation prob-
lem into multiperiod condition. The following are the new
hypotheses which are used in this section, and the remaining
parameters are the same as last section.

𝐷
𝑖𝑗𝑛
: storage demandwhich starts from 𝑖th period and

ends at 𝑗th period of 𝑛th service level (0 ≤ 𝑖 < 𝑗 ≤ 𝑇),
and it is an uncertain variable;
𝑟
𝑛
: the unit revenue of storage service level 𝑛;

𝐿
𝑖𝑗𝑛
: decision variables, the capacity allocation which

starts from 𝑖th period and ends at 𝑗th period of 𝑛th
service level;
∑
𝑇

𝑗=𝑖+1
𝐿
𝑖𝑗𝑛
: the number of products of 𝑛th service

level which are stored on the 𝑖th period;
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Figure 1: The revenue of each policy under each scenario.

∑
𝑗−1

𝑖=0
𝐿
𝑖𝑗𝑛
: the number of products of 𝑛th service level

which are retrieved on the 𝑗th period.

We assume there are no goods staying before period 0
and all the goods have to be retrieved on or before the last
period. The 3PW is a unit-load warehouse; that is, all goods
in this warehouse need to occupy the same storage space (one
pallet); split of the pallet does not exist.

We consider a particular period 𝑡, 𝑡 = 1, 2, . . . , 𝑇 − 1;
the following equation models the occupation status of the
warehouse center on period 𝑡:

𝑡−1

∑

𝑖=0

𝑇

∑

𝑗=𝑡

𝐿
𝑖𝑗𝑛

+

𝑇

∑

𝑗=𝑡+1

𝐿
𝑡𝑗𝑛

−

𝑡−1

∑

𝑖=0

𝐿
𝑖𝑡𝑛
. (23)

The first part of this equation stands for the number of
goods which stay over period 𝑡, that is, storage before period 𝑡

and retrieve after period 𝑡; the second part means the number
of goods which are stored on period 𝑡; the last part means the
number of the goods which retrieve on period 𝑡.

With the fixed capacity, we have the following constraints
for period 𝑡:

𝑡−1

∑

𝑖=0

𝑇

∑

𝑗=𝑡

𝐿
𝑖𝑗𝑛

+

𝑇

∑

𝑗=𝑡+1

𝐿
𝑡𝑗𝑛

−

𝑡−1

∑

𝑖=0

𝐿
𝑖𝑡𝑛

≤ 𝐿
𝑛
. (24)

Particularly, on the period 0, we have

𝑇

∑

𝑗=1

𝐿
0𝑗𝑛

≤ 𝐿
𝑛
, 𝑛 = 1, 2, . . . , 𝑁. (25)
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Then we can get the stochastic mathematical model as
follows:

max
𝑁

∑

𝑛=1

𝑇−1

∑

𝑖=0

𝑇

∑

𝑗=𝑖+1

𝑟
𝑛
⋅ (𝑗 − 𝑖) 𝐿

𝑖𝑗𝑛

s.t.
𝑡−1

∑

𝑖=0

𝑇

∑

𝑗=𝑡

𝐿
𝑖𝑗𝑛

+

𝑇

∑

𝑗=𝑡+1

𝐿
𝑡𝑗𝑛

−

𝑡−1

∑

𝑖=0

𝐿
𝑖𝑡𝑛

≤ 𝐿
𝑛
,

𝑡 = 1, 2, . . . , 𝑇 − 1, 𝑛 = 1, 2, . . . , 𝑁;

𝑇

∑

𝑗=1

𝐿
0𝑗𝑛

≤ 𝐿
𝑛
, 𝑛 = 1, 2, . . . , 𝑁;

𝑁

∑

𝑛=1

𝐿
𝑛
≤ 𝐿;

𝐿
𝑖𝑗𝑛

≤ 𝐷
𝑖𝑗𝑛
, 𝐷
𝑖𝑗𝑛

∈ 𝑁 ∪ {0} ,

𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇.

(26)

The objective function is to maximize the total revenue of
all period and all service level.The third constraint condition
is the total capacity constraint; it means that in every time
period the sum of capacity allocations of all service level can
not be larger than the total capacity of the 3PW. The last
constraint condition stands for the fact that the capacity allo-
cation variable 𝐿

𝑖𝑗𝑛
must be an integer which is not smaller

than 0.

