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This paper develops two integrated optimization models of two-echelon inventory for imperfect production system under quality
competition environment, in which the vendor’s production process is assumed to be imperfect, and JIT delivery policy is
implemented to ship product from the vendor to the buyer. In the first model, product defect rate is fixed, and, in the second
model, quality improvement investment is function of defect rate. The optimal policies of ordering quantity of buyer and shipment
from vendor to buyer are obtained tominimize the expected annual total cost of vendor and buyer. Numerical examples are used to
demonstrate the effectiveness and feasibility of themodels. Sensitivity analysis is taken to analyze the impact of demand, production
rate, and defect rate on the solution. Implications are highlighted in that both the vendor and the buyer can benefit from the vendor’s
investing in quality improvement.

1. Introduction

Nowadays, quality is a very important competition weapon;
manufacturing firmsmust produce perfect goods in a perfect
production system to compete with rivals. However, imper-
fect production condition exists in reality, such as imperfect
supply system, imperfect machine maintenance, imperfect
process, and imperfect workforce. Facing this imperfect
production condition, firms on one hand need to carry out
continuous improvement strategy to improve the production
system and on the other hand need to make appropriate
operation decision considering the imperfect production
condition.This paper focuses on how tomake the appropriate
inventory decision for a two-echelon supply chain consisting
of single vendor and single buyer, currently considering
imperfect production condition of machine inspection and
quality improvement strategy.

The traditional economic production quantity (EPQ)
model assumes that the production process is perfect and
no imperfect items are produced. However, in practice, the
production facility is not failure-free and product quality is

also not always perfect. In practice, the imperfect itemswould
be rejected, repaired, and reworked, and thus extra costs are
incurred. Several researches have been undertaken to study
inventory models with imperfect quality. Rosenblatt and Lee
[1] studied an imperfect production process with optimizing
production cycle time. Their result shows that the optimal
production cycle is shorter than that of the classical economic
manufacturing quantity model. Salameh and Jaber [2] devel-
oped a classical economic order quantity model for items
with imperfect quality. Wee et al. [3] extended Salameh and
Jaber’s [2] model with the permission of shortage. Cárdenas-
Barrón [4] studied an economic production quantity model
with rework process at a single-stage manufacturing system
with planned backorders. Chung [5] revisited the work
of Cárdenas-Barrón [4] and developed the sufficient and
necessary condition for the existence of the solution.

Chang and Ho [6] revised Wee et al.’s [3] model and
derived the exact solution to the optimal inventory model
for items with imperfect quality and shortage backordering.
J.-T. Hsu and L.-F. Hsu [7] developed an economic order
quantity (EOQ) model with imperfect quality items,

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 326919, 11 pages
http://dx.doi.org/10.1155/2015/326919



2 Mathematical Problems in Engineering

inspection errors, shortage backordering, and sales returns.
The model presented a closed form solution to the optimal
order size, the maximum shortage level, and the optimal
order/reorder point. Khouja and Mehrez [8] developed an
economic production lot size model with imperfect quality
and variable production rate. Sana [9] extended Khouja and
Mehrez’s [8] model and investigated an economic production
lot size model in an imperfect production system, in which
the production facility may shift from an “in-control” state
to an “out-of-control” state at any random time.

Besides the EPQ and EOQ models with imperfect items
and processes, in the past, vendor-buyer integrated inventory
management related to imperfect quality also has been
studied. Huang [10] presented an integrated vendor-buyer
inventory model for imperfect quality items. Goyal et al.
[11] developed a simple approach for determining an opti-
mal integrated vendor-buyer inventory policy for an item
with imperfect quality. Huang [12] developed a model to
determine an optimal integrated vendor-buyer inventory
policy for flawed items in a JIT manufacturing environment.
Ouyang et al. [13] proposed three methods to determine
defect rate (crisp, fuzzy, and mixture of statistic and fuzzy)
in an integrated vendor-buyer inventory model involving
defective items. J.-T. Hsu and L.-F. Hsu [14, 15] developed
a mathematical model to determine an integrated vendor-
buyer inventory policy, where the vendor’s production pro-
cess is imperfect and produces a certain number of defective
items.

In practice, product quality is usually related to the state
of the production process. When the production process is
in control state, the items would be in high quality level
(perfect). As time goes on, the process state may deteriorate
and imperfect items are produced. In recent years, some
authors have studied production-inventory models with
process inspection. Marek [16] considered the problem of
optimization of a quality inspection process and presented
a solution of optimal inspection operations in a production
process. However, the inspection process is not relevant to
the imperfect quality. Lee and Rosenblatt [17] developed an
EMQ (economic manufacturing quantity) model of joint
control of production cycles or manufacturing quantities and
maintenance by inspection. Giri and Dohi [18] considered
inspection process for imperfect production process where
the process state shifts randomly. During each production
run, the process is monitored through inspections to assess
its state. J. T. Hsu and L. F. Hsu [19] developed an integrated
vendor-buyer production-inventory model for items with
imperfect quality and inspection errors. The production pro-
cess is imperfect and produces a certain number of defective
items. At the same time, the buyer’s quality screening process
is not perfect either. This model derives the optimal solution
to integrated total annual cost. Khan et al. [20] adopted an
approach similar to Salameh and Jaber [2] to study an optimal
production/order quantitywith imperfect processes. J.-T.Hsu
and L.-F. Hsu [21] pointed out a contradiction between Lee’s
[22] model and their assumption and developed a modified
model. Yoo et al. [23] studied the imperfect production and
inspection processes in a stable production and inventory
system. They developed the imperfect quality inventory

models for various inspection options. Avinadav andPerlman
[24] considered a batch production process that can be
either stable or unstable, in which inspection is performed
offline after production of the batch is completed. Chung
[25] developed an integrated two-stage production-inventory
deteriorating model for replenishment policy and inspection
plan. Khan et al. [26] developed an integrated vendor-buyer
inventory model accounting for quality inspection errors at
the buyer’s end.

