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In this paper, the effect of volume fraction of single-walled carbon nanotubes on natural frequencies of polymer composite cone-
shaped shells made from Poly(Methyl Methacrylate) (PMMA) is studied. In order to determine the characterization of materials
reinforced with nanoparticles, the molecular dynamics and mixture rule has been used. The motion equations of composite shell
based on the classical thin shells theory usingHamilton’s principle are obtained.Then, using theRitzmethod, approximate analytical
solution of the natural frequency is presented. Results indicate that the nanotubes have a noticeable effect on the natural frequencies.

1. Introduction

One of the most important phenomena in shells sciences is
vibration due to dynamic loading, either one cyclic or impact
loading. The shell and any other continuous structures have
infinite natural frequencies and vibration mode shapes. If a
structure vibrates with a frequency equal to its natural fre-
quency, very little energy is needed to increase its amplitude
rapidly and the structure becomes unstable. This can lead to
uncomfortable consequences; for instance, the aircraft wing
can be broken or the huge turbines may get out of their axis.
In recent years, composite plates and shells reinforced with
single-walled carbon nanotube (SWCNT) are used widely
in industry. Therefore, for stability of these structures, the
natural frequency should be calculated and the difference
between that and the frequency of time-dependent applied
loads should be determined.

Single-walled carbon nanotubes (SWCNTs) and nano-
cones (SWCNCs) are made of one-atom-thick carbon sheets
shaped into hallow cylinders and cones. The carbon sheets
give SWCNTs unique electric, chemical, and mechanical
properties. In addition, extensive application of SWCNTs in
nanoscale devices, NEMS, sensors, and reinforcing particles

in composite materials has brought these devices into the
focus of researchers’ attention [1].

The mechanical studies related to SWCNTs can be
divided into two general categories: (a) analysis of the static
and dynamic behavior of SWCNT as a singular nanoscale
part and (b) investigating the mechanical behavior of com-
posite shells reinforced by SWCNTs. It is important to know
that as dimensions are scaled down, many essential phe-
nomena appear at the nanoscale, which are not important at
macroscale. Due to size dependency of material properties in
SWCNTs, it is not possible to study the dynamic behavior
and mechanical properties of these components through
usualmethods such as classical continuum theory. Hence, the
first kind can be studied through high order continuum
mechanics models for nanobeam [2, 3] and for nanoshell
including the nonlocal elasticity theory [4–8], the modified
couple stress theory [9–13], the modified strain gradient
theory [14–16], and the surface elasticity theory [17–20] and
also molecular dynamic (MD) simulation [21–24] and exper-
imental approach [23, 25].

The size parameter and new developed material length
scale parameter, which are introduced in high order contin-
uum theories to model the SWCNT as a singular nanoscale
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device, result in more precise estimation of natural frequen-
cies of the nanoscale parts. Anyway, determination of Young’s
modulus of SWCNCs and SWCNTs [26, 27], shear modulus
[27], critical load in buckling [28], and mode shapes [24]
and in general determination of mechanical properties and
dynamic behaviors of nanoscale structures in various shapes,
sizes, and supports are the main goal of these types of
analyses.

The other kind of the problems related to SWCNTs is the
macroscale composites, which are reinforced by SWCNTpar-
ticles. Therefore, the classical continuum theory developed
for plate and shell can be used to analyze the mechanical
properties anddynamic behaviors of these types of structures.
One of the important issues is the effect of volume fraction
of SWCNTs on the dynamic behavior of composite shells
and particularly cone shaped shell of polymer composite of
Poly(Methyl Methacrylate) (PMMA). PMMA is widely used
in various applications for its many advantageous properties.
Perhaps the most well-known of these properties is light
transmission. Typical PMMA grades allow 92% of light to
pass through it, which is more than glass or other plastics.
This outstanding clarity enables the use of PMMA in many
different optical and related applications. PMMA will not
shatter, but, it breaks into large pieces. It dissolves in most
organic solvents and has poor resistance to many chemical
materials. However, its environmental stability is higher than
most other plastics such as polyethylene and polystyrene;
therefore it is often the first choice for outdoor applications
[29]. Its durability and transparency have marked it as a
versatile material for a wide range of fields and applications
such as skylights, sanitary ware (bathtubs), bullet proof secu-
rity barriers, signs and displays, LCD screens, and furniture.
Methacrylate polymers are used extensively in dental and
medical applications. PMMA is compatible with human tis-
sue, and it can be implanted in the eye when the original lens
has been removed due to cataracts disease [30]. In orthopedic
surgery, PMMA bone cement is used to affix implants and
to remodel lost bone. Bone cement acts like a grout and not
so much like a glue in arthroplasty. Although sticky, it does
not bond to either the bone or the implant; it primarily fills
the spaces between the prosthesis and the bone preventing
motion. A major consideration when using PMMA cement
is the effect of stress shielding. Since PMMA has a Young’s
modulus lower than that of natural bone [31], the stresses are
loaded into the cement and so the bone no longer receives the
mechanical signals to continue bone remodeling and so
resorption will occur [32]. Nowadays, newly fabricated com-
posites based on PMMA (whereas PMMA is used as matrix)
are of high concern to the researchers. In this regard, Ke et
al. [33] and Ansari et al. [34] have investigated, respectively,
the nonlinear free vibration and nonlinear forced vibration
behavior of nanocomposite beams reinforced with single-
walled carbon nanotube (SWCNT) based on Timoshenko
beam theory. In the problem of composite plates reinforced
by CNTs, Ansari et al. [35, 36] have investigated numerically
the nonlinear forced vibration behavior and the geometrically
nonlinear primary resonance of third-order shear deformable
functionally gradedCNT rectangular plateswith various edge
supports subjected to a harmonic excitation transverse force.