4.1. Robust OptimizationModel. Theproblem looks like a lin-
ear integer programming problem.Unfortunately, the param-
eters 𝐷

𝑖𝑗𝑛
are usually uncertain at the beginning of planning

period. Moreover, the revenues may not be fixed, as the
decision maker would like to set different pricing, which in
turn results in different demands. One may want to solve this
by replacing the parameters by their best point estimator, for
instance, using expected value 𝐸[𝐷

𝑖𝑗𝑛
] to replace the uncer-

tain parameter of𝐷
𝑖𝑗𝑛
. One of the most classic versions is the

assumption that the probability distribution of the random
variable is known. However, it is always not realistic in the
actual problem. Robust optimization is a useful method to
solve stochastic programming with unknown probability.We
believe decisionmakers would prefer to use proactive tools to
obtain their solutions.

According to Mulvey et al. [22], there are two definitions
about robustness.

Definition 3 (solution robustness). An optimal solution is
solution robust with respect to optimality if it remains “close”
to being optimal for any scenario 𝑠 ∈ 𝜃.

Definition 4 (model robustness). An optimal solution is
model robust with respect to feasibility if it remains “almost”
feasible for any scenario 𝑠 ∈ 𝜃.

Consider such a stochastic programming:

min 𝑐
𝑇

𝑥 + 𝑑
𝑇

𝑦

s.t. 𝐴𝑥 = 𝑏

𝐵𝑥 + 𝐶𝑦 = 0

𝑥 ≥ 0, 𝑦 ≥ 0,

(27)

where the decision variable 𝑦 contains uncertainty. Then the
corresponding robust model can be written as follows:

min 𝜎 (𝑥, 𝑦
1
, . . . , 𝑦

𝑠
) + 𝑤𝜌 (𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑠
)

s.t. 𝐴𝑥 = 𝑏

𝐵
𝑠
𝑥 + 𝐶

𝑠
𝑦
𝑠
+ 𝛿
𝑠
= 𝑒
𝑠
, 𝑠 ∈ 𝜃

𝑥 ≥ 0, 𝑦
𝑠
≥ 0, 𝛿

𝑠
≥ 0, 𝑠 ∈ 𝜃,

(28)

where 𝛿
𝑠
is the deviation associated with the corresponding

scenario 𝑠. In the objective function of this model, the first
part stands for the measure of the solution robustness, and
the second part means deviation from the constraint, that is,
the measure of the model robustness.

There are several different forms of 𝜎. In this paper, we
use a form of 𝜎 which was proposed by Yu and Li [23]:

𝜎 = ∑

𝑠∈𝜃

𝑝
𝑠
⋅ 𝜉
𝑠
+ 𝜆∑

𝑠∈𝜃

𝑝
𝑠
⋅



𝜉
𝑠
− ∑

𝑠∈𝜃

𝑝
𝑠
⋅ 𝜉
𝑠



, (29)

where 𝑝
𝑠
is the probability of the scenario 𝑠 and ∑

𝑠∈𝜃
𝑝
𝑠
= 1.

Under this form and the above robust model, we can get
a robust formulation of model (26):

max ∑

𝑠∈𝜃

𝑝
𝑠
⋅ 𝜋
𝑠
− 𝜆∑

𝑠∈𝜃

𝑝
𝑠
⋅



𝜋
𝑠
− ∑

𝑠∈𝜃

𝑝
𝑠
⋅ 𝜋
𝑠



− ∑

𝑠∈𝜃

𝑝
𝑠

𝑁

∑

𝑛=1

𝑇−1

∑

𝑖=0

𝑇

∑

𝑗=𝑖+1

𝑤
𝑖𝑗𝑛


𝐷
𝑠

𝑖𝑗𝑛
− 𝐿
𝑖𝑗𝑛



s.t.
𝑡−1

∑

𝑖=0

𝑇

∑

𝑗=𝑡

𝐿
𝑖𝑗𝑛

+

𝑇

∑

𝑗=𝑡+1

𝐿
𝑡𝑗𝑛

−

𝑡−1

∑

𝑖=0

𝐿
𝑖𝑡𝑛

≤ 𝐿
𝑛
,

𝑡 = 1, 2, . . . , 𝑇 − 1, 𝑛 = 1, 2, . . . , 𝑁;

𝑇

∑

𝑗=1

𝐿
0𝑗𝑛

≤ 𝐿
𝑛
, 𝑛 = 1, 2, . . . , 𝑁;

𝑁

∑

𝑛=1

𝐿
𝑛
≤ 𝐿;