Additionally, some researchers have studied the inventory
models incorporating the issue of investment in product
quality improvement. Porteus [27] developed a model that
captured a relationship between quality and lot size and dis-
cussed three options for investing in quality improvements.
Hong [28] incorporated joint investment in setup reduction
and process quality improvement into a production system
with imperfect production processes, where he assumed that
setup reduction and process quality are functions of capital
expenditure. Lee [22] developed a cost/benefit model for
supporting investment strategies about inventory and pre-
ventivemaintenance in an imperfect production system. Hou
[29] considered an EPQ model with imperfect production
processes, in which the setup cost and process quality are
functions of capital expenditure. They studied the effects of
an imperfect production process on the optimal production
cycle time after capital investment strategies and process
quality improvements are adopted. Yoo et al. [30] examined
an imperfect production and inspection system and analyzed
the solutions for different investment strategies.

The purpose of this paper is to extend Huang’s [12]. First,
in this paper, we consider process inspections during produc-
tion run, while Huang’smodel does not consider this; second,
we extend Huang’s model to another model for consider
quality improvement investment. The main contributions of
this paper lie in the fact that we extended the previous study
on the vendor-buyer inventory model by considering the
imperfect production condition and quality improvement
investment and provided implications for practitioners in
inventory decision.

The rest of the paper is organized as follows. In Section 2,
notations and assumptions are first presented and then
the proposed model of single-vendor single-buyer inven-
tory for defect items is formulated; again, the proposed
model is extended to consider capital investment in quality
improvement. In Section 3, numerical examples and sensitiv-
ity analysis are given. Finally, conclusions and future research
directions are given in Section 4.

2. Formulation of the Model

In this paper, we assume a supply chain comprised of a vendor
(manufacturer) and buyer (retailer); the vendor produces
product and delivers it to a buyer (retailer). An equal lot
size policy is adopted. The vendor’s production process is
assumed to be imperfect and a fraction of defective items are
produced during a production run.Themachine always starts
in an in-control state but may shift to the out-of-control state
at any random time and produce some defective items. To
reduce the number of defective items, the vendor performs
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periodic machine inspections during a production run and
the 100% quality screening for defective items is conducted
by the buyer. Further, we extend themodel to consider capital
investment in quality improvement by vendor. The capital
investment is assumed to follow the Porteus [27] logarithmic
investment function.

The questions addressed in this paper are as follows: what
is the optimal inventory policy for the integrated single-
vendor single-buyer system with imperfect items? And what
is the optimal investment strategy for quality improvement?
In order to answer these questions, in this paper, we construct
two integrated production-inventory models. In the first
model, defect rate is assumed to be a fixed value, and, in
the second model, we extend the first model to consider the
vendor’s investment in quality improvement, and investment
is function of defect rate, and then the vendor’s cost will
include capital investment.

2.1. Assumptions and Notations. The following assumptions
are used throughout this paper for formulation of the prob-
lem.

(1) The supply chain system consists of a single vendor
and a single buyer for trading a single product.

(2) The vendor’s production rate is constant and greater
than the buyer’s demand rate.

(3) The vendor’s production system is imperfect. It always
starts in an in-control state but may shift to the out-
of-control state at any random time andproduce some
defective items.

(4) The vendor process performs periodic inspections
during a production run. At each inspection if the
machine is found in out-of-control state, then restora-
tion is done. Otherwise, preventive maintenance is
performed to enhance system reliability.

(5) The production process restoration cost is propor-
tional to the detection delay time.

(6) After process restoration, the machine becomes as
good as new.

(7) Process inspection and restoration times are negligi-
ble.

(8) The buyer performs a 100% quality screening for
delivered products.The screening rate is much higher
than the customer demand rate.

(9) In the second model, the vendor conducts a capital
investment to improve product quality; the invest-
ment cost is considered part of the total cost.

Notations

Parameters

𝑃: Production rate of the vendor
𝐷: Annual demand of the buyer
𝑆V: Vendor’s setup cost per production run

𝑆𝑏: Buyer’s ordering cost per order

ℎV: Vendor’s unit holding cost

ℎ𝑏: Buyer’s unit holding cost

𝐶0: Process inspection cost

𝐶1: Preventive maintenance cost

𝑟: Machine restoration cost per unit detection delay
time

𝑇𝑖: 𝑖th process inspection time, 𝑖 = 1, 2, . . . , 𝑚; (𝑇1, 𝑇2,
. . . , 𝑇𝑚) is the inspection time sequence

𝑇: Time interval between two successive deliveries to the
buyer

𝑇𝑚: Vendor’s production time in a cycle

𝑁𝑖: Number of defective items produced in the time
interval [𝑇𝑖−1, 𝑇𝑖], 𝑖 = 1, 2, . . . , 𝑚; 𝑇0 = 0

𝑅𝑖: Process restoration cost in the time interval
[𝑇𝑖−1, 𝑇𝑖], 𝑖 = 1, 2, . . . , 𝑚

𝜏: Elapsed time of a shift from the “in-control” state
to the “out-of-control” state in vendor production
process

𝑓(⋅): Probability density function of the time to process
shift from in-control state to out-of-control state

𝐹(⋅): Probability distribution function of the time to pro-
cess shift from in-control state to out-of-control state

𝑑: Unit screening cost for defective items

𝑘: Unit penalty cost for defective items

𝑥: Quality screening rate for defective items

𝐴: Buyer’s transportation cost per shipment

𝛼0: The original percentage of defective items before
investment

𝛼: Percentage of defective items produced when process
is in “out-of-control” state

𝜂: Fractional opportunity cost

𝛿: The percentage of decrease in defective items per
dollar increase in quality improvement investment.

