
Research Article
Workflow Modelling and Analysis Based on
the Construction of Task Models

Glória Cravo1,2

1Center for Linear Structures and Combinatorics, University of Lisbon, 1649-003 Lisbon, Portugal
2Center of Exact Sciences and Engineering, University of Madeira, Funchal, 9020-105 Madeira, Portugal

Correspondence should be addressed to Glória Cravo; gcravo@uma.pt

Received 30 September 2014; Accepted 3 December 2014

Academic Editor: Dar-Li Yang

Copyright © 2015 Glória Cravo.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We describe the structure of a workflow as a graph whose vertices represent tasks and the arcs are associated to workflow transitions
in this paper. To each task an input/output logic operator is associated. Furthermore, we associate a Boolean term to each transition
present in the workflow. We still identify the structure of workflows and describe their dynamism through the construction of new
task models. This construction is very simple and intuitive since it is based on the analysis of all tasks present on the workflow that
allows us to describe the dynamism of the workflow very easily. So, our approach has the advantage of being very intuitive, which
is an important highlight of our work. We also introduce the concept of logical termination of workflows and provide conditions
under which this property is valid. Finally, we provide a counter-example which shows that a conjecture presented in a previous
article is false.

1. Introduction

A workflow is an abstraction of a business process that
consists on the execution of a set of tasks to complete a
process (e.g., hiring process, loan application, and sales order
processing). Tasks represent unities of work to be executed
that can be processed by a combination of resources, such as
a computer program, an external system, or human activity.

Recall that a business process is a collection of intercon-
nected tasks that takes one or more kinds of input and creates
an output that is of value to the customers. The construction
of process models is very often a difficult accomplishment
for humans since their design can be logically incorrect and
enclose errors. So the development of tools to support the
design of business processes is indispensable and needs to
be based on a solid theory. We believe that our technique is
appropriate to model workflows.

Workflows have been successfully deployed to various
domains, such as bioinformatics, healthcare, the telecommu-
nication industry, the military, insurance, school adminis-
tration, mobile computing, systems management, multidata
bases, Internet, application development, object technology,
operating systems, and transaction management.

In the present paper, we use Graph Theory and Propo-
sitional Logic to describe the structure of workflows. It is
important to point out that a workflow describes all of the
tasks needed to achieve each step in a business process.
Documents, information, work orders, reports, and so forth
are passed from one task to another for action, according to a
set of rules defined by the workflow. Employees or automated
applications are the entities that carry out the execution of
tasks.

In particular we model workflows as trilogic acyclic
directed graphs.The use of trilogic graphs to represent work-
flows was selected since most business process languages
support three types of connectors: AND, OR, and XOR. It is
important to emphasize that the inclusion of workflows with
OR vertices is a significant advantage of our approach.

Furthermore, our approach is based on the execution of
all tasks present on the workflow.This analysis has the advan-
tage of being simple and very intuitive. On the other hand, we
can create new models based on the existing ones.

Besides our formal framework allows checking the logical
termination of workflows. The logical termination is an im-
portant property for workflows because it is indispensable
to know if a workflow, such as the hiring process, will

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 481767, 7 pages
http://dx.doi.org/10.1155/2015/481767

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/195027278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The Scientific World Journal

eventually finish. Analyzing the termination of workflows
is an important assignment since research and commercial
products, such as METEOR and TIBCO, have no support for
verification. Errors made at design-time are not detected and
result in very costly failures at run-time.

The use of Propositional Logic has the advantage of trans-
forming a workflow into a set of Event-Action (EA) models.
Specialized EAmodels can be easily created to represent new
advancedworkflowpatterns. Afterwards, Propositional Logic
and Inference can be carried out on the EAmodels to analyze
properties of workflow models.

It is important to point out that, in the last decade, the
rapid increase of business process modelling and manage-
ment through the adoption of Workflow Management Sys-
tems has originated the need for frameworks that can be
used to provide a formal technique for defining and analyzing
workflows [1–3]. Important advancements have been accom-
plished in the development of theoretical foundations to
allow workflow modeling, verification, and analysis. Several
formal methods have been proposed, such as State and
Activity Charts [4], Event-Condition-Action rules [5, 6], Petri
Nets [7–11], Temporal Logic [12], Markov chains [13], Process
andEventAlgebras [14, 15], and Six SigmaTechniques [16, 17].
Nevertheless more research is required and specially focused
on the use of Graph Theory. Based on this need, we develop
our formalism that uses a natural combination of Graph
Theory and Propositional Logic tomodel workflows. Besides,
our formalism provides a formal framework based on trilogic
acyclic directed graphs that facilitate modeling and analyzing
workflows. Finally, our formal framework allows checking
the logical termination of workflows.

An important highlight of this paper is the emphasis on
the tasks present in the workflow, which allows us to identify
easily the dynamism present in the workflow. Finally, we
describe the logical termination in a very intuitive form and
we present conditions under which this property is valid.

We still provide a counter-example which shows that a
conjecture presented in a previous article is false.

2. Workflow Modelling and Analysis

This section is devoted to the presentation of ourmain results.
In particular, we start this section by providing the formal
definition of a workflow. In other words, we furnish the for-
mal structure of a business process. Notice that this workflow
structure can be also found in [18–21]. It is also important to
point out that this type of graphs has an input/output logic
operator associatedwith each vertex. Further, we analyze each
model present on the workflow and give special emphasis to
the execution of all tasks present in a workflow. Besides, we
will create new models based on the existing ones. Finally,
we will describe conditions under which a workflow logical
terminates. In conclusion, our approach allows us to provide
a complete description of workflows.