Zhang and Liew [37] have proposed an improved moving
least-squares (IMLS) approximation for the field variables
in the functionally graded CNT plates. They [38] also have
studied that using the element-free kp-Ritz method based on
first-order shear deformation theory. Ansari et al. [39] have
proposed an analytical solution for the nonlinear postbuck-
ling problem of piezoelectric FG-CNT reinforced composite
cylindrical shells subjected to several loadings. They [40, 41]
also have employed the variational formulation to study the
buckling and vibration of axially compressed FG-CNTRC
conical shells. Liew et al. [42] have studied free vibration of
thin conical shells under various boundary conditions using
Ritz method. Zhao and Liew [43] have studied the free
vibration of conical shell panels made of functionally graded
material using kp-Ritz method. Formica et al. [44] have
studied the vibrational properties of composites reinforced
with carbon nanotubes (CNTs), using a continuum model,
based on the view of Mori et al.’s theory [45, 46]. Tornabene
[47] has investigated the free vibration of FGM conical and
cylindrical shells. In the mentioned paper, a kind of func-
tional material has been used which is combination of metal
and ceramic. In this study, the natural frequencies of conical
shells reinforced with carbon nanotubes are obtained. In
order to validate themodel, the results are compared with the
results of isotropic case in previous research. In addition, the
effect of volume fraction of nanotubes and the effect of vertex
angle of the cone on the natural frequencies are investigated.

2. Theoretical Approach

2.1. Governing Equations of Motion. The conical shell model
is shown in Figure 1. In this figure, 𝑥 is coordinate axis in
the ridge direction of the cone, 𝜃 is the coordinate in
environmental direction, and 𝑧 denotes the centerline of the
cone. Also (𝑢, V, 𝑤) are displacements in (𝑥, 𝑦, 𝑧) coordinate
systems, respectively.

2.2. Strain-Displacement Relations. Linear strain-displace-
ment relations of the middle surface, according to Sanders’
kinematic relations, are as follows:

𝜀0𝑥𝑥 = 𝜕𝑢0𝜕𝑥 ,
𝜀0𝜃𝜃 = 1𝑥 sin𝜙

𝜕V0𝜕𝜃 +
𝑢0𝑥 + 𝑤0𝑥 tan𝜙 ,

𝛾0𝑥𝜃 = 𝜕V0𝜕𝑥 + 1𝑥 sin𝜙
𝜕𝑢0𝜕𝜃 − V0𝑥 .

(1)

Also, curvatures are defined as follows:

𝑘𝑥 = 𝜕𝜓𝑥𝜕𝑥 ,
𝑘𝜃 = 1𝑥 sin𝜙

𝜕𝜓𝜃𝜕𝜃 + 𝜓𝑥𝑥 ,
𝜏 = 𝜕𝜓𝜃𝜕𝑥 + 1𝑥 sin𝜙

𝜕𝜓𝑥𝜕𝜃 − 𝜓𝜃𝑥 ,
(2)
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Figure 1: Geometry and coordinate system of a conical shell.

𝜓𝑥 = −𝜕𝑤0𝜕𝑥 ,
𝜓𝜃 = V0𝑥 tan𝜙 − 1𝑥 sin𝜙

𝜕𝑤0𝜕𝜃 .
(3)

Now, by substituting (3) in (2), the curves will be redefined as
follows:

𝑘𝑥 = 𝜕𝜕𝑥 (
−𝜕𝑤0𝜕𝑥 ) = −𝜕2𝑤0𝜕𝑥2 ,

𝑘𝜃 = 1𝑥 sin𝜙 𝜕𝜕𝜃 (
+V0𝑥 tan𝜙 − 1𝑥 sin𝜙

𝜕𝑤0𝜕𝜃 )
+ 1𝑥 (

−𝜕𝑤0𝜕𝑥 )
= − 1

𝑥2sin2𝜙
𝜕2𝑤0𝜕𝜃2 +

cos𝜙
𝑥2sin2𝜙

𝜕V0𝜕𝜃 − 1𝑥
𝜕𝑤0𝜕𝑥 ,

𝜏 = 𝜕𝜕𝑥 (
V0𝑥 tan𝜙 − 1𝑥 sin𝜙

𝜕𝑤0𝜕𝜃 )
+ 1𝑥 sin𝜙 𝜕𝜕𝜃 (

−𝜕𝑤0𝜕𝑥 ) − V0𝑥2 tan𝜙
+ 1𝑥2 sin𝜙

𝜕𝑤0𝜕𝜃
= 1𝑥 tan𝜙

𝜕V0𝜕𝑥 − 1𝑥2 tan𝜙V0 − 1𝑥 sin𝜙
𝜕2𝑤0𝜕𝑥𝜕𝜃

+ 1𝑥2 sin𝜙
𝜕𝑤0𝜕𝜃 − 1𝑥 sin𝜙

𝜕2𝑤0𝜕𝑥𝜕𝜃 −
V0𝑥2 tan𝜙

+ 1𝑥2 sin𝜙
𝜕𝑤0𝜕𝜃

= −2𝑥 sin𝜙
𝜕2𝑤0𝜕𝑥𝜕𝜃 + 1𝑥 tan𝜙

𝜕V0𝜕𝑥 + 2𝑥2 sin𝜙
𝜕𝑤0𝜕𝜃

− 2V0𝑥2 tan𝜙 .
(4)