Decision Variables

𝑡𝑖: 𝑖th inspection interval for process in the vendor; that
is, 𝑡𝑖 = 𝑇𝑖 − 𝑇𝑖−1 for all 𝑖 = 1, 2, . . . , 𝑚; 𝑇0 = 0

𝑛: Number of shipments per lot from the vendor to the
buyer, a positive integer

𝑚: Number of process inspections during each produc-
tion run

𝑄: Shipment size from the vendor to the buyer.
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Figure 1: Production inventory of vendor.

2.2. Mathematical Model. The vendor’s production-inven-
tory pattern is shown in Figure 1. Since the delivery of product
follows a JIT small lot size delivery policy, each time one
delivery quantity𝑄 is shipped to buyer, the production rate is
𝑃, and the number of deliveries during one production cycle
is 𝑛, the production cycle time is 𝑇, and we suppose that 𝑚
times process inspections are carried out during a production
run. Therefore, process inspections are performed at times
𝑇1, 𝑇2, . . . , 𝑇𝑚. At each process inspection if the machine
is found in out-of-control state, then restoration is done.
Otherwise, preventive maintenance is performed to enhance
system reliability.

Each time, a lot of size 𝑄 is delivered from the vendor to
the buyer, and it is assumed that each lot contains a percentage
of defective items,𝛼. After the items are delivered to the buyer,
the buyer performs a 100% quality screening to identify the
defective items with a screening rate of 𝑥 and discards the
defective items at the end of screening process. A typical
configuration of the buyer’s inventory level fluctuation is
shown in Figure 2, where𝑇 is the order cycle length, 𝛼𝑄 is the
number of defective items withdrawn from inventory, and 𝑡
is the total screening time of 𝑄 units.

2.2.1. The Integrated Decision of the Vendor and the Buyer

(1) The Vendor’s Cost per Unit Time. Figure 3 shows the accu-
mulation of vendor’s inventory in a cycle. The shaded rectan-
gles are the total inventory delivered to the buyer. Following
the method in Huang [12], the vendor’s holding inventory
area equals the sum of the areas of triangle and rectangle
minus shaded area.

Thus, the vendor’s inventory holding cost per unit time
can be obtained as

Holding cost

= ℎV {𝑛𝑄(
𝑄

𝑃
+ (𝑛 − 1) 𝑇) −

𝑛𝑄 (𝑛𝑄/𝑃)

2

− 𝑇 [𝑄 + 2𝑄 + ⋅ ⋅ ⋅ + (𝑛 − 1)𝑄]}

=
ℎV𝑛𝑄
2

2
{
2 − 𝑛

𝑃
+
(𝑛 − 1) (1 − 𝛼)

𝐷
} .

(1)
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Figure 2: Inventory level variation of buyer in a cycle.
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Figure 3: Inventory accumulation of vendor in a cycle.

We define 𝜏 as the elapsed time of a shift from the “in-
control” state to “out-of-control” state, and 𝜏 is a random
variable. Inspections are undertaken at time 𝑇𝑖 and either
restoration or preventive maintenance is carried out at each
inspection; therefore, (𝑡𝑖 − 𝜏) is the detection delay time in
the time interval [𝑇𝑖−1, 𝑇𝑖], 𝑖 = 1, 2, . . . , 𝑚, and during this
delay period some defective items are produced.The vendor’s
restoration cost 𝑅𝑖 in [𝑇𝑖−1, 𝑇𝑖] is given by

𝑅𝑖 =

{

{

{

0, if 𝜏 ≥ 𝑡𝑖,

𝑟 (𝑡𝑖 − 𝜏) , if 𝜏 < 𝑡𝑖.

(2)

Thus, the vendor’s expectation restoration cost in the time
interval [𝑇𝑖−1, 𝑇𝑖] is 𝐸[𝑅𝑖] = ∫

𝑡𝑖

0
𝑟(𝑡𝑖 − 𝜏)𝑓(𝜏)𝑑𝜏, and the

vendor’s expected total restoration cost is

𝑚

∑

𝑖=1

𝐸 [𝑅𝑖] =

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏. (3)

The number of defective items (𝑁𝑖) produced in the time
interval [𝑇𝑖−1, 𝑇𝑖] is

𝑁𝑖 ≈

{

{

{

0, if 𝜏 ≥ 𝑡𝑖

𝛼𝑃 (𝑡𝑖 − 𝜏) , if 𝜏 < 𝑡𝑖

(4)

and the expected number of defective items produced in the
time interval [𝑇𝑖−1, 𝑇𝑖] is 𝐸(𝑁𝑖) = ∫

𝑡𝑖

0
𝛼𝑃(𝑡𝑖 − 𝜏)𝑓(𝜏)𝑑𝜏. The

vendor’s defective items production cost or penalty cost is
𝑘∑
𝑚

𝑖=1
𝐸(𝑁𝑖), total inspection cost is 𝑚𝐶0, and preventive

maintenance cost is ∑𝑚
𝑖=1

𝐶1𝐹(𝑡𝑖).
The vendor’s total cost in a cycle is the sum of the setup

cost, inspection cost, holding cost, defective items penalty
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cost, restoration cost, and preventive maintenance cost. We
can write the total cost of the vendor as

ETC𝑉 (𝑡𝑖, 𝑛, 𝑄)

=
1

𝑛𝑇
{𝑆V + 𝑚𝐶0 +

ℎV𝑛𝑄
2

2

× (
2 − 𝑛

𝑃
+
(𝑛 − 1) (1 − 𝛼)

𝐷
) + 𝑘

𝑚

∑

𝑖=1

𝐸 (𝑁𝑖)

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏 +

𝑚

∑

𝑖=1

𝐶1𝐹 (𝑡𝑖)} .