Definition 1 (see [18–21]). A workflow is a trilogic acrylic
directed graphWG = (𝑇, 𝐴, 𝐴

,𝑀), where 𝑇 = {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
}

is a finite nonempty set of vertices representing workflow
tasks. Each task 𝑡

𝑖
(i.e., a vertex) has attributed an input logic

operator (represented by ≻ 𝑡
𝑖
) and an output logic operator

(represented by 𝑡
𝑖
≺). An input/output logic operator can be

the logical AND (∙), the OR (⊗), or the XOR—exclusive-or—
(⊕).The set𝐴 = {𝑎

⊔
, 𝑎
⊓
, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
} is a finite nonempty set

of arcs representing workflow transitions.The transition 𝑎
⊔
is

the tuple (⊔, 𝑡
1
) and transition 𝑎

⊓
is the tuple (𝑡

𝑛
, ⊓), where the

symbols ⊔ and ⊓ represent abstract tasks which indicate the
entry and ending point of the workflow, respectively. Every
transition 𝑎

𝑖
, 𝑖 ∈ {1, . . . , 𝑛} corresponds to a tuple of the form

(𝑡
𝑘
, 𝑡
𝑙
), where 𝑡

𝑘
, 𝑡
𝑙
∈ 𝑇.

We use the symbol to reference the label of a transition;
that is, 𝑎

𝑖
references transition 𝑎

𝑖
, 𝑎
𝑖
∈ 𝐴. The elements 𝑎

𝑖
are

called Boolean terms and form the set 𝐴.
Given 𝑡

𝑖
∈ 𝑇, the incoming transitions for task 𝑡

𝑖
are the

tuples of the form (𝑡
𝑙
, 𝑡
𝑖
), 𝑡
𝑙
∈ 𝑇, and the outgoing transitions

are the tuples of the form (𝑡
𝑖
, 𝑡
𝑙
), 𝑡
𝑙
∈ 𝑇.

The incoming/outgoing condition of task 𝑡
𝑖
is the Boolean

expression 𝑎
𝑘
1

𝜑 ⋅ ⋅ ⋅ 𝜑𝑎

𝑘
𝑙

, where 𝜑 ∈ {∙, ⊗, ⊕}, 𝑎
𝑘
1

, . . . , 𝑎

𝑘
𝑙

∈ 𝐴

and 𝑎
𝑘
1

, . . . , 𝑎
𝑘
𝑙

are the incoming/outgoing transitions of task
𝑡
𝑖
.The terms 𝑎

𝑘
1

, . . . , 𝑎

𝑘
𝑙

are connected with the logic operator
≻ 𝑡
𝑖
, 𝑡
𝑖
≺, respectively. If task 𝑡

𝑖
has only one incoming/

outgoing transition we assume that the condition does not
have logic operator.

An Event-Action (EA)model for task 𝑡
𝑖
is an implication

of the form 𝑡
𝑖
: 𝑓
𝐸
 𝑓
𝐶
, where 𝑓

𝐸
and 𝑓

𝐶
are the incom-

ing and outgoing conditions of task 𝑡
𝑖
, respectively. An EA

model has the behavior with two distinct modes: when 𝑓
𝐸

is evaluated to true, 𝑓
𝐶
is also evaluated to true; when 𝑓

𝐸

is evaluated to false, 𝑓
𝐶
is always false. And the EA model

𝑡
𝑖
: 𝑓
𝐸
 𝑓
𝐶
is true if both 𝑓

𝐸
, 𝑓
𝐶
are true; otherwise it is

false. We say that the EA model 𝑡
𝑖
: 𝑓
𝐸
 𝑓
𝐶
is positive if its

Boolean value is true; otherwise it is said to be negative.
We denote by𝑀 the set of all EA models present in WG.
Task 𝑡

𝑖
is said to be executed if the EAmodel 𝑡

𝑖
: 𝑓
𝐸
 𝑓
𝐶

is positive. In this case, task 𝑡
𝑖
has attributed the Boolean value

true.

Remark 2. Given an expression whose Boolean value is true
(resp., false), we simply can represent this fact by 1, (resp., 0).

Remark 3. Given an EA model 𝑡
𝑖
: 𝑓
𝐸
 𝑓
𝐶
, if 𝑓
𝐸
is false,

then task 𝑡
𝑖
disables all its outgoing transitions. Consequently

𝑓
𝐶
is also false.

Notice that the workflow starts its execution by enabling
transition 𝑎

⊔
, that is, by asserting 𝑎

⊔
to be true. In otherwords,

the workflow starts its execution by executing task 𝑡
1
.

Notice that 𝑎
𝑖
is true if transition 𝑎

𝑖
is enabled; otherwise

𝑎
𝑖
is false. Transitions can be enabled by a user or by an

external event. If the EA model 𝑡
𝑖
: 𝑓
𝐸
 𝑓
𝐶
is negative,

then both 𝑓
𝐸
, 𝑓
𝐶
are false. In this case, all the transitions of

𝑓
𝐶
are disabled.

Example 4. In Figure 1 we present a workflow WG = (𝑇, 𝐴,
𝐴

,𝑀), where 𝑇 = {𝑡

1
, 𝑡
2
, . . . , 𝑡

9
}, 𝐴 = {𝑎

⊔
, 𝑎
⊓
, 𝑎
1
, 𝑎
2
, . . .,

𝑎
11
}, 𝐴 = {𝑎

⊔
, 𝑎

⊓
, 𝑎

1
, 𝑎

2
, . . . , 𝑎

11
}, and 𝑀 = {𝑡

1
: 𝑎

⊔
 𝑎

1
∙

𝑎

2
, 𝑡
2
: 𝑎

1
 𝑎

3
⊕ 𝑎

4
, 𝑡
3
: 𝑎

2
 𝑎

8
, 𝑡
4
: 𝑎

3
 𝑎

5
⊕ 𝑎

6
, 𝑡
5
: 𝑎

4

𝑎

7
, 𝑡
6
: 𝑎

5
 𝑎

9
, 𝑡
7
: 𝑎

6
 𝑎

10
, 𝑡
8
: 𝑎

7
⊕ 𝑎

9
⊕ 𝑎

10
 𝑎

11
, 𝑡
9
:

𝑎

8
∙ 𝑎

11
 𝑎

⊓
}.