Strain-displacement relations for an arbitrary point in the
distance 𝑧 from the middle surface are expressed as follows:

𝜀𝑥𝑥 = 𝜀0𝑥𝑥 + 𝑧𝑘𝑥,
𝜀𝜃𝜃 = 𝜀0𝜃𝜃 + 𝑧𝑘𝜃,
𝛾𝑥𝜃 = 𝛾0𝑥𝜃 + 𝑧𝜏.

(5)

Derived equations can be expressed inmatrix form as follows:

{{{{{{{

𝜀0𝑥𝑥
𝜀0𝜃𝜃
𝛾0𝑥𝜃

}}}}}}}
=
{{{{{{{{{{{{{{{

𝜕𝑢0𝜕𝑥1𝑥 sin𝜙
𝜕V0𝜕𝜃 +

𝑢0𝑥 + 𝑤0𝑥 tan𝜙𝜕V0𝜕𝑥 + 1𝑥 sin𝜙
𝜕𝑢0𝜕𝜃 − V0𝑥

}}}}}}}}}}}}}}}
,

{{{{{

𝑘𝑥
𝑘𝜃
𝜏
}}}}}

=
{{{{{{{{{{{{{{{{{

−𝜕2𝑤0𝜕𝑥2
− 1
𝑥2sin2𝜙

𝜕2𝑤0𝜕𝜃2 +
cos𝜙
𝑥2sin2𝜙

𝜕V0𝜕𝜃 − 1𝑥
𝜕𝑤0𝜕𝑥−2𝑥 sin𝜙

𝜕2𝑤0𝜕𝑥𝜕𝜃 + 1𝑥 tan𝜙
𝜕V0𝜕𝑥 + 2𝑥2 sin𝜙

𝜕𝑤0𝜕𝜃 − 2V0𝑥2 tan𝜙

}}}}}}}}}}}}}}}}}

,

{{{{{

𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝜃
}}}}}
=
{{{{{{{

𝜀0𝑥𝑥
𝜀0𝜃𝜃
𝛾0𝑥𝜃

}}}}}}}
+ 𝑧{{{{{

𝑘𝑥
𝑘𝜃
𝜏
}}}}}
.

(6)
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2.3. Stress-Strain Relationships. Since the shell made of com-
posite is reinforced with carbon nanotubes, in general it is
assumed that the shells material properties are orthotropic.
On the other hand, because of the carbon nanotubes set-
ting assumptions along the ridge of the cone-shaped shell,
orthotropic stress-strain will be reducible to transversely
isotropic case.

{{{{{

𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑥𝜃
}}}}}
= [[
[

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]]
]
{{{{{

𝜀𝑥𝑥
𝜀𝜃𝜃
𝛾𝑥𝜃
}}}}}
, (7)

where

𝑄11 = 𝐸11 − ]12]21
,

𝑄12 = ]12𝐸21 − ]12]21
,

𝑄22 = 𝐸21 − ]12]21
,

𝑄66 = 𝐺12.

(8)

Young’s modulus, shear modulus, and Poisson’s ratio are
obtained from the mixtures rule [50]. To simplify the equa-
tions, the following equations are considered:

(𝐴 𝑖𝑗, 𝐷𝑖𝑗) = ∫ℎ/2
−ℎ/2

𝑄𝑖𝑗 (1, 𝑧2) 𝑑𝑧, 𝑖, 𝑗 = 1, 2, 6, (9)

where 𝐴 𝑖𝑗 and 𝐷𝑖𝑗 are extensional and bending stiffness,
respectively.

2.4. Equations of Motion. In order to derive the equations of
motion, Hamilton’s principle is applied:

∫𝑡2
𝑡
1

(𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾) 𝑑𝑡 = 0, (10)

where the virtual strain energy, 𝛿𝑈, is defined as

𝛿𝑈 = ∬{∫ℎ/2
−ℎ/2

[𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝜃𝜃𝛿𝜀𝜃𝜃 + 𝜎𝑥𝜃𝛿𝛾𝑥𝜃] 𝑑𝑧}𝑥 sin𝜙𝑑𝑥𝑑𝜃

= ∬{∫ℎ/2
−ℎ/2

[𝜎𝑥𝑥 (𝛿𝜀∘𝑥𝑥 + 𝑧𝛿𝑘𝑥) + 𝜎𝜃𝜃 (𝛿𝜀∘𝜃𝜃 + 𝑧𝛿𝑘𝜃) + 𝜎𝑥𝜃 (𝛿𝛾∘𝑥𝜃 + 𝑧𝛿𝜏)] 𝑑𝑧}𝑥 sin𝜙𝑑𝑥𝑑𝜃
(11)

and the virtual work done by external loads acting upon the
conical shell, 𝛿𝑉, is defined as

𝛿𝑉 = −∬𝑞𝛿𝑤0𝑥 sin𝜙𝑑𝑥𝑑𝜃 (12)

and virtual kinetic energy, 𝛿𝐾, is defined as

𝛿𝐾 =∭ℎ/2
−ℎ/2

𝜌 [�̇�0𝛿�̇�0 + V̇0𝛿V̇0 + �̇�0𝛿�̇�0] 𝑥
⋅ sin𝜙𝑑𝑧 𝑑𝑥 𝑑𝜃.