(5)

(2) The Buyer’s Cost per Unit Time.The buyer’s total cost in a
cycle is the sum of ordering cost, holding cost, transportation
cost, and quality screening cost. The buyer’s holding cost per
unit time is
ℎ𝑏

𝑇
(
𝑄 (1 − 𝛼) 𝑇

2
+
𝛼𝑄
2

𝑥
) = ℎ𝑏 [

𝑄 (1 − 𝛼)

2
+

𝛼𝐷𝑄

𝑥 (1 − 𝛼)
] .

(6)

The buyer’s ordering cost per unit time = 𝑆𝑏/𝑛𝑇 =

𝑆𝑏𝐷/𝑛(1 − 𝛼)𝑄. The buyer’s transportation cost per unit time
is 𝐴/𝑇 = 𝐴𝐷/(1 − 𝛼)𝑄. The buyer’s quality screening cost
per unit time is 𝑑𝑄/𝑇 = 𝑑𝐷/(1 − 𝛼). Thus, we can write the
expected total cost of the buyer per unit time as

ETC𝐵 (𝑛, 𝑄) = ℎ𝑏 [
𝑄 (1 − 𝛼)

2
+

𝛼𝐷𝑄

𝑥 (1 − 𝛼)
] +

𝑆𝑏𝐷

𝑛 (1 − 𝛼)𝑄

+
𝐴𝐷

(1 − 𝛼)𝑄
+

𝑑𝐷

(1 − 𝛼)
.

(7)

(3) The Integrated Vendor-Buyer Inventory Model. Using (5)
and (7), the expected total cost of the integrated inventory
system can be obtained as

ETC (𝑡𝑖, 𝑛, 𝑄)

= ETC𝑉 (𝑡𝑖, 𝑛, 𝑄) + ETC𝐵 (𝑛, 𝑄)

=
1

𝑛𝑇
{𝑆V + 𝑚𝐶0 +

ℎV𝑛𝑄
2

2

× (
2 − 𝑛

𝑃
+
(𝑛 − 1) (1 − 𝛼)

𝐷
)

+ 𝑘

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝛼𝑃 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

𝐶1𝐹 (𝑡𝑖)} + ℎ𝑏 [
𝑄 (1 − 𝛼)

2
+

𝛼𝐷𝑄

𝑥 (1 − 𝛼)
]

+
𝑆𝑏𝐷

𝑛 (1 − 𝛼)𝑄
+

𝐴𝐷

(1 − 𝛼)𝑄
+

𝑑𝐷

(1 − 𝛼)
.

(8)

Putting 𝑇 = (1 − 𝛼)𝑄/𝐷 in (8), we obtain

ETC (𝑡𝑖, 𝑛, 𝑄)

=
𝐷

𝑛 (1 − 𝛼)𝑄

× {𝑆V + 𝑚𝐶0 +
ℎV𝑛𝑄
2

2

× (
2 − 𝑛

𝑃
+
(𝑛 − 1) (1 − 𝛼)

𝐷
)

+ 𝑘

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝛼𝑃 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏 +

𝑚

∑

𝑖=1

𝐶1𝐹 (𝑡𝑖)}

+ ℎ𝑏 [
𝑄 (1 − 𝛼)

2
+

𝛼𝐷𝑄

𝑥 (1 − 𝛼)
]

+
𝑆𝑏𝐷

𝑛 (1 − 𝛼)𝑄
+

𝐴𝐷

(1 − 𝛼)𝑄
+

𝑑𝐷

(1 − 𝛼)
.

(9)

In the above equation, although the decision variable 𝑛 is
an integer, we can slack it as continuous variable, and then we
take the derivate of the above equation to obtain the solution
which is shown in the following steps.

For convenience of formulation, we define

𝐺 (⋅) = 𝑘

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝛼𝑃 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏 +

𝑚

∑

𝑖=1

𝐶1𝐹 (𝑡𝑖) ,

(10)

and then, taking the first derivative of ETC with respect to 𝑛,
we have

𝜕ETC
𝜕𝑛

= −
𝐷

𝑛2 (1 − 𝛼)𝑄
{𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅)}

+
𝐷

(1 − 𝛼)

ℎV𝑄

2
(
1

𝐷
−
1

𝑃
) .

(11)

The total cost function ETC is convex in 𝑛, since it is easy
to see that

𝜕
2ETC
𝜕𝑛2

=
2𝐷

𝑛3 (1 − 𝛼)𝑄
{𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅)} > 0

∀𝑛 ≥ 1.

(12)

Taking the first derivative of ETC with respect to 𝑄, we
have
𝜕ETC
𝜕𝑄

= −
𝐷

𝑛 (1 − 𝛼)𝑄
2
{𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐴𝑛 + 𝐺 (⋅)}

+
(2 − 𝑛)𝐷ℎV

(1 − 𝛼) 𝑃
+
(𝑛 − 1) ℎV

2
+ ℎ𝑏 (

1

2
+

𝛼𝐷

𝑥 (1 − 𝛼)
) .

(13)
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For fixed values of 𝑛 and 𝑡𝑖, ETC can also be shown to be
convex in 𝑄, since

𝜕
2ETC
𝜕𝑄2

=
2𝐷

𝑛 (1 − 𝛼)𝑄
3
{𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐴𝑛 + 𝐺 (⋅)} > 0.