The Scientific World Journal 3

⊕

⊕

⊕

∙

∙

a
⊓

a
⊔

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

Figure 1: Example of a workflow.

The output logic operator of task 𝑡
2
(𝑡
2
≺) is XOR (⊕),

while the input logic operator of task 𝑡
9
(≻ 𝑡
9
) is an AND (∙).

The incoming transition for task 𝑡
2
is 𝑎
1
= (𝑡
1
, 𝑡
2
) and its

outgoing transitions are 𝑎
3
= (𝑡
2
, 𝑡
4
) and 𝑎

4
= (𝑡
2
, 𝑡
5
). Hence

the incoming condition for task 𝑡
2
is 𝑎
1
, while its outgoing

condition is 𝑎
3
⊕ 𝑎

4
.

Task 𝑡
2
is executed if the EA model 𝑡

2
: 𝑎

1
 𝑎

3
⊕ 𝑎

4
is

positive, that is, if 𝑎
1
is true and only one of the Boolean terms

𝑎

3
, 𝑎
4
is true.

Notice that the workflow from Figure 1 corresponds to
the following real situation. Indeed, it can represent the tasks
necessary to be executed for a person driving a new car. Let
us assume that tasks 𝑡

𝑖
, 𝑖 ∈ {1, . . . , 9} have the following

meanings:

𝑡
1
: deciding to purchase a new car to own use;

𝑡
2
: payment of the car;

𝑡
3
: getting the drivers license;

𝑡
4
: deciding to pay by credit;

𝑡
5
: deciding to pay without credit;

𝑡
6
: getting rental credit;

𝑡
7
: getting bank credit;

𝑡
8
: purchasing of the car;

𝑡
9
: driving the new car.

Clearly, the decision of purchasing a new car to own use
implies to pay the car and to get the drivers license. The
payment of the car implies the execution of only one of the
situations to pay by credit or to pay without credit. And to get
credit implies to get a rental credit or a bank credit. It is clear
that the purchase of the car depends on the execution of only
one of the tasks: decide to paywithout credit, get rental credit,
and get bank credit.

Hence, the possibility to drive a new car depends on
the purchase of the car and in obtaining the drivers license.
In other words, the execution of task 𝑡

9
depends on the

execution of both tasks 𝑡
3
, 𝑡
8
.

⊔
⊕

⊕

⊕

∙

a
⊓

a
⊔

⊓

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

t
1

t
2

t
3

t
4

t
5

t
6

t
7

Figure 2: Example of a workflow.

Many other examples can be given. Indeed, too many
situations in our life can be described by workflows. For
example, the request for a credit card or a loan application
is simple examples of workflows.

Proposition 5. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow. Let

𝑎
𝑙
= (𝑡
𝑖
, 𝑡
𝑗
) ∈ 𝐴, 𝑡

𝑖
, 𝑡
𝑗
∈ 𝑇. If 𝑎

𝑙
is true, then 𝑡

𝑖
is necessarily

executed.

Proof. Let us assume that 𝑎
𝑙
is true. Let 𝑡

𝑖
: 𝑓
𝐸
𝑖

 𝑓
𝐶
𝑖

be the
EA model associated to task 𝑡

𝑖
. If task 𝑡

𝑖
is not executed, then

the EA model 𝑡
𝑖
: 𝑓
𝐸
𝑖

 𝑓
𝐶
𝑖

is negative. Since the EA model
is negative, all outgoing transitions of task 𝑡

𝑖
are disabled;

in particular 𝑎
𝑙
is disabled, that is, 𝑎

𝑙
is false, wich is a con-

tradiction. Hence task 𝑡
𝑖
is executed.

Remark 6. The condition of Proposition 5 is not sufficient.
For example in the workflow from Figure 1, if task 𝑡

2
is

executed, then the EA model 𝑡
2
: 𝑎

1
 𝑎

3
⊕ 𝑎

4
is positive.

For 𝑎
1
= true, 𝑎

3
= true, 𝑎

4
= false, and 𝑎

4
= (𝑡
2
, 𝑡
5
), 𝑡
2
is

executed, but 𝑎
4
is false.

Remark 7. Let us consider the Boolean term 𝑎

𝑙
where 𝑎

𝑙
=

(𝑡
𝑖
, 𝑡
𝑗
) ∈ 𝐴, 𝑡

𝑖
, 𝑡
𝑗
∈ 𝑇. If 𝑎

𝑙
is true, task 𝑡

𝑗
is not necessarily

executed. For example, in the workflow from Figure 2, let us
assume that 𝑎

⊔
= true, 𝑎

1
= true, 𝑎

2
= false, 𝑎

3
= true, 𝑎

4
=

true, 𝑎
5
= true, 𝑎

6
= true, 𝑎

7
= true, 𝑎

8
= true, and 𝑎

⊓
= false.

Hence, for this assignment the EA model 𝑡
7
: 𝑎

6
⊕ 𝑎

8

𝑎

⊓
is negative, which means that task 𝑡

7
is not executed.

Nevertheless, 𝑎
8
= (𝑡
6
, 𝑡
7
) and 𝑎

8
is true.

Next we introduce the concept of logical termination.
This is a very important structural property, since its analysis
will allow to verify if a workflow will eventually finish,
according to the initial specifications.

Definition 8. LetWG = (𝑇, 𝐴, 𝐴

,𝑀) be aworkflow.One says

that WG logically terminates if task 𝑡
𝑛
is executed whenever

task 𝑡
1
is executed.