(13)

Substituting 𝛿𝑈 in the Hamilton principle (10) and then
integrating along the thickness, 𝛿𝑉 and 𝛿𝐾 yield

∫𝑡2
𝑡
1

{∬[𝑁𝑥𝑥𝛿𝜀0𝑥𝑥 +𝑀𝑥𝑥𝛿𝑘𝑥 + 𝑁𝜃𝜃𝛿𝜀0𝜃𝜃 +𝑀𝜃𝜃𝛿𝑘𝜃 + 𝑁𝑥𝜃𝛿𝛾0𝑥𝜃 +𝑀𝑥𝜃𝛿𝜏 − 𝑞𝛿𝑤0 − 𝐼0 (�̇�0𝛿�̇�0 + V̇0𝛿V̇0 + �̇�0𝛿�̇�0)] 𝑥

⋅ sin𝜙𝑑𝑥𝑑𝜃} 𝑑𝑡 = 0.
(14)

By substituting (1) and (4) in (14), the following equation can
be obtained:

∫𝑡1
𝑡
2

{∬[𝑁𝑥𝑥 𝜕𝛿𝑢0𝜕𝑥 −𝑀𝑥𝑥 𝜕2𝛿𝑤0𝜕𝑥2
+ 𝑁𝜃𝜃 ( 1𝑥 sin𝜙

𝜕𝛿V0𝜕𝜃 + 𝛿𝑢0𝑥 + 𝛿𝑤0𝑥 tan𝜙)

+𝑀𝜃𝜃 ( −1
𝑥2sin2𝜙

𝜕2𝛿𝑤0𝜕𝜃2 + cos𝜙
𝑥2sin2𝜙

𝜕𝛿V0𝜕𝜃 − 1𝑥
𝜕𝛿𝑤0𝜕𝑥 )

+ 𝑁𝑥𝜃 (𝜕𝛿V0𝜕𝑥 + 1𝑥 sin𝜙
𝜕𝛿𝑢0𝜕𝜃 − 𝛿V0𝑥 )

+𝑀𝑥𝜃 ( −2𝑥 sin𝜙
𝜕2𝛿𝑤0𝜕𝑥𝜕𝜃 + 1𝑥 tan𝜙

𝜕𝛿V0𝜕𝑥 + 2𝑥2 sin𝜙
𝜕𝛿𝑤0𝜕𝜃 − 2𝛿V0𝑥2 tan𝜙)

− 𝑞𝛿𝑤0 − 𝐼0 (�̇�0𝛿�̇�0 + V̇0𝛿V̇0 + �̇�0𝛿�̇�0) ] 𝑥 sin𝜙𝑑𝑥𝑑𝜃}𝑑𝑡
= 0,

(15)
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where stress resultants are defined as follows:

𝑁𝑖𝑗 = ∫ℎ/2
−ℎ/2

𝜎𝑖𝑗 𝑑𝑧,

𝑀 ̈𝑦 = ∫ℎ/2
−ℎ/2

𝜎𝑖𝑗𝑧 𝑑𝑧,
𝑖𝑗 = 𝑥𝑥, 𝜃𝜃, 𝑥𝜃.

(16)

Also,

𝐼0 = ∫ℎ/2
−ℎ/2

𝜌 𝑑𝑧. (17)

Now, applying integration by parts yields the following
equations of motion:

𝜕𝑁𝑥𝑥𝜕𝑥 + 𝑁𝑥𝑥 − 𝑁𝜃𝜃𝑥 + 1𝑥 sin𝜙
𝜕𝑁𝑥𝜃𝜕𝜃 = 𝐼0 ̈𝑢0,

1𝑥 sin𝜙
𝜕𝑁𝜃𝜃𝜕𝜃 + 𝜕𝑁𝑥𝜃𝜕𝑥 + 2𝑁𝑥𝜃𝑥 + 𝑄𝜃𝑥 tan𝜙 = 𝐼0 ̈V0,

− ( 𝑁𝜃𝜃𝑥 tan𝜙) +
𝜕𝑄𝑥𝜕𝑥 + 𝑄𝑥𝑥 + 1𝑥 sin𝜙

𝜕𝑄𝜃𝜕𝜃 + 𝑞 = 𝐼0 ̈𝑤0,
(18)

where

𝑄𝑥 = 𝑀𝑥𝑥𝑥 + 𝜕𝑀𝑥𝑥𝜕𝑥 + 1𝑥 sin𝜙
𝜕𝑀𝑥𝜃𝜕𝜃 − 𝑀𝜃𝜃𝑥 ,

𝑄𝜃 = 1𝑥 sin𝜙
𝜕𝑀𝜃𝜃𝜕𝜃 + 𝜕𝑀𝑥𝜃𝜕𝑥 + 2𝑀𝑥𝜃𝑥 .