(14)

Taking the first derivative of ETC with respect to 𝑡𝑖, we
have
𝜕ETC
𝜕𝑡𝑖

=
𝐷

𝑛 (1 − 𝛼)𝑄

𝜕𝐺 (⋅)

𝜕𝑡𝑖

,

𝜕𝐺 (⋅)

𝜕𝑡𝑖

= 𝑘𝛼𝑃∫

𝑡𝑖

0

𝑓 (𝜏) 𝑑𝜏 + 𝑟∫

𝑡𝑖

0

𝑓 (𝜏) 𝑑𝜏 − 𝐶1𝑓 (𝑡𝑖) .

(15)

Therefore,
𝜕ETC
𝜕𝑡𝑖

=
𝐷

𝑛 (1 − 𝛼)𝑄
{(𝑘𝛼𝑃 + 𝑟) ∫

𝑡𝑖

0

𝑓 (𝜏) 𝑑𝜏 − 𝐶1𝑓 (𝑡𝑖)} ,

𝜕
2ETC
𝜕𝑡𝑖
2

=
𝐷

𝑛 (1 − 𝛼)𝑄
{(𝑘𝛼𝑃 + 𝑟) 𝑓 (𝑡𝑖) − 𝐶1𝑓

󸀠
(𝑡𝑖)} ,

𝑖 = 1, . . . , 𝑚,

𝜕
2ETC
𝜕𝑛𝜕𝑄

=
𝐷

𝑛2 (1 − 𝛼)𝑄
2
{𝑆V + 𝑚𝐶0 + 𝑆𝑏

+ 𝑘

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝛼𝑃 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏}

+
ℎV

2
(1 −

𝐷

𝑃 (1 − 𝛼)
) > 0,

𝜕
2ETC
𝜕𝑛2

⋅
𝜕
2ETC
𝜕𝑄2

− (
𝜕
2ETC
𝜕𝑛𝜕𝑄

)

2

= (4𝐷
2
(𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅))

× (𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅) + 𝐴𝑛)) (𝑛
4
(1 − 𝛼)

2
𝑄
4
)
−1

−
𝐷
2

𝑛4 (1 − 𝛼)
2
𝑄4

× [𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅) +
ℎV

2
(1 −

𝐷

𝑃 (1 − 𝛼)
)]

2

=
𝐷
2

𝑛4 (1 − 𝛼)
2
𝑄4

{4 (𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅))

× (𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅) + 𝐴𝑛)

− [𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅)

+
ℎV

2
(1 −

𝐷

𝑃 (1 − 𝛼)
)]

2

}

>
𝐷
2

𝑛4 (1 − 𝛼)
2
𝑄4

× {[2 (𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅))]

2

− [𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅) +
ℎV

2
(1 −

𝐷

𝑃 (1 − 𝛼)
)]

2

}

=
𝐷
2

𝑛4 (1 − 𝛼)
2
𝑄4

× [3 (𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅)) +
ℎV

2
(1 −

𝐷

𝑃 (1 − 𝛼)
)]

⋅ [𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐺 (⋅) −
ℎV

2
(1 −

𝐷

𝑃 (1 − 𝛼)
)] > 0.

(16)

Note that if (𝑘𝛼𝑃 + 𝑟)𝑓(𝑡𝑖) − 𝐶1𝑓
󸀠
(𝑡𝑖) > 0, then we have

𝜕
2ETC/𝜕𝑡2

𝑖
> 0, 𝜕2ETC/𝜕𝑛2 > 0, 𝜕2ETC/𝜕𝑄2 > 0, and

(𝜕
2ETC/𝜕𝑛2) ⋅ (𝜕2ETC/𝜕𝑄2) − (𝜕2ETC/𝜕𝑛𝜕𝑄)

2

> 0 implying
that, for any given value of 𝑛, the total cost function is convex.
Therefore, there exists a unique value of𝑄 thatminimizes (8).

The optimal lot size is given by

𝑄
∗
(𝑛) = √

𝐷 (𝑆V + 𝑚𝐶0 + 𝑆𝑏 + 𝐴𝑛 + 𝐺 (⋅))

𝑛 (1 − 𝛼)𝑀 (⋅)
, (17)

where

𝑀(⋅) =
(2 − 𝑛)𝐷ℎV

(1 − 𝛼) 𝑃
+
(𝑛 − 1) ℎV

2
+ ℎ𝑏 (

1

2
+

𝛼𝐷

𝑥 (1 − 𝛼)
) .

(18)

Note that the condition (𝑘𝛼𝑃 + 𝑟)𝑓(𝑡𝑖) − 𝐶1𝑓
󸀠
(𝑡𝑖) > 0 is

clearly satisfied for uniform distribution, since (𝑘𝛼𝑃+ 𝑟) > 0,
𝑓(𝑡𝑖) > 0, 𝑓󸀠(𝑡𝑖) = 0.

From the optimality condition 𝜕ETC/𝜕𝑡𝑖 = 0, we can get

(𝑘𝛼𝑃 + 𝑟) ∫

𝑡𝑖

0

𝑓 (𝜏) 𝑑𝜏 − 𝐶1𝑓 (𝑡𝑖) = 0. (19)

Using (19), we find out the optimal value of 𝑡∗
𝑖
as follows.

Equation (19) can be extended as follows:

(𝑘𝛼𝑃 + 𝑟) ∫

𝑡1

0

𝑓 (𝜏) 𝑑𝜏 − 𝐶1𝑓 (𝑡1) = 0,

(𝑘𝛼𝑃 + 𝑟) ∫

𝑡2

0

𝑓 (𝜏) 𝑑𝜏 − 𝐶1𝑓 (𝑡2) = 0,

.

.

.