In the following result we establish a necessary and
sufficient condition for the logical termination.

Theorem9. LetWG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow.Then𝑊𝐺

logically terminates if and only if 𝑎
⊓
is true whenever 𝑎

⊔
is true.

4 The Scientific World Journal

Proof. Let us assume that WG logically terminates; that is,
task 𝑡
𝑛
is executed whenever task 𝑡

1
is executed. This means

that the EA model 𝑡
𝑛
: 𝑓
𝐸
𝑛

 𝑎

⊓
is positive whenever the EA

model 𝑡
1
: 𝑎

⊔
 𝑓
𝐶
1

is positive. Bearing in mind that WG
starts its execution by executing task 𝑡

1
, then the EA model

𝑡
1
: 𝑎

⊔
 𝑓
𝐶
1

is positive. Hence the EA model 𝑡
𝑛
: 𝑓
𝐸
𝑛

 𝑎

⊓

is also positive. Consequently, 𝑎
⊔
, 𝑓
𝐶
1

, 𝑓
𝐸
𝑛

, and 𝑎
⊓
are true.

Thus, 𝑎
⊓
is true whenever 𝑎

⊔
is true.

Conversely, let us assume that 𝑎
⊓
is true whenever 𝑎

⊔
is

true. Let us assume that task 𝑡
1
is executed. This means that

the EA model 𝑡
1
: 𝑎

⊔
 𝑓
𝐶
1

is positive. Bearing in mind
that 𝑎

⊓
is true, according to the behavior of the EA models,

necessarily 𝑓
𝐸
𝑛

is true. Hence the EA model 𝑡
𝑛
: 𝑓
𝐸
𝑛

 𝑎

⊓

is positive, which means that task 𝑡
𝑛
is executed. So we can

conclude that task 𝑡
𝑛
is executed whenever task 𝑡

1
is executed,

which means that WG logically terminates.

Example 10. It is not hard to check that, in the workflow from
Figure 1, 𝑎

⊓
is true whenever 𝑎

⊔
is true. Thus, the workflow

logically terminates.

Next we address our study on the dynamism present
in a workflow. Obviously the dynamism is associated with
the sequential execution of its tasks. In the workflow from
Figure 1 the execution of task 𝑡

1
implies the execution of both

tasks 𝑡
2
, 𝑡
3
; the execution of task 𝑡

2
implies the execution of

only one of the tasks 𝑡
4
, 𝑡
5
; the execution of task 𝑡

4
implies

the execution of only one of the tasks 𝑡
6
, 𝑡
7
; the execution

of only one of the tasks 𝑡
5
, 𝑡
6
, and 𝑡

7
implies the execution

of task 𝑡
8
. Finally, the execution of both tasks 𝑡

3
, 𝑡
8
implies

the execution of task 𝑡
9
. Hence, we can state the execution of

task 𝑡
1
implies the execution of 𝑡

2
∙ 𝑡
3
; the execution of task 𝑡

2

implies the execution of 𝑡
4
⊕ 𝑡
5
; the execution of task 𝑡

4
implies

the execution of 𝑡
6
⊕ 𝑡
7
; the execution of 𝑡

5
⊕ 𝑡
6
⊕ 𝑡
7
implies

the execution of task 𝑡
8
; the execution of 𝑡

3
∙ 𝑡
8
implies the

execution of task 𝑡
9
. Notice that when we consider 𝑡

2
∙ 𝑡
3
, the

operator ∙ is the output logic operator of task 𝑡
1
, while when

we consider 𝑡
5
⊕ 𝑡
6
⊕ 𝑡
7
, ⊕ is the input logic operator of task

𝑡
8
.
These remarks led us to introduce the following concept.

Definition 11. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow. The

compound tasks of WG are the elements of the following
form: 𝑡

𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

, 𝑡
𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

∈ 𝑇, 𝜑 ∈ {∙, ⊗, ⊕}. The set
of all compound tasks of WG is denoted by 𝑇; that is,

𝑇

= {𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

: 𝑡
𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

∈ 𝑇, 𝜑 ∈ {∙, ⊗, ⊕}} . (1)

Example 12. In the workflow from Figure 1, 𝑇 = {𝑡
2
∙ 𝑡
3
, 𝑡
4
⊕

𝑡
5
, 𝑡
6
⊕ 𝑡
7
, 𝑡
5
⊕ 𝑡
6
⊕ 𝑡
7
, 𝑡
3
∙ 𝑡
8
}.

Remark 13. Since every task 𝑡
𝑖
has associated a Boolean value,

according to its execution, it is also natural to attribute a
Boolean value to the compound tasks of WG. The natural
attribution is the following. Given any compound task of
WG, 𝑡

𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

, 𝜑 ∈ {∙, ⊗, ⊕}.
If 𝜑 = ∙, then the Boolean value of 𝑡

𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

is 1 if
and only if the Boolean value of all tasks 𝑡

𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

is equal
to 1.

If 𝜑 = ⊗, then the Boolean value of 𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

is 1 if
and only if there exists at least one of the tasks 𝑡

𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

whose Boolean value is equal to 1.
If 𝜑 = ⊕, then the Boolean value of 𝑡

𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

is 1 if
and only if there exists only one of the tasks 𝑡

𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

with
Boolean value equal to 1.

Naturally, we can state that a compound task
𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

is executed if and only if its Boolean
value is equal to 1, which means that the compound task
𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

is positive. In other words, 𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

is
executed if and only if, one of the following cases holds:

If 𝜑 = ∙, all tasks 𝑡
𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

are executed.
If 𝜑 = ⊗, at least one of the tasks 𝑡

𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

is executed.
If 𝜑 = ⊕, only one of the tasks 𝑡

𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

is executed.

In what follows, we introduce a new type of task models
that we designate by compound task models.