𝐿
𝑖𝑗𝑛

≤ max {𝐷𝑠
𝑖𝑗𝑛
} ,

𝑛 = 1, 2, . . . , 𝑛, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇, 𝑠 ∈ 𝜃

𝐿
𝑖𝑗𝑛

∈ 𝑁 ∪ {0} , 𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇;

𝜋
𝑠
=

𝑁

∑

𝑛=1

𝑇−1

∑

𝑖=0

𝑁

∑

𝑛=1

𝑟
𝑠

𝑛
⋅ (𝑗 − 𝑖) 𝐿

𝑖𝑗𝑛
, 𝑠 ∈ 𝜃

𝜆 ≥ 0, 𝑤
𝑖𝑗𝑛

≥ 0,

(30)
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where 𝜆 and 𝑤
𝑖𝑗𝑛

are nonnegative weighting parameters. In
the objective function of this model (30), the first part is the
expected revenue, while the second term is themean absolute
deviation of the revenue. We can regard parameter 𝜆 as a risk
trade-off factor between expected revenue and deviation.The
absolute deviation in the third term is a model robustness
measurement while the parameters 𝑤

𝑖𝑗𝑛
are the penalty

weights for the constraints violations.
In model (30), there is uncertain variable 𝐷

𝑖𝑗𝑛
in both

objective function and constraints. In this paper, we use
factor-based demand model. See and Sim [24] proposed a
formof uncertain variable which can bewritten as this:𝐷

𝑖𝑗𝑛
≜

𝐷
0

𝑖𝑗𝑛
+ ∑
𝐾

𝑘=1
𝐷
𝑘

𝑖𝑗𝑛
𝑧
𝑘
, where 𝑧 ≜ {𝑧

1
, . . . , 𝑧

𝐾
}, and the demand

for each level is affinely dependent on uncertain factor 𝑧
𝑘
:

𝑘 = 1, . . . , 𝐾;𝐾 represents the number of such factors used to
model demand.With the assumption𝑈 and theorems in Ang
et al. [25], we can get the equivalent form of the constraint
𝐷
𝑠

𝑖𝑗𝑛
− 𝐿
𝑖𝑗𝑛

+ 𝛿
𝑠

𝑖𝑗𝑛
≥ 0 as follows:

max
𝐾

∑

𝑘=1

𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝑧
𝑘

s.t.
𝐾

∑

𝑘=1

(𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝛼
𝑘,1

+ 𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝛽
𝑘,1

) ≥ 𝐿
𝑖𝑗𝑛

− 𝐷
𝑠,0

𝑖𝑗𝑛
− 𝛿
𝑠

𝑖𝑗𝑛
,

𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇

𝛼
𝑘,1

≥ 0, 𝛽
𝑘,1

≥ 0, 𝑘 = 1, . . . , 𝐾.

(31)

We can use a similar method to deal with the other
constraint containing 𝐷

𝑖𝑗𝑛
. Finally, model (30) can be trans-

formed in a linear term as follows:

max ∑

𝑠∈𝜃

𝑝
𝑠
𝜋
𝑠
− 𝜆∑

𝑠∈𝜃

𝑝
𝑠
(𝜋
𝑠
− ∑

𝑠∈𝜃

𝑝
𝑠
𝜋
𝑠
+ 2𝜀
𝑠

)

− ∑

𝑠∈𝜃

𝑝
𝑠

𝑇−1

∑

𝑖=0

𝑇

∑

𝑗=𝑖+1

𝑁

∑

𝑛=1

𝑤
𝑖𝑗𝑛

⋅ (𝐷
𝑠,0

𝑖𝑗𝑛
+

𝐾

∑

𝑘=1

𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝑧
𝑘

− 𝐿
𝑖𝑗𝑛

+ 2𝛿
𝑠

𝑖𝑗𝑛
)

s.t. 𝜋
𝑠
− ∑

𝑠∈𝜃

𝑝
𝑠
⋅ 𝜋
𝑠
+ 𝜀
𝑠

≥ 0

𝐾

∑

𝑘=1

(𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝛼
𝑘,1

+ 𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝛽
𝑘,1

) ≥ 𝐿
𝑖𝑗𝑛

− 𝐷
𝑠,0

𝑖𝑗𝑛
− 𝛿
𝑠

𝑖𝑗𝑛
,

𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇

𝑡−1

∑

𝑖=0

𝑇

∑

𝑗=𝑡

𝐿
𝑖𝑗𝑘

+

𝑇

∑

𝑗=𝑡+1

𝐿
𝑡𝑗𝑛

−

𝑡−1

∑

𝑖=0

𝐿
𝑖𝑡𝑛

≤ 𝐶
𝑘
,

𝑡 = 1, 2, . . . , 𝑇 − 1, 𝑛 = 1, 2, . . . , 𝑁;