(𝑘𝛼𝑃 + 𝑟) ∫

𝑡𝑛

0

𝑓 (𝜏) 𝑑𝜏 − 𝐶1𝑓 (𝑡𝑛) = 0.

(20)

If 𝑓(𝑥) follows uniform probability distribution, that is,

𝑓 (𝑥) =

{

{

{

1

𝑏
, if 0 < 𝑥 < 𝑏

0, otherwise.
(21)
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From (19) we can obtain

𝑡
∗

1
= 𝑡
∗

2
= ⋅ ⋅ ⋅ = 𝑡

∗

𝑛
=

𝐶1

𝑘𝛼𝑃 + 𝑟
. (22)

This result shows that the optimal machine inspection
interval of each time is a fixed value, which is dependent on
the parameters of the machine maintenance and inspection.
In other words, when the inspection interval of each time is
constant, the total cost is minimum. Since production run is
𝑛𝑄/𝑃, we can obtain𝑚 = 𝑛𝑄/𝑃𝑡

∗

𝑖
.

In order to determine the optimal 𝑛 that minimizes
ETC(𝑛, 𝑄), the following procedure can be implemented.

Algorithm 1. Consider the following.

Step 1.For a range of values of 𝑛, determine the corresponding
𝑄
∗
(𝑛) using (17) and compute ETC(𝑛, 𝑄∗(𝑛)) by substituting

𝑄
∗
(𝑛) into (9).

Step 2.Derive the optimal value of 𝑛, denoted by 𝑛∗, such that
ETC(𝑛, 𝑄∗(𝑛)) ≤ ETC(𝑛− 1, 𝑄∗(𝑛− 1)) and ETC(𝑛, 𝑄∗(𝑛)) ≤
ETC(𝑛 + 1, 𝑄∗(𝑛 + 1)).

Once we derive out 𝑛∗, the optimal size of a production
batch can be obtained by 𝑛∗𝑄∗(𝑛).

2.2.2.The IntegratedModel withCapital Investment forQuality
Improvement. We now suppose that the vendor invests some
capital in order to reduce the number of defective items
produced. We assume a logarithmic investment function as
𝐼(𝛼) = (𝜂/𝛿) ln (𝛼0/𝛼) [27], where 𝛼0 is the defect rate before
quality improvement, 𝜂 means the fractional opportunity
cost, and 𝛿 means the percentage of decrease in defective
items per dollar increase in investment.

In this situation, the new expected total cost of the
integrated model equals the total cost of the system without
investment (i.e., the first model) plus the capital investment
by the vendor.

Then, the expected total cost of the integrated model can
be obtained as
ETC𝐼

=
𝐷

𝑛 (1 − 𝛼)𝑄
{𝑆V + 𝑚𝐶0 +

ℎV𝑛𝑄
2

2

× (
2 − 𝑛

𝑃
+
(𝑛 − 1) (1 − 𝛼)

𝐷
)

+ 𝑘

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝛼𝑃 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏 +

𝑚

∑

𝑖=1

𝐶1𝐹 (𝑡𝑖)}

+ ℎ𝑏 [
𝑄 (1 − 𝛼)

2
+

𝛼𝐷𝑄

𝑥 (1 − 𝛼)
]

+
𝑆𝑏𝐷

𝑛 (1 − 𝛼)𝑄
+

𝐴𝐷

(1 − 𝛼)𝑄
+

𝑑𝐷

(1 − 𝛼)
+
𝜂

𝛿
ln
𝛼0

𝛼
,

(23)

where𝛼0 is the original defect rate, a fixed value.𝛼 is the defect
rate after investment; in this model, it is a decision variable;
that is, we need to determine the optimal defect rate after
quality improvement investment.

In order to obtain the optimal investment, taking the first
derivative of ETC𝐼 with respect to 𝛼, we have

𝜕ETC𝐼
𝜕𝛼

=
𝐷

𝑛 (1 − 𝛼)
2
𝑄
{𝑆V + 𝑚𝐶0 +

ℎV𝑛𝑄
2

2

2 − 𝑛

𝑃

+

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑟 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

+

𝑚

∑

𝑖=1

𝐶1𝐹 (𝑡𝑖)}

+
𝐷𝑘

𝑛 (1 − 𝛼)
2
𝑄

𝑚

∑

𝑖=1

∫

𝑡𝑖

0

𝑃 (𝑡𝑖 − 𝜏) 𝑓 (𝜏) 𝑑𝜏

−
ℎ𝑏𝑄

2
+

ℎ𝑏𝐷𝑄

𝑥 (1 − 𝛼)
2
+

𝑆𝑏𝐷

𝑛 (1 − 𝛼)
2
𝑄

+
𝐴𝐷

(1 − 𝛼)
2
𝑄
+

𝑑𝐷

(1 − 𝛼)
2
−

𝜂

𝛿𝛼
.

(24)

Taking the second derivate of the total cost with respect
to𝑄, 𝑛, 𝑡𝑖, it is clear that the ETC𝐼 is still a convex function in
𝑄, 𝑛, 𝑡𝑖 (since these operations are similar to those operations
in the first model, we omit them).

To obtain the optimal solution, we adopt the iterative
algorithm proposed by Ben-Daya and Hariga [31]. Using this
algorithm, one can find the optimal solution in the following
procedure.

Algorithm 2. Consider the following.

Step 1. Set ETC∗
𝐼
= ∞, 𝑛 = 1.

Step 2. Set 𝛼 = 𝛼0 and compute 𝑄0 from (17).

Step 3. Compute 𝛼 from (24) to zero. If 𝛼 ≥ 𝛼0, set 𝛼 = 𝛼0.
Update 𝑡𝑖 with 𝛼 from (19).