Definition 14. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow. Let 𝑡

𝑖
,

𝑡
𝑗
, 𝑡
𝑖
1

, 𝑡
𝑖
2

, . . . , 𝑡
𝑖
𝑘

, 𝑡
𝑗
1

, 𝑡
𝑗
2

, . . . , 𝑡
𝑗
𝑙

∈ 𝑇, 𝜑, 𝜓{∙, ⊗, ⊕}. A compound
task model is an implication with one of the following forms:

(1) 𝑡
𝑖
→ 𝑡
𝑗
1

𝜓𝑡
𝑗
2

𝜓 ⋅ ⋅ ⋅ 𝜓𝑡
𝑗
𝑙

;

(2) 𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

→ 𝑡
𝑗
;

(3) 𝑡
𝑖
1

𝜑𝑡
𝑖
2

𝜑 ⋅ ⋅ ⋅ 𝜑𝑡
𝑖
𝑘

→ 𝑡
𝑗
1

𝜓𝑡
𝑗
2

𝜓 ⋅ ⋅ ⋅ 𝜓𝑡
𝑗
𝑙

.

Usually we represent a compound task model by 𝑡
𝐼
𝑖

→

𝑡
𝑂
𝑖

, where 𝑡
𝐼
𝑖

is called the incoming task and 𝑡
𝑂
𝑖

is called the
outgoing task. We say that a compound task model 𝑡

𝐼
𝑖

→ 𝑡
𝑂
𝑖

is positive if both incoming and outgoing tasks are positive,
that is, if both tasks 𝑡

𝐼
𝑖

, 𝑡
𝑂
𝑖

are executed.
In particular, the implication of the form 𝑡

𝑖
→ 𝑡
𝑗
is called

a simple task model. Clearly, it is positive if both tasks 𝑡
𝑖
, 𝑡
𝑗

are executed.
The set of all simple and compound task models present

in WG is called the set of task models of WG and is denoted
by TM.

The task models have the behavior with two distinct
modes: if its incoming task is true, necessarily its outgoing
task is true; if the incoming task is false, the outgoing task is
false. In other words, if 𝑡

𝐼
𝑖

→ 𝑡
𝑂
𝑖

is a compound task model,
then 𝑡

𝐼
𝑖

is executed if and only if 𝑡
𝑂
𝑖

is executed.

Notice that, in a compound task model 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

, at least
one of the tasks 𝑡

𝐼
𝑖

, 𝑡
𝑂
𝑖

is compound.

Example 15. In the workflow from Figure 1, the set of its task
models is TM = {𝑡

1
→ 𝑡
2
∙ 𝑡
3
, 𝑡
2
→ 𝑡
4
⊕ 𝑡
5
, 𝑡
4
→ 𝑡
6
⊕ 𝑡
7
, 𝑡
5
⊕

𝑡
6
⊕ 𝑡
7
→ 𝑡
8
, 𝑡
3
∙ 𝑡
8
→ 𝑡
9
}.

From now on, we use the symbol ↔ with the following
meaning: 𝑋 ↔ 𝑌 means that the compound statements 𝑋
and 𝑌 are logically equivalent.

According to simple rules of Logic and taking into
account the behavior of the task models, we can infer the
following result. And the establishment of this result allows
us to identify new task models present in the workflow.

In what follows we establish some properties that will
allow us to create new taskmodels based on the existing ones.

The Scientific World Journal 5

Proposition 16. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow.

Suppose that the task models 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

and 𝑡
𝑂
𝑖

→ 𝑡
𝑂
𝑗

belong
to TM. Then the model 𝑡

𝐼
𝑖

→ 𝑡
𝑂
𝑗

still hods in WG.

Proof. The proof is trivial.

Theorem 17. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow.

(a) If both task models

𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

, (2)

𝑡
𝐼
𝑗

→ 𝑡
𝑂
𝑗

(3)

belong to TM, where 𝑡
𝑂
𝑖

↔ 𝑡
𝐼
𝑗

, then the model 𝑡
𝐼
𝑖

→

𝑡
𝑂
𝑗

still holds in WG.

(b) If both task models 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

and 𝑡
𝐼
𝑗

→ 𝑡
𝑂
𝑗

belong to
TM, where 𝑡

𝑂
𝑖

↔ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

, 𝜑 ∈ {∙, ⊗, ⊕}, then the com-
pound task model 𝑡

𝐼
𝑖

→ 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

still holds in WG.

(c) If both task models 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

and 𝑡
𝑂
𝑗

→ 𝑡
𝐼
𝑗

belong to
TM, where 𝑡

𝑂
𝑖

↔ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

, 𝜑 ∈ {∙, ⊗, ⊕}, then the com-
pound task model 𝑡

𝐼
𝑖

→ 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

still holds in WG.

(d) If both task models 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

and 𝑡
𝐼
𝑗

→ 𝑡
𝑂
𝑗

belong to
TM, where 𝑡

𝐼
𝑖

↔ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

, 𝜑 ∈ {∙, ⊗, ⊕}, then the com-
pound task model 𝑡

𝐿
𝜑𝑡
𝑂
𝑗

→ 𝑡
𝑂
𝑖

still holds in WG.

(e) If both task models 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

and 𝑡
𝑂
𝑗

→ 𝑡
𝐼
𝑗

belong to
TM, where 𝑡

𝐼
𝑖

↔ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

, 𝜑 ∈ {∙, ⊗, ⊕}, then the com-
pound task model 𝑡

𝐿
𝜑𝑡
𝑂
𝑗

→ 𝑡
𝑂
𝑖

still holds in WG.

Proof. (a) Let us assume that both task models (2) and (3)
belong to TM. Notice that if either (2) or (3) is negative, since
𝑡
𝑂
𝑖

↔ 𝑡
𝐼
𝑗

, then necessarily both task models (2) and (3) are
negative. So, we just need to verify the result when both task
models (2) and (3) are positive.