𝑇

∑

𝑗=1

𝐿
0𝑗𝑛

≤ 𝐿
𝑛
, 𝑛 = 1, 2, . . . , 𝑁;

𝑁

∑

𝑛=1

𝐿
𝑛
≤ 𝐿;

𝐾

∑

𝑘=1

(𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝛼
𝑘,2

+ 𝐷
𝑠,𝑘

𝑖𝑗𝑛
𝛽
𝑘,2

) ≥ 𝐿
𝑖𝑗𝑛

− 𝐷
𝑠,0

𝑖𝑗𝑛
,

𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇

𝜋
𝑠
=

𝑁

∑

𝑛=1

𝑇−1

∑

𝑖=0

𝑁

∑

𝑛=1

𝑟
𝑠

𝑛
⋅ (𝑗 − 𝑖) 𝐿

𝑖𝑗𝑛
, 𝑠 ∈ 𝜃

𝐿
𝑖𝑗𝑛

∈ 𝑁 ∪ {0} , 𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇

𝜆, 𝑤
𝑖𝑗𝑛
, 𝜀
𝑠

, 𝛿
𝑠

𝑖𝑗𝑛
≥ 0,

𝑛 = 1, 2, . . . , 𝑁, 0 ≤ 𝑖 < 𝑗 ≤ 𝑇, 𝑠 ∈ 𝜃

𝛼
𝑘,1

, 𝛼
𝑘,2

, 𝛽
𝑘,1

, 𝛽
𝑘,2

≥ 0, 𝑘 = 1, . . . , 𝐾.

(32)

The prominent feature of formulation (32) is that it is
now in a linear programming form and ready to be solved
by popular linear modeling packages like LINGO when the
weighting parameters are assigned by the decision makers.

4.2. Illustrative Examples and Analysis. Consider such a 3PW
company which can provide three different levels of storage
service for the storage customers. According to the history
data, there are three main demand scenarios 𝑠

1
, 𝑠
2
, and 𝑠

3
;

each demand scenario stands for a market condition. For
example, 𝑠

1
may mean the market demand is high, and the

storage demand of the three levels is large. 𝑠
2
means the

storage market is bad, and the demand of each storage level is
small. 𝑠

3
is the common condition, and the storage demand

is medium. Suppose the probability of these three scenarios
is 0.2, 0.2, and 0.6. The planning horizon is set to be 3
periods, and the total capacity of this warehouse is 2000 units.
Demands for all pairs are forecast as shown in Tables 4–6.

In these tables, the “ST” means the storage time and “RT”
means the retrieval time of the goods. The first number in
Table 4 means that the demand which is stored in period 0
and retrieve in period 1 is 120. Suppose that, under multiple
demand scenarios, the unit price of level 1 for each scenario is
20, 15, and 18 dollars per period, the unit price of level 2 is 30,
26, and 28 dollars per period, and the unit price of level 3 is
38, 32, and 36 dollars per period. For simplicity, all weights
𝑤
𝑖𝑗𝑛

are set to be equal to 1. By our robust model (32), we
can get the optimal capacity allocation policies summarized
in Table 7.

The total revenue of the 3PW is 219357 dollars. According
to solution the linear programming model, the capacity
allocation for level 1 is 951 units, the capacity allocation for
level 2 is 612 units, and the capacity allocation for level 3 is
437 units. The optimal capacity allocation policies are sum-
marized in Table 7.
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Table 4: Demands of customers (scenario 𝑠
1
).

ST: 𝑖 RT: 𝑗 (level 1) RT: 𝑗 (level 2) RT: 𝑗 (level 3)
1 2 3 4 1 2 3 4 1 2 3 4

0 200 180 270 150 120 130 190 140 100 180 70 30
1 0 350 280 120 0 200 150 135 0 95 110 50
2 0 0 280 100 0 0 160 150 0 0 130 230
3 0 0 0 200 0 0 0 120 0 0 0 50

Table 5: Demands of customers (scenario 𝑠
2
).