(19)

To express the equations of motion in terms of displacement,
stress resultants versus displacement should be derived as
follows:

𝑁𝑥𝑥 = ∫ℎ/2
−ℎ/2

𝜎𝑥𝑥 𝑑𝑧 = ∫ℎ/2
−ℎ/2

(𝑄11𝜀𝑥𝑥 + 𝑄12𝜀𝜃𝜃) 𝑑𝑧
= ∫ℎ/2
−ℎ/2

[(𝑄11𝜀0𝑥𝑥 + 𝑄12𝜀0𝜃𝜃) + 𝑧 (𝑄11𝑘𝑥 + 𝑄12𝑘𝜃)] 𝑑𝑧
= ∫ℎ/2
−ℎ/2

(𝑄11𝜀0𝑥𝑥 + 𝑄12𝜀0𝜃𝜃) 𝑑𝑧 = 𝐴11𝜀0𝑥𝑥 + 𝐴12𝜀0𝜃𝜃.

(20)

Similarly, the other stress resultants are obtained which can
be represented in matrix form as follows:

{{{{{{{{{{{{{{{{{{{{{{{

𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃
𝑀𝑥𝑥
𝑀𝜃𝜃
𝑀𝑥𝜃

}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[
[

𝐴11 𝐴12 0 0 0 0
𝐴12 𝐴22 0 0 0 0
0 0 𝐴66 0 0 0
0 0 0 𝐷11 𝐷12 0
0 0 0 𝐷12 𝐷22 0
0 0 0 0 0 𝐷66

]]]]]]]]]]]
]

{{{{{{{{{{{{{{{{{{{{{{{

𝜀0𝑥𝑥
𝜀0𝜃𝜃
𝛾0𝑥𝜃𝑘𝑥
𝑘𝜃
𝜏

}}}}}}}}}}}}}}}}}}}}}}}

,

{{{{{

𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃

}}}}}
= [[
[

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

]]
]

{{{{{{{{{{{{{{{

𝜕𝑢0𝜕𝑥1𝑥 sin𝜙
𝜕V0𝜕𝜃 +

𝑢0𝑥 + 𝑤0𝑥 tan𝜙𝜕V0𝜕𝑥 + 1𝑥 sin𝜙
𝜕𝑢0𝜕𝜃 − V0𝑥

}}}}}}}}}}}}}}}
,

{{{{{

𝑀𝑥𝑥
𝑀𝜃𝜃
𝑀𝑥𝜃

}}}}}
= [[
[

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

]]
]

[[[[[[[[
[

−𝜕2𝑤0𝜕𝑥2
− 1
𝑥2sin2𝜙

𝜕2𝑤0𝜕𝜃2 +
cos𝜙
𝑥2sin2𝜙

𝜕V0𝜕𝜃 − 1𝑥
𝜕𝑤0𝜕𝑥−2𝑥 sin𝜙

𝜕2𝑤0𝜕𝑥𝜕𝜃 + 1𝑥 tan𝜙
𝜕V0𝜕𝑥 + 2𝑥2 sin𝜙

𝜕𝑤0𝜕𝜃 − 2V0𝑥2 tan𝜙

]]]]]]]]
]

.

(21)

2.5. Energy Functional. For the conical shell, the integral
expressions of strain and kinetic energies are as follows:

𝑈 = 12 ∬{∫ℎ/2
−ℎ/2

[𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝜃𝜃𝛿𝜀𝜃𝜃 + 𝜎𝑥𝜃𝛾𝑥𝜃] 𝑑𝑧}𝑥

⋅ sin𝜙𝑑𝑥 𝑑𝜃,
𝐾 = 12∭

ℎ/2

−ℎ/2
𝜌 [�̇�20 + V̇20 + �̇�20] 𝑥 sin𝜙𝑑𝑧 𝑑𝑥 𝑑𝜃.

(22)

The above equations can be rewritten as follows:
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𝑈 = 12 ∬{[∫ℎ/2
−ℎ/2

[𝜎𝑥𝑥 (𝜀0𝑥𝑥 + 𝑧𝑘𝑥) + 𝜎𝜃𝜃 (𝜀0𝜃𝜃 + 𝑧𝑘𝜃) + 𝜎𝑥𝜃 (𝛾0𝑥𝜃 + 𝑧𝜏)] 𝑑𝑧}𝑥 sin𝜙𝑑𝑥𝑑𝜃,
𝑈 = 12 ∬[𝑁𝑥𝑥𝜀0𝑥𝑥 +𝑀𝑥𝑥𝑘𝑥 + 𝑁𝜃𝜃𝜀0𝑥𝑥 +𝑀𝜃𝜃𝑘𝜃 + 𝑁𝑥𝜃𝛾0𝑥𝜃 +𝑀𝑥𝜃𝜏] 𝑥 sin𝜙𝑑𝑥𝑑𝜃,
𝐾 = 12∭(𝜌 [�̇�2 + V̇2 + �̇�2]) 𝑥 sin𝜙𝑑𝑧 𝑑𝑥 𝑑𝜃 = 12𝐼0 ∫

2𝜋

0
∫𝐿
0
[�̇�20 + V̇20 + �̇�20] 𝑥 sin𝜙𝑑𝑥𝑑𝜃.