Let us assume that both tasks models (2) and (3) are
positive. Since (2) is positive, necessarily both 𝑡

𝐼
𝑖

, 𝑡
𝑂
𝑖

are true.
In other words, some of the tasks from 𝑡

𝐼
𝑖

, 𝑡
𝑂
𝑖

are executed
allowing that 𝑡

𝐼
𝑖

, 𝑡
𝑂
𝑖

are executed. Bearing in mind that 𝑡
𝑂
𝑖

↔

𝑡
𝐼
𝑗

, then 𝑡
𝐼
𝑗

is true. So according to the behavior of the task
models, necessarily 𝑡

𝑂
𝑗

is true. Hence we can state that 𝑡
𝑂
𝑗

is executed, whenever 𝑡
𝐼
𝑗

is executed. Therefore the model
𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑗

still holds in WG.
Now, in order to prove (b) and (c), we start with the fol-

lowing argument. Bearing in mind that 𝑡
𝑂
𝑖

↔ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

, accord-
ing to the behavior of the task models, we can consider that
𝑡
𝑂
𝑖

→ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

still holds in WG. Since 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

and 𝑡
𝑂
𝑖

→

𝑡
𝐿
𝜑𝑡
𝐼
𝑗

holds in WG, according to Proposition 16 we can
conclude that

𝑡
𝐼
𝑖

→ 𝑡
𝐿
𝜑𝑡
𝐼
𝑗

(4)

still holds in WG.
(b) Taking into account that 𝑡

𝐼
𝑗

→ 𝑡
𝑂
𝑗

belong to TM,
and consequently 𝑡

𝐼
𝑗

, 𝑡
𝑂
𝑗

have the same Boolean value, we

can replace 𝑡
𝐼
𝑗

by 𝑡
𝑂
𝑗

in (4), obtaining the new model 𝑡
𝐼
𝑖

→

𝑡
𝐿
𝜑𝑡
𝑂
𝑗

, which means that 𝑡
𝐼
𝑖

→ 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

still holds in WG.
(c) Taking into account that 𝑡

𝑂
𝑗

→ 𝑡
𝐼
𝑗

belong to TM,
and consequently 𝑡

𝑂
𝑗

, 𝑡
𝐼
𝑗

have the same Boolean value, we
can replace 𝑡

𝐼
𝑗

by 𝑡
𝑂
𝑗

in (4), obtaining the new model 𝑡
𝐼
𝑖

→

𝑡
𝐿
𝜑𝑡
𝑂
𝑗

, which means that 𝑡
𝐼
𝑖

→ 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

still holds in WG.
Analogously, in order to prove (d) and (e) we start by

making the next statement. Taking into account that 𝑡
𝐼
𝑖

↔

𝑡
𝐿
𝜑𝑡
𝐼
𝑗

, according to the behavior of the compound task mod-
els, we can consider that 𝑡

𝐿
𝜑𝑡
𝐼
𝑗

→ 𝑡
𝐼
𝑖

holds in WG. Since
𝑡
𝐿
𝜑𝑡
𝐼
𝑗

→ 𝑡
𝐼
𝑖

and 𝑡
𝐼
𝑖

→ 𝑡
𝑂
𝑖

hold in WG, according to
Proposition 16 we can conclude that

𝑡
𝐿
𝜑𝑡
𝐼
𝑗

→ 𝑡
𝑂
𝑖

(5)

still holds in WG.
(d) Bearing in mind that 𝑡

𝐼
𝑗

→ 𝑡
𝑂
𝑗

holds in WG, and
consequently 𝑡

𝐼
𝑗

, 𝑡
𝑂
𝑗

have the same Boolean value, we can
replace 𝑡

𝐼
𝑗

by 𝑡
𝑂
𝑗

in (5), obtaining the new model 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

→

𝑡
𝑂
𝑖

, which means that 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

→ 𝑡
𝑂
𝑖

still holds in WG.
(e) Bearing inmind that 𝑡

𝑂
𝑗

→ 𝑡
𝐼
𝑗

holds inWG, and con-
sequently 𝑡

𝑂
𝑗

, 𝑡
𝐼
𝑗

have the same Boolean value, we can replace
𝑡
𝐼
𝑗

by 𝑡
𝑂
𝑗

in (5), obtaining the newmodel 𝑡
𝐿
𝜑𝑡
𝑂
𝑗

→ 𝑡
𝑂
𝑖

, which
means that 𝑡

𝐿
𝜑𝑡
𝑂
𝑗

→ 𝑡
𝑂
𝑖

still holds in WG.

The previous results allow us to identify new task models
based on the existing ones, as it is described below.

Definition 18. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow.

An extended task model is a model obtained by applying
a finite sequence of some of the properties established in
Proposition 16 andTheorem 17. One adopts the notation TM
to represent the set of all extended task models of WG.

Example 19. In the workflow from Figure 1, bearing in mind
that 𝑡
1
→ 𝑡
2
∙ 𝑡
3
, 𝑡
2
→ 𝑡
4
⊕𝑡
5
∈ TM, according toTheorem 17

we can conclude that the model 𝑡
1
→ (𝑡
4
⊕ 𝑡
5
) ∙ 𝑡
3
still holds

in WG. Therefore, we can state that 𝑡
1
→ (𝑡
4
⊕ 𝑡
5
) ∙ 𝑡
3
is an

extended task model of WG.

Notice we adopt the same notation of the task models
to represent the extended task models. Furthermore, the
extended task models verify the same properties of the task
models. In particular, given an extended task model 𝐵 → 𝐶,
necessarily both 𝐵, 𝐶 have the same Boolean value.

Naturally when we consider the set of all task models
and extended task models presented in WG, we obtain all
possible models that can be generated by the task models of
the workflow. This set of task models will be designated by
the closure of TM. In certain sense, we can state that the set
of all taskmodels fromWG is a set of generators of all possible
models of WG.