ST: 𝑖 RT: 𝑗 (level 1) RT: 𝑗 (level 2) RT: 𝑗 (level 3)
1 2 3 4 1 2 3 4 1 2 3 4

0 100 140 290 100 90 100 120 110 120 100 70 40
1 0 320 180 120 0 150 200 120 0 80 100 40
2 0 0 220 90 0 0 120 100 0 0 100 150
3 0 0 0 150 0 0 0 100 0 0 0 70

Table 6: Demands of customers (scenario 𝑠
3
).

ST: 𝑖 RT: 𝑗 (level 1) RT: 𝑗 (level 2) RT: 𝑗 (level 3)
1 2 3 4 1 2 3 4 1 2 3 4

0 130 200 250 120 100 120 170 120 90 150 90 50
1 0 270 310 100 0 180 180 150 0 100 75 50
2 0 0 240 120 0 0 150 120 0 0 110 200
3 0 0 0 180 0 0 0 120 0 0 0 60

Table 7: Capacity allocation policy with multiple demands.

ST: 𝑖 RT: 𝑗 (level 1) RT: 𝑗 (level 2) RT: 𝑗 (level 3)
1 2 3 4 1 2 3 4 1 2 3 4

0 170 180 270 110 120 120 185 125 120 80 90 50
1 0 270 250 100 0 195 180 140 0 120 110 50
2 0 0 200 110 0 0 150 135 0 0 130 230
3 0 0 0 200 0 0 0 120 0 0 0 70

According to Table 7, we can obverse that the demand of
level 3 should be met firstly. That is because the unit revenue
of level 3 is the highest; therefore the capacity allocation for
level 3 can meet all the demand of level 3 for all scenarios.
On the contrary, capacity allocation for level 1 is smaller than
its market demand as a result of its lower unit revenue. 3TW
company managers can improve their revenue by applying
this optimization method.

5. Conclusions and Future Directions

In this paper, we consider the capacity allocation problem in
3PW company which provides several different level storage
services in different price under uncertain market demand.
On the revenue management perspective, we propose the
mathematical formulations of this problem for both single
and multiple periods condition. For the single period sit-
uation, as the demand is uncertain, we use three robust
methods, absolute robust, deviation robust, and relative
robust, to maximize the whole revenue. Based on the analysis
of the optimal solution in each situation, we adapt continuous

knapsack method to give the corresponding algorithm.Then
we use some numerical examples to verify the practical appli-
cability of our method. And we find that the 3PW company
managers should provide the maximum possible units of
the storage service level with high priority. As the objective
function of each method is different, these three methods do
not perform the same under the same market scenario. We
find that the absolute robustmethod performs better than the
other two methods in most situations. For the multiperiod
situation, we propose a stochastic model for the multiperiod
revenue management problem of the warehouse. A novel
robust optimization technique is applied in this model to
maximize the whole revenue. Then we give some numerical
examples to verify the practical applicability of our method.
The major contribution of this paper is that we use robust
optimization to deal with the uncertainty of market demand
in 3PW industry. In many of existing references of 3PW
revenuemanagement, authors consider revenue optimization
under deterministic demand or suppose stochastic demand
with known distribution such as Poisson process. In this
paper, we do not know the distribution of market demand
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in 3PW industry and linearize the uncertain mathematical
programming by different robust methods.

There remain several limitations in our work. First,
we consider the demand of each level and each period is
independent. Actually, the demands between different levels
may affect each other in some conditions and the demand
in one period may be affected by its demand in last period.
In our future research, we can analyze the affecting factors
of demand and characterize the form of demand to improve
the match degree between capacity allocation and demand.
Secondly, we set the price of each level as exogenous variables
in this paper. In the following research, we can combine the
dynamic pricing policy and capacity allocation to improve the
revenue of 3PWmore efficiently.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the Associate Editor
and anonymous referees for their constructive comments
and suggestions, which have led to significant improve-
ments of the paper. This research is partially supported by
NationalNatural Science Foundation ofChina (nos. 71131004,
71471071) and Humanities and Social Sciences Foundation of
Chinese Ministry of Education (no. 12YJC630149).

References

[1] J. I.McGill andG. J. van Ryzin, “Revenuemanagement: research
overview and prospects,” Transportation Science, vol. 33, no. 2,
pp. 233–256, 1999.

[2] C. P. Wright, H. Groenevelt, and R. A. Shumsky, “Dynamic rev-
enue management in airline alliances,” Transportation Science,
vol. 44, no. 1, pp. 15–37, 2010.