(23)

Therefore, the energy functional, depending on the strain and
kinetic energy, is expressed as follows:

Π = 𝐾 − 𝑈. (24)

2.6. Formulation of the Eigen Value Problem. Removing
harmonic component and insertion of the displacement
function in (24), themaximumenergy functional is expressed
as follows:

Π̂ = 𝐾max − 𝑈max, (25)

where 𝑈max and 𝐾max are the maximum strain energy
and maximum kinetic energy, respectively. By minimizing
the functional equation (25) with respect to the available
coefficients, an eigen value equation is obtained as follows:

𝜕Π̂𝜕𝑎𝑖 = 0; 𝑖 = 1, 2, 3 ⇒

[[[
[

𝐾11 − 𝜔2𝑀11 𝐾12 𝐾13
𝐾21 𝐾22 − 𝜔2𝑀22 𝐾23
𝐾31 𝐾32 𝐾33 − 𝜔2𝑀33

]]]
]
{{{{{

𝑎1
𝑎2
𝑎3
}}}}}

= {{{{{

0
0
0
}}}}}
.

(26)

To obtain the natural frequency of conical shape composite
shell reinforced with nanotubes, it is sufficient to put the
determinant of coefficients matrix equal to zero.



𝐾11 − 𝜔2𝑀11 𝐾12 𝐾13
𝐾21 𝐾22 − 𝜔2𝑀22 𝐾23
𝐾31 𝐾32 𝐾33 − 𝜔2𝑀33


= 0. (27)

2.7. The Expression of Displacement Functions. To obtain the
strain and kinetic energies, first the displacement functions
should be determined. It should be noted that these functions
must satisfy the boundary conditions. Conical shell that
will be investigated here is a complete conical shell with a

fixed base. Consequently, the boundary conditions can be
expressed as follows:

𝑢0 = V0 = 𝑤0 = 𝜕𝑤0𝜕𝑥 = 0, at 𝑥 = 0,
𝑢0 = V0 = 𝑤0 = 𝜕𝑤0𝜕𝑥 = 0, at 𝑥 = 𝐿.

(28)

According to the mentioned study, the authors will use the
following displacement functions to provide an approximate
analytical solution based on the Ritz method:

𝑢0 = 𝑎1𝑥2 (𝑥 − 𝐿)2 cos 𝑛𝜃 cos𝜔𝑡,
V0 = 𝑎2𝑥2 (𝑥 − 𝐿)2 sin 𝑛𝜃 cos𝜔𝑡,
𝑤0 = 𝑎3𝑥2 (𝑥 − 𝐿)2 cos 𝑛𝜃 cos𝜔𝑡.

(29)

2.8. Mixtures Rule. Suppose that the composite shell that has
been strengthened with carbon nanotubes uniformly along
the 𝑥 coordinate is made of a mixture of single-walled carbon
nanotubes, which is assumed to be isotropic. Here, the main
problem is determining the effective material properties of
composites reinforced with carbon nanotubes. The effective
physical properties can be estimated using the Mori-Tanaka
model or mixtures rule [45, 50]. According to the rule of
mixtures, Young’s moduli and shear moduli can be expressed
as follows:

𝐸11 = 𝜂1𝑉CN𝐸CN
11 + 𝑉𝑚𝐸𝑚,

𝜂2𝐸22 =
𝑉CN𝐸CN
22

+ 𝑉𝑚𝐸𝑚 ,
𝜂3𝐺12 =

𝑉CN𝐺CN
12

+ 𝑉𝑚𝐺𝑚 ,
(30)

where 𝐸CN
11 , 𝐸CN

22 , and 𝐺CN
12 are Young’s and shear moduli

of carbon nanotubes, respectively. 𝐸𝑚 and 𝐺𝑚 are the cor-
responding properties, related to the background. 𝜂𝑗 is the
efficiency parameters of carbon nanotubes which is deter-
mined by adaptation of elastic moduli from molecular
dynamics simulation results and the mixtures rules. 𝑉CN and𝑉𝑚 are volume fractions of carbon nanotubes and back-
ground, which are related as follows:

𝑉CN + 𝑉𝑚 = 1. (31)
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Table 1: Temperature-dependent material properties of single-walled carbon nanotubes [48].

Temperature (K) 𝐸CN
11 (TPa) 𝐸CN

22 (TPa) 𝐺CN
12 (TPa) 𝛼CN11 (×10−6/K) 𝛼CN22 (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682

Table 2: Young’s moduli for the composite PMMA/CNT: mixtures rule in comparison with molecular dynamics.

𝑉∗CN Molecular dynamics [49] Mixtures rule [49, 50]
𝐸11 𝐸22 𝐸11 𝜂1 𝐸22

0.12 94.6 2.9 94.78 0.137 2.9
0.17 138.9 4.9 138.68 0.142 4.9
0.28 224.2 5.5 224.50 0.141 5.5

Suppose the volume fraction, 𝑉CN, as follows:
𝑉CN = 𝑤 (𝑧)𝑉∗CN, (32)

where

𝑉∗CN = 𝑤CN𝑤CN + (𝜌CN/𝜌𝑚) − (𝜌CN/𝜌𝑚) 𝑤CN
, (33)

where 𝑤CN is the mass fraction of carbon nanotubes. For
a uniform distribution of nanotubes, it is considered that𝑉CN = 𝑉∗CN. Poisson’s ratio andmass density can be calculated
as follows:

]12 = 𝑉∗CN]CN12 + 𝑉𝑚]𝑚,
𝜌 = 𝑉∗CN𝜌CN + 𝑉𝑚𝜌𝑚.