Definition 20. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow. One

defines the closure of TM as the set of all task models and
extended task models in WG.This set is denoted by TM∗. In
other words, TM∗ = TM ∪ TM.

6 The Scientific World Journal

⊔ ⊕

⊕

⊕∙

∙

∙

a
⊓a

⊔

⊓

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

Figure 3: Example of a workflow.

Example 21. As we saw in Example 15 in the workflow from
Figure 1, TM = {𝑡

1
→ 𝑡
2
∙𝑡
3
, 𝑡
2
→ 𝑡
4
⊕𝑡
5
, 𝑡
4
→ 𝑡
6
⊕𝑡
7
, 𝑡
5
⊕𝑡
6
⊕

𝑡
7
→ 𝑡
8
, 𝑡
3
∙ 𝑡
8
→ 𝑡
9
}. Since 𝑡

1
→ 𝑡
2
∙ 𝑡
3
, 𝑡
2
→ 𝑡
4
⊕ 𝑡
5
∈ TM,

according to Theorem 17 we can deduce that 𝑡
1
→ (𝑡
4
⊕ 𝑡
5
) ∙

𝑡
3
∈ TM∗. Now bearing in mind that 𝑡

4
→ 𝑡
6
⊕ 𝑡
7
∈ TM,

applying againTheorem 17 we can conclude that 𝑡
1
→ ((𝑡

6
⊕

𝑡
7
) ⊕ 𝑡
5
) ∙ 𝑡
3
∈ TM∗. As (𝑡

6
⊕ 𝑡
7
) ⊕ 𝑡
5
↔ 𝑡
5
⊕ 𝑡
6
⊕ 𝑡
7
we can

state that 𝑡
1
→ (𝑡
5
⊕ 𝑡
6
⊕ 𝑡
7
) ∙ 𝑡
3
∈ TM∗. Bearing in mind that

𝑡
5
⊕ 𝑡
6
⊕ 𝑡
7
→ 𝑡
8
, applying once more Theorem 17 we infer

that 𝑡
1
→ 𝑡
8
∙ 𝑡
3
∈ TM∗. As 𝑡

8
∙ 𝑡
3
↔ 𝑡
3
∙ 𝑡
8
, applying again

Theorem 17 we conclude that 𝑡
1
→ 𝑡
9
∈ TM∗.

Notice the workflow from Figure 1 logically terminates
and 𝑡

1
→ 𝑡

9
∈ TM∗. Furthermore, we studied many

other examples of workflows that logically terminates and
simultaneously 𝑡

1
→ 𝑡
𝑛
∈ TM∗. The analysis of these differ-

ent cases led us to formulate the following conjecture.

Conjecture 22 (see [21]). Given a workflow WG = (𝑇, 𝐴, 𝐴

,
𝑀), then WG logically terminates if and only if 𝑡

1
→ 𝑡
𝑛
∈

TM∗.

After the analysis ofmany cases, we start believing that the
conjecture was true. Nevertheless it is false, as the following
example proves. Let us consider the following workflow.

Example 23. It is not hard to check that the workflow from
Figure 3 logically terminates; nevertheless the condition 𝑡

1
→

𝑡
𝑛
∈ TM∗ is not valid.

Indeed the condition of the Conjecture 22 is not neces-
sary. However it is sufficient, as we prove in the following
result.

Theorem 24. Let WG = (𝑇, 𝐴, 𝐴

,𝑀) be a workflow. If 𝑡

1
→

𝑡
𝑛
∈ TM∗, then WG logically terminates.

Proof. Let us assume that 𝑡
1
→ 𝑡
𝑛
∈ TM∗.

Case 1. Suppose that 𝑡
1
→ 𝑡
𝑛
∈ TM.This means that WG has

the following structure:

⊔

𝑎
⊔

→ 𝑡
1

𝑎
⊓

→ 𝑡
⊓
.

(6)

In this case, 𝑡
1
= 𝑡
𝑛
. Since WG starts its execution by

executing task 𝑡
1
we can conclude that task 𝑡

𝑛
is executed

whenever task 𝑡
1
is executed, which means that WG logically

terminates.

Case 2. Suppose that 𝑡
1
→ 𝑡
𝑛
∈ TM∗\TM = TM. So, 𝑡

1
→ 𝑡
𝑛

was obtained by applying some of the results established in
Proposition 16 and Theorem 17. Since 𝑡

1
→ 𝑡
𝑛
∈ TM∗

and the workflow starts its execution by executing task 𝑡
1
,

that is, by asserting 𝑡
1
to be true, according to the behavior

of the extended models, necessarily 𝑡
𝑛
is still asserted to be

true. This means that task 𝑡
𝑛
is executed. Hence, task 𝑡

𝑛
is

executed whenever task 𝑡
1
is executed. Thus WG logically

terminates.

3. Conclusions

In this paper we develop a formalism to describe and
analyse the structure of workflows, based on graphs and
Propositional Logic. Indeed, we describe the structure of
a workflow as a graph whose vertices represent tasks and
the arcs are associated to workflow transitions. To each task
an input/output logic operator is associated and this logic
operator can be the logical AND (∙), theOR (⊗), or theXOR—
exclusive-or—(⊕). Furthermore, we associate a Boolean term
to each transition present in the workflow.

It is important to point out that our main emphasis is the
analysis of a workflow through the study of its task models
which allows us to describe the dynamism of the workflow in
a very simple and intuitive way.

Another relevant aspect of our approach is the introduc-
tion of the concept of compound tasks. This concept allows
us to identify new task models based on the existing ones.
Through these new task models we are able to describe the
dynamismpresent in aworkflow in a very simpleway. Clearly,
the study of the dynamism of a workflow is equivalent to
analyse the sequential execution of its tasks.