Step 4. Compute 𝑄 from (17) using 𝛼, 𝑡𝑖. If |𝑄 − 𝑄0| = 0,
compute ETC𝐼 and go to Step 5. Otherwise, set 𝑄 = 𝑄0 and
go to Step 3.

Step 5. If ETC∗
𝐼
≥ ETC𝐼, set ETC

∗

𝐼
= ETC𝐼, 𝑄

∗
= 𝑄, 𝛼∗ = 𝛼,

and 𝑛 = 𝑛 + 1 and go to Step 2. Otherwise, 𝑛∗ = 𝑛 − 1 and
stop.

Note that 𝜕ETC𝐼/𝜕𝛿 < 0 and 𝜕ETC𝐼/𝜕𝛼0 > 0, which
indicate that an increase in 𝛿 leads to a more reduction in the
number of defective items per dollar increase in investment.
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Table 1: Optimal values of 𝑛 and 𝑚 for integrated vendor-buyer
model.

𝑛 𝑚 𝑄
∗
(𝑛) ETC(𝑛, 𝑄∗(𝑛))

1 14 147.08 950.84
2 22 109.14 829.69
3 27 91.12 793.71
4 32 79.73 781.86
5∗ 36∗ 71.57∗ 779.83∗

6 39 65.32 782.51
7 42 60.32 787.67
8 45 56.18 794.21
9 47 52.69 801.51
10 50 49.69 809.24
∗The optimal solution.

3. Numerical Examples and
Managerial Implications

For numerical study, we consider a single-vendor single-
buyer system; the following parameter values are set: pro-
duction rate 𝑃 = 320, demand rate 𝐷 = 100, setup cost of
vendor 𝑆V = 300, ordering cost of buyer 𝑆𝑏 = 100, inventory
holding cost of vendor ℎV = 2, inventory holding cost of buyer
ℎ𝑏 = 5, transportation cost per shipment from vendor to
buyer 𝐴 = 25, the screening rate for defective items in buyer
𝑥 = 215, per unit screening cost 𝑑 = 0.5, machine restoration
cost per unit detection delay time for vendor 𝑟 = 5, process
inspection cost and preventive maintenance cost 𝐶0 = 2 and
𝐶1 = 15, the per unit penalty cost for defective item 𝑘 = 30,
and the original percentage of defective items without quality
improvement investment 𝛼 = 0.05. We also suppose that
the time of the process shifts from in-control state to out-of-
control state follows uniform probability distribution; that is,

𝑓 (𝑥) =

{

{

{

1

𝑏
, if 0 < 𝑥 < 𝑏

0, otherwise.
(25)

3.1. Optimization Solution without Quality Improvement
Investment. In this case, when 𝑏 = 1, we obtain the
results as given in Table 1. Figure 4 shows that the total cost
function ETC is convex in 𝑛. We solve this problem by using
Algorithm 1. The optimal solution is 𝑛∗ = 5, 𝑄∗ = 71.5798,
𝑡
∗

𝑖
= 0.003, and 𝑚

∗
= 36, and the integrated average total cost

is 779.8304.The optimal size of a production batch is 357.899.

3.2. Optimization Solution with Quality Improvement Invest-
ment. Now, we consider the second one: integrated model
with capital investment for reduction of defective items. In
the firstmodel, we additionally consider the parameter values
𝛼0 = 0.05, 𝜂 = 2, and 𝛿 = 0.02. Table 2 shows that when
the original percentage of defective items is high, the effect
of investment in quality improvement will be more obvious.
This means that the total cost can be reduced more. This

0 2 4 6 8 10 12 14 16 18 20
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Figure 4: The behavior of ETC and 𝑛.

benefit will attract vendor to make an investment to reduce
the defective items and make more profit.

From the numerical studies, it is shown that the optimal
shipment size from the vendor to the buyer and the per-
centage of defective items decrease after quality investment.
However, which one is better for the buyer?

Consider

ETC𝐵 (𝑛, 𝛼, 𝑄) = ℎ𝑏 [
𝑄 (1 − 𝛼)

2
+

𝛼𝐷𝑄

𝑥 (1 − 𝛼)
] +

𝑆𝑏𝐷

𝑛 (1 − 𝛼)𝑄

+
𝐴𝐷

(1 − 𝛼)𝑄
+

𝑑𝐷

(1 − 𝛼)
.

(26)

Assume the difference between the total costs of buyer in
the integrated model without and with quality improvement
investment is ΔETC𝐵 = ETC1𝐵(𝛼, 𝑄) − ETC𝐵(𝛼, 𝑄).

When ΔETC𝐵(𝛼, 𝑄) < 0, the investment is better for
the buyer; otherwise there is no benefit for the buyer with
investment.

Table 3 shows the comparison of annual cost for the buyer
with andwithout investment.Thenumerical results show that
themore the vendor invests in quality improvement, themore
the benefit the buyer can obtain from the buyer’s investment.

3.3. Sensitivity Analysis. In this subsection, we conduct sen-
sitivity analysis for three important parameters: demand rate,
production rate, and defect rate of product. We analyze how
these three parameters impact the solution (in here, we take
the first model as analysis basis).

(1) The Effect of Demand on Optimization Solution. We set
the change range of demand rate from 100 to 200. Under
this change range, the total cost increases from 779.8304
to 1313.5496 and the optimal shipment size increases from
71.5798 to 163.4827.The optimal number of shipments per lot
from the vendor to the buyer decreases from 5 to 3; the opti-
mal number of machine inspections during each production
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Table 2: A comparison of the integrated model with and without investments.