(34)

Consequently, according to (9), 𝐴 𝑖𝑗 stiffness equations for a
uniformdistribution of nanotubeswill be obtained as follows:

𝐴11 = 11 − ]12]21
[𝑉∗CN (𝜂1𝐸CN

11 − 𝐸𝑚) + 𝐸𝑚] ℎ,
𝐴12 = ]121 − ]12]21

[ 𝜂2𝐸CN
22 𝐸𝑚𝐸CN

22 + (𝐸𝑚 − 𝐸CN
22 ) 𝑉∗CN] ℎ,

𝐴22 = 11 − ]12]21
[ 𝜂2𝐸CN

22 𝐸𝑚𝐸CN
22 + (𝐸𝑚 − 𝐸CN

22 ) 𝑉∗CN] ℎ,

𝐴66 = [ 𝜂3𝐺CN
12 𝐺𝑚𝐺CN

12 + (𝐺𝑚 − 𝐺CN
12 ) 𝑉∗CN] ℎ.

(35)

According to the above equations, for a uniform distribution
of nanotubes, there is𝐷𝑖𝑗 = (ℎ2/12)𝐴 𝑖𝑗; also

𝐼0 = [𝑉∗CN (𝜌CN − 𝜌𝑚) + 𝜌𝑚] ℎ. (36)

3. Material Properties of Carbon Nanotubes

Based on the results of molecular dynamics simulations, size
and temperature dependent material properties of single-
walled carbon nanotubes [48] can be obtained numerically
as in Table 1.

3.1. Material Properties of PMMA Polymer. The material
properties of considered background in temperature equal to300∘K are assumed as follows:

]𝑚 = 0.34,
𝜌𝑚 = 1.15 g/cm3,
𝐸𝑚 = 2.5GPa,
𝐺𝑚 = 𝐸𝑚2 (1 + 𝜐𝑚) = 0.933Gpa.

(37)

For short fiber composites 𝜂1 is usually considered to be 0.2.
However, there is no experimental method for determining
the value of 𝜂𝑗. Here, with adaption of Young’smoduli𝐸11 and𝐸22 obtained from themixtures rule andmolecular dynamics,
efficiency parameters 𝜂1 and 𝜂2 are estimated. Comparison
of the results shows that if the efficiency parameters are
chosen properly, Young’s modulus, obtained from molecular
dynamics, is well adapted to mixtures rule results, as shown
in Table 2.

4. Results and Validation

It should be noted that there are various shell models accord-
ing to the thickness of the shell and various models can be
used for the variable density of filling the polymer with nan-
otubes. In general the vibration solution for polymer compos-
ite cone-shaped shell made from PMMA is hard. However,
in this section, thin shells model with uniform distribution
of nanotubes in composite cone-shaped shell has been used;
therefore results are extracted for special case. Validation
of current study has been undertaken with [44, 51]. In this
case, the parameter ℎ2/12𝑅22 is considered to be equal to10−5 for the conical shell. It is considered in Table 3 that the
errors of the present results in comparison with the solution
presented in [51] are less than 1% for every vertex angle.

4.1. Numerical Results of the PMMA/CNT Composite. In
this section, by considering the fixed PMMA/CNT com-
posite shell, the numerical results of the nondimensional
frequencies with respect to the different volume fractions
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Table 3: Nondimensional frequency of a fixed conical shell with a fixed vertex.

𝛽
𝑛

0 1 2
Leisa

(presented
results)

Leisa
(presented
results)

Leisa
(presented
results)

15
% diff

0.223180.2231
0.01165

0.15410.1541
0.00

0.8010.801
0.00

30
% diff

0.80030.8004
0.00975

0.49380.4938
0.00

0.21590.2157
0.0764

45
% diff

1.50141.5014
0.00533

0.72560.7255
0.12277

0.27660.2764
0.0767

60
% diff

1.76591.7660
0.00113

0.54500.5449
0.01

0.19270.1926
0.0745

Table 4: Nondimensional frequency variation of fixed PMMA/CNT composite shell for 𝑉∗CN = 0.
𝛽 𝑛

0 1 2 3 4 5
15 0.223141 0.126679 0.05998 0.060032 0.121503 0.269507
30 0.800276 0.38597 0.15421 0.100899 0.140962 0.277957
45 1.50132 0.526649 0.193304 0.115026 0.145165 0.27607
60 1.7659 0.374958 0.133334 0.085712 0.126232 0.260175
75 0.739415 0.105912 0.04092 0.042762 0.100341 0.240933

of carbon nanotubes, different values of 𝛽, and various 𝑉∗CN
are presented in Tables 4, 5 and 6. In addition, frequency
variations are plotted with respect to the number of modes
“n” in Figures 2, 3, and 4 for specific volume fractions of
PMMA/CNT composite shell.The figures show that themost
important effects of using nanotubes are in elementarymodes
of PMMA/CNT composite shell. Also, for “n” greater than 3,
the frequencies obtained for different 𝛽 tend to converge. It
can be concluded that values of nondimensional frequencies
in aforementioned range do not depend on the angle of cone
apexes and the volume fraction.

