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The delay guarantee is a challenge tomeet different real-time requirements in applications of backpressure-based wireless multihop
networks, and therefore, researchers are interested in the possibility of providing bounded end-to-end delay. In this paper, a new
cross-layer control algorithm with worst case delay guarantees is proposed. The utility maximization algorithm is developed using
a Lyapunov optimization framework. Virtual queues that ensure the worst case delay of nondropped packets are designed. It is
proved through rigorous theoretical analyses and verified by simulations that the time average overall utility achieved by the new
algorithm can be arbitrarily close to the optimal solution with finite queue backlogs. The simulation results evaluated with Matlab
show that the proposed algorithm achieves higher throughput utility with fewer data dropped compared with the existing work.

1. Introduction

With the exponential increase in wireless multihop networks
in the last two decades, increasingly sophisticated approaches
that target resource allocation, congestion control, routing,
and scheduling have been developed. Among the various
policies that have been developed, the backpressure schedul-
ing/routing policy, which was first proposed in the seminal
work by Tassiulas and Ephremides [1], is a promising scheme
because of its optimal throughput characteristic. Cross-layer
algorithms that provide throughput utility optimal operation
guarantees for different network structures can be designed
by applying the Lyapunov optimization technique and by
combining the backpressure scheme with flow control [2].
The flow controller at the transport layer ensures that the
admitted rate injected into the network layer lies within
the network capacity region. In recent works, spectrum
sharing and pricingmechanisms [3], energymanagement [4],
and social selfishness of users [5] have been considered in
backpressure-based cross-layer algorithms. Cross-layer algo-
rithms have also been combined with MAC (Media Access
Control) layer [6], TCP (Transmission Control Protocol)
layer [7], and application layers [8].

Besides throughput utility, end-to-end delay is another
important long-termperformancemetric of the backpressure

style algorithms, and it is crucial to many essential appli-
cations. As applications with real-time requirements are
being developed, it is necessary to design backpressure-
based algorithms that provide bounded worst case delay
guarantees. Backpressure algorithms usually bear poor delay
performancemainly attributed to the following three reasons.
First, the slow startup process to form a stable queue backlog
gradient from the source to the destination causes large initial
end-to-end delay. Second, unnecessarily long or looped paths
form owing to the fluctuation of the queue backlog. Finally,
the absence of consistent backpressure towards the destina-
tion can cause large latency in networks with short-lived
or low-rate flows. In [9], average delay bounds are derived
for one-hop wireless networks using maximal scheduling.
In [10], the delay bounds in wireless ad hoc networks are
studied using backpressure scheduling with either one-hop
or multihop traffic flows. In [11], the authors propose a
cross-layer algorithm providing average end-to-end delay
guarantees. These prior works can only provide bounds on
the overall average delay via Little’s Theorem, except for
individual sessions.