Model without investment Model with investment
𝛼

Cost difference
𝛼0 𝑄

∗ ETC∗ 𝑄
∗ ETC∗

𝐼
ΔTC %TCa

0.15 189.06 1466.58 178.62 1224.23 0.093 242.35 16.52
0.20 237.14 1879.69 169.81 1201.90 0.081 677.78 36.05
0.25 318.91 2354.98 162.86 1186.33 0.072 1168.65 49.62
0.30 369.23 2871.18 157.33 1176.33 0.064 1694.85 59.02
0.35 421.13 3476.24 146.23 1243.30 0.100 2232.93 64.23
aNote:%TC = (ETC∗ − ETC∗

𝐼
)/ETC∗.

Table 3: A comparison for the buyer with and without investmentsa.

Model without investment Model with investment
𝛼

Cost difference
𝛼0 𝑄

∗ ETC∗
𝐵
(𝛼, 𝑄) 𝑄

∗ ETC1𝐵(𝛼, 𝑄) ΔTC %ETC∗
𝐵

0.15 189.06 559.96 178.62 524.36 0.093 35.60 6.35
0.20 237.14 693.11 169.81 501.79 0.081 191.31 27.60
0.25 318.91 926.47 162.86 484.26 0.072 442.20 47.73
0.30 369.23 1099.13 157.33 470.37 0.064 628.75 57.20
0.35 421.13 1301.41 146.23 448.96 0.100 852.45 65.50
aNote:%ETC∗

𝐵
= (ETC∗

𝐵
(𝛼,𝑄) − ETC1𝐵(𝛼,𝑄))/ETC

∗

𝐵
(𝛼,𝑄).

Table 4: Effect of demand rate on the optimal solution.

𝐷 𝑛
∗

𝑚
∗

𝑄
∗ ETC∗

100 5 36 71.57 779.83
120 4 37 93.93 889.78
140 4 44 109.24 997.26
160 4 50 126.00 1105.95
180 3 44 148.07 1211.13
200 3 49 163.48 1313.54

Table 5: Effect of production rate on the optimal solution.

𝑃 𝑛
∗

𝑚
∗

𝑄
∗ ETC∗

280 5 37 74.70 779.96
300 5 36 72.99 779.78
320 5 36 71.57 779.83
340 5 35 70.39 780.00
360 5 35 69.37 780.26

run increases first and then decreases. The result is shown in
Table 4. Summarily, demand increases will cause the increase
in total cost and ordering quantity.

(2) The Effect of Production Rate on Optimal Solution. For
analyzing the effect of production rate on optimal solution,
we set the production rate increases from 280 to 360. Table 5
shows the result.

From Table 5, we can see that, with the increase in pro-
duction rate, the integrated total cost increases; at the same
time, the optimal shipment size decreases, and the optimal
number of machine inspections during each production run

Table 6: Effect of 𝛼 on the optimal solution.

𝛼 𝑛
∗

𝑚
∗

𝑄
∗ ETC∗

0.01 6 5 46.55 573.46
0.03 6 20 55.20 670.02
0.05 5 36 71.57 779.83
0.07 4 52 92.49 900.95
0.10 3 76 126.91 1099.41

decreases. But the optimal number of shipments per lot from
the vendor to the buyer remains unchanged.

(3) The Effect of Defect Rate on Optimal Solution. We then
analyze the effect of defect rate on optimal solution. From
Table 6, one can see that, with an increase in the percentage of
defective items, there is an increase in the number of inspec-
tions during each production run. This is intuitively true
because when the vendor tries to reduce the defective items,
more process inspections are needed during a production
run. At the same time, the number of shipments per lot from
the vendor to the buyer becomes less and the shipment size
increases.

3.4. Managerial Implications. From the analytical model and
numerical examples demonstration, we can conclude the
following managerial implications for practitioners.

(1) Integration is a synchronization strategy in supply
chain management; this paper demonstrates the ben-
efit of integration optimization of production inven-
tory of single vendor and single buyer in the supply
chain. In practice, the vendor and the buyer should
take joint action to optimize their operations.
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(2) Our study reveals that quality improvement invest-
ment in the vendor not only benefits the vendor,
but also benefits the buyer. Investment can reduce
total cost of the vendor and the buyer; furthermore,
the more the investment of quality improvement of
the vendor is, the higher the benefit the buyer gains.
This implies that quality improvement has significant
impact on the vendor and the buyer inventory opti-
mization.Therefore, inventorymanager of the vendor
should pay attention to the quality issue of stocked
items.

4. Conclusions

This paper investigates two integrated single-vendor single-
buyer inventory models, in which the vendor’s production
process is assumed to be imperfect, and JIT delivery policy
is implemented to ship product from the vendor to the buyer.
We analyze the two cases: one case is that the vendor has no
quality improvement investment; the second case is that the
vendor invests to improve quality.

We obtain the optimal number of shipments per lot from
the vendor to the buyer and optimal machine inspections
interval during each production run. We also calculate the
optimal size of a production batch and the optimal shipment
size from the vendor to the buyer.

The sensitivity of the key model-parameters, demand,
production, and defect rate is examined. Analysis reveals that
an increase in demand rate causes increase in the number of
process inspections and decrease in the production lot size. It
is also shown that an increase in the production rate causes
an increase in shipment size but a decrease in the number
of machine inspections, while the production lot size does
not change. Further, we consider that the vendor carries out
a capital investment for reduction of defective items. After
investment, the percentage of defective items reduces. The
investment can cause both the optimal shipment size and the
integrated total cost decrease. Furthermore, the numerical
results show that when the original percentage of defective
items is high, the effect of investment becomes more obvious.

The future research of this paper can follow these direc-
tions. First, we can incorporate the machine reliability into
the models and analyze how it affects the integrated decision.
Second, the models can be extended to consider setup cost
reduction in production and variable shipment size. Third,
the models can also be extended to consider multiple buyers.
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