We still analyze the concept of logical termination and we
provide necessary and sufficient conditions under which this
property is valid.

Finally, given a workflow WG we provide a counter-
example which shows that the conjecture of 𝑡

1
→ 𝑡
𝑛
∈ TM∗

being a necessary and sufficient condition under which WG
logically terminates is false. In fact, the condition is necessary;
nevertheless it is not sufficient.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Cao, C. Chan, and K. Chan, “Workflow analysis for web
publishing using a stage-activity process model,” Journal of
Systems and Software, vol. 76, no. 3, pp. 221–235, 2005.

[2] M. Hu, J. Zhang, and X. Chen, “Grid worflow for decision
resource scheduling,” in Proceedings of the 5th WSEAS Interna-
tional Conference on Applied Computer Science, pp. 533–539,
Hangzhou, China, April 2006.

The Scientific World Journal 7

[3] J. L. Kmetz, Mapping Workflows and Managing Knowledge:
Simply, Sensibly, Flexibly, and Without Software, 2010.

[4] P. Muth, D.Wodtke, J.Weissenfels, G.Weikum, and K. Dittrich,
“Enterprise-wide workflow management based on state and
activity charts,” inWorkflow Management Systems and Interop-
erability, vol. 164 of NATO ASI Series, pp. 281–303, Springer,
Berlin, Germany, 1998.

[5] U. Dayal, M. Hsu, and R. Ladin, “Organizing long-running
activities with triggers and transactions,” in Proceedings of the
ACM SIGMOD International Conference on Management of
Data Table of Contents, pp. 204–214, ACM Press, Atlantic City,
NJ, USA, 1990.

[6] J. Eder,H.Groiss, andH.Nekvasil, “Aworkflow systembased on
active databases,” in Proceedings of the 9th Austrian-Informatics
Conference on Workflow Management: Challenges, Paradigms
and Products (CON ’94), G. Chroust and A. Benczur, Eds., pp.
249–265, Linz, Austria, 1994.

[7] W.M. P. van derAalst, “The application of petri nets toworkflow
management,” Journal of Circuits, Systems and Computers, vol.
8, no. 1, pp. 21–66, 1998.

[8] W. M. P. van der Aalst, “Workflow verification: finding control-
flow errors using petri-net-based techniques,” in Business Pro-
cess Management, W. M. P. van der Aalst, J. Desel, and A.
Oberweis, Eds., vol. 1806 of Lecture Notes in Computer Science,
pp. 161–183, Springer, Berlin, Germany, 2000.

[9] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers,
andM. La Rosa, “Configurable workflowmodels,” International
Journal of Cooperative Information Systems, vol. 17, no. 2, pp.
177–221, 2008.

[10] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers,
and H. M. W. Verbeek, “Protos2CPN: using colored Petri nets
for configuring and testing business processes,” International
Journal on Software Tools for Technology Transfer, vol. 10, no. 1,
pp. 95–110, 2008.

[11] H. M. W. Verbeek, W. M. P. van der Aalst, and A. H. M. Hof-
stede, “Verifying workflows with cancellation regions and or-
joins: an approach based on relaxed soundness and invariants,”
Computer Journal, vol. 50, no. 3, pp. 294–314, 2007.

[12] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz, “Specifying
and enforcing intertask dependencies,” inProceedings of the 19th
International Conference on Very Large Data Bases, pp. 134–145,
Morgan Kaufman, Dublin, Ireland, 1993.

[13] J. Klingemann, J. Wasch, and K. Aberer, “Deriving service
models in cross-organizational workflows,” in Proceedings of the
9th International Workshop on Research Issues on Data Engi-
neering: Information Technology for Virtual Enterprises (RIDE-
VE ’99), pp. 100–107, Sydney, Australia, March 1999.

[14] A. H. M. ter Hofstede and E. R. Nieuwland, “Task structure
semantics through process algebra,” Software Engineering Jour-
nal, vol. 8, no. 1, pp. 14–20, 1993.

[15] M. P. Singh and K. van Hee, “Semantical considerations on
workflows: an algebra for intertask dependencies,” in Proceed-
ings of the 5th International Workshop on Database Program-
ming Languages (DBLP ’95), Springer, Umbria, Italy, 1995.

[16] B. B. Manish, A. Bhardwaj, and A. P. S. Rathore, “Six sigma
methodology utilization in telecom sector for quality improve-
ment—a DMAIC process,” International Journal of Engineering
Science and Technology, vol. 2, no. 12, pp. 7653–7659, 2010.

[17] S. H. Han,M. J. Chae, K. S. Im, andH. D. Ryu, “Six sigma-based
approach to improve performance in construction operations,”
Journal of Management in Engineering, vol. 24, no. 1, pp. 21–31,
2008.

[18] G. Cravo, “Applications of propositional logic to workflow
analysis,” Applied Mathematics Letters, vol. 23, no. 3, pp. 272–
276, 2010.

[19] G. Cravo, “Logical termination of workflows: an interdisci-
plinary approach,” Journal of Numerical Analysis, Industrial and
Applied Mathematics, vol. 5, no. 3-4, pp. 153–161, 2011.

[20] G. Cravo and J. Cardoso, “Termination of workflows: a snap-
shot-based approach,” Mathematica Balkanica, vol. 21, no. 3-4,
pp. 233–243, 2007.

[21] G. Cravo, “Workflow analysis—a task model approach,” in
Proceedings of the 2014 International Conference om Pure
Mathematics, Applied Mathematics, Computational Methods
(PMAMCM ’14), E. Nikos, E. Mastorakis, M. Panos, R. P.
Agarwal, and L. Kocinac, Eds., Mathematics and Computers in
Science and Engineering Series 29, pp. 2227–4588, July 2014.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