5. Conclusion

In this paper, the effect of volume fraction of single-walled
carbon nanotubes on natural frequencies of cone-shaped
polymer composite shells made of PMMA is studied. There
are various shellmodels according to the thickness of the shell
and various models can be used for the variable density of
filling the polymer with nanotubes. In general the vibration
solution for polymer composite cone-shaped shellmade from
PMMA is hard. However, a complete conical shell with a
fixed base is investigated. Equations of motion were devel-
oped based on Hamilton’s principle. Thin shells model with
uniform distribution of nanotubes in composite cone-shaped
shell has been used; therefore results are extracted for special
case. Regardless of the volume fraction amount of nanotubes,
it is observed that the greatest decrease in nondimensional
frequency parameter with increasing “n” parameter occurs in

0

n
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1.8

1.6

1.4

1.2

1

0.8

0.6

0.4
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 = 60
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Figure 2: Nondimensional frequency variation of fixed PMMA/
CNT composite shell for 𝑉∗CN = 0.

the firstmodes. In some cases, this reduction has increased up
to 4 times. In addition, for number of modes “n” greater than
3, the frequencies obtained for different angle of cone apexes
tend to converge. It is considered that the errors of the present
results in comparisonwith the solution presented by Leisa are
less than 1% for every vertex angle. It is concluded that values
of nondimensional frequencies in aforementioned range do
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Table 5: Nondimensional frequency variation of fixed PMMA/CNT composite shell for 𝑉∗CN = 0.12.
𝛽 𝑛

0 1 2 3 4 5
15 0.444175 0.281997 0.203815 0.203427 0.264869 0.41323
30 1.21041 0.517539 0.258945 0.203185 0.241179 0.376852
45 2.27495 0.61614 0.260705 0.175626 0.200352 0.327925
60 3.3595 0.433397 0.174726 0.115444 0.149108 0.279531
75 4.15994 0.136299 0.055915 0.050495 0.105159 0.244842

Table 6: Nondimensional frequency variation of fixed PMMA/CNT composite shell for 𝑉∗CN = 0.28.
𝛽 𝑛

0 1 2 3 4 5
15 0.880079 0.580785 0.43786 0.437286 0.549704 0.821152
30 2.26357 0.986998 0.514793 0.413378 0.483145 0.731539
45 4.19439 1.14393 0.494933 0.339869 0.385371 0.618985
60 6.17178 0.797481 0.324699 0.21642 0.278094 0.51685
75 7.64184 0.250454 0.103402 0.093363 0.193304 0.448963
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Figure 3: Nondimensional frequency variation of fixed PMMA/
CNT composite shell for 𝑉∗CN = 0.12.

not depend on the angle of the cone apexes and the volume
fraction.

Nomenclature

𝑎𝑖: Ritz approximation coefficients𝐴 𝑖𝑗: Extensional stiffness for a uniform
distribution of nanotubes𝐷𝑖𝑗: Bending stiffness for a uniform
distribution of nanotubes𝐸𝑖𝑗: Young’s moduli𝐸CN

𝑖𝑗 : Young’s moduli of carbon nanotubes
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Figure 4: Nondimensional frequency variation of fixed PMMA/
CNT composite shell for 𝑉∗CN = 0.28.

𝐸𝑚: Young’s moduli related to the background𝐺𝑖𝑗: Shear moduli𝐺CN
𝑖𝑗 : Shear moduli of carbon nanotubes𝐺𝑚: Shear moduli related to the backgroundℎ: Shell thickness𝐼0: Density resultant𝐾: Virtual kinetic energy𝐾𝑖𝑗: Matrix components𝑘𝑥, 𝑘𝜃, 𝜏: Curvature parameters𝐾max: Maximum kinetic energy𝐿: Length of the cone𝑀𝑖𝑗: Moment resultant𝑀𝑥𝑥, 𝑀𝑥𝜃, 𝑀𝜃𝜃: Moment resultant components
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𝑛: Mode number𝑁𝑖𝑗: Force resultant𝑁𝑥𝑥, 𝑁𝑥𝜃, 𝑁𝜃𝜃: Force resultant components𝑄𝑖𝑗: Orthotropic elastic constants𝑄𝑥, 𝑄𝜃: Orthotropic elastic constants in axial and
circumferential direction𝑢0, V0, 𝑤0: Displacement in 𝑥, 𝑦, 𝑧 directions�̇�0, V̇0, �̇�0: Velocity in 𝑥, 𝑦, 𝑧 directions𝑈: Virtual strain energy𝑈max: Maximum strain energy𝑉CN, 𝑉∗CN: Volume fractions of carbon nanotubes𝑉𝑚: Volume fractions related to the back-
ground𝑤CN: Mass fraction of carbon nanotubes𝑥: Coordinate axis in the ridge direction of
the cone𝑧: Centerline of the cone𝛽: Cone vertex angleΠ: Energy functionalΠ̂: Maximum energy functional𝜀𝑥𝑥, 𝜀𝜃𝜃, 𝛾𝑥𝜃: Strain-displacement relations for an arbi-
trary point in the distance 𝑧 from the
middle surface𝜀0𝑥𝑥, 𝜀0𝜃𝜃, 𝛾0𝑥𝜃: Linear strain-displacement relations of
the middle surface𝜃: Coordinate in environmental direction𝜙: Half cone angle𝜎𝑥𝑥, 𝜎𝜃𝜃, 𝜎𝑥𝜃: Stress components

]𝑖𝑗: Poisson’s ratio
]CN𝑖𝑗 : Poisson’s ratio of carbon nanotubes
]𝑚: Poisson’s ratio related to the background𝜂𝑗: Efficiency parameter of carbon nanotubes𝜔: Natural frequency𝜌: Mass density𝜌CN: Mass density of carbon nanotubes𝜌𝑚: Mass density related to the background.
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