[3] K. T. Talluri and G. J. Van Ryzin,TheTheory Anpractice of Rev-
enueManagement, Kluwer Academic Publishers, Boston, Mass,
USA, 2004.

[4] M. K. Geraghty and E. Johnson, “Revenue management saves
National Car Rental,” Interfaces, vol. 27, no. 1, pp. 107–127, 1997.

[5] R. G. Cross, Revenue Management, Broadway Books, Bantam,
Doubleday, Dell Publishing Group, New York, NY, USA, 1998.

[6] G. R. Bitran and S. M. Gilbert, “Managing hotel reservations
with uncertain arrivals,” Operations Research, vol. 44, no. 1, pp.
35–49, 1996.

[7] W. C. Chiang, J. C. Chen, and X. Xu, “An overview of research
on revenue management: current issues and future research,”
International Journal of Revenue Management, vol. 1, no. 1, pp.
97–128, 2007.

[8] Y. Gong and R. B. M. de Koster, “A review on stochastic models
and analysis of warehouse operations,” Logistics Research, vol. 3,
no. 4, pp. 191–205, 2011.

[9] F. Y. Chen, S. H. Hum, and J. Sun, “Analysis of third-party
warehousing contracts with commitments,” European Journal of
Operational Research, vol. 131, no. 3, pp. 603–610, 2001.

[10] C. Lin, “Capacity allocation policy of third party warehousing
with dynamic optimization,” in Proceedings of the 5th Interna-
tional Symposium on Advances in Computation and Intelligence
(ISICA ’10), vol. 6382 of Lecture Notes in Computer Science, pp.
297–303, Springer, Wuhan, China, 2010.

[11] X. Zhang, Y. Gong, and S. van de Velde, “Storage schedul-
ing decision models for revenue management of self-storage
warehouses,” in Proceedings of the 10th International TRAIL in
Perspective Congress, 2008.

[12] Y. Gong, R. B. M. de Koster, J. B. G. Frenk, and A. F. Gabor,
“Increasing the revenue of self-storage warehouses by facility
design,” Production and Operations Management, vol. 22, no. 3,
pp. 555–570, 2013.

[13] A. L. Soyster, “Technical note—convex programming with set-
inclusive constraints and applications to inexact linear pro-
gramming,” Operations Research, vol. 21, no. 5, pp. 1154–1157,
1973.

[14] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,”
Mathematics of Operations Research, vol. 23, no. 4, pp. 769–805,
1998.

[15] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear
programming problems contaminated with uncertain data,”
Mathematical Programming, vol. 88, no. 3, pp. 411–424, 2000.

[16] A. Ben-Tal and A. Nemirovski, “On polyhedral approximations
of the second-order cone,”Mathematics of Operations Research,
vol. 26, no. 2, pp. 193–205, 2001.

[17] L. El Ghaoui and H. Lebret, “Robust solutions to least-squares
problemswith uncertain data,” SIAM Journal onMatrixAnalysis
and Applications, vol. 18, no. 4, pp. 1035–1064, 1997.

[18] L. El Ghaoui, F. Oustry, and H. Lebret, “Robust solutions to
uncertain semidefinite programs,” SIAM Journal on Optimiza-
tion, vol. 9, no. 1, pp. 33–52, 1999.

[19] D. Bertsimas, D. Pachamanova, and M. Sim, “Robust linear
optimization under general norms,” Operations Research Let-
ters, vol. 32, no. 6, pp. 510–516, 2004.

[20] D. Bertsimas and M. Sim, “The price of robustness,” Operations
Research, vol. 52, no. 1, pp. 35–53, 2004.

[21] G. L. Vairaktarakis, “Robust multi-item newsboy models with
a budget constraint,” International Journal of Production Eco-
nomics, vol. 66, no. 3, pp. 213–226, 2000.

[22] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, “Robust opti-
mization of large-scale systems,” Operations Research, vol. 43,
no. 2, pp. 264–281, 1995.

[23] C. S. Yu and H. L. Li, “A robust optimization model for stochas-
tic logistic problems,” International Journal of Production Eco-
nomics, vol. 64, no. 1, pp. 385–397, 2000.

[24] C.-T. See and M. Sim, “Robust approximation to multiperiod
inventory management,” Operations Research, vol. 58, no. 3, pp.
583–594, 2010.

[25] M. Ang, Y. F. Lim, and M. Sim, “Robust storage assignment in
unit-load warehouses,” Management Science, vol. 58, no. 11, pp.
2114–2130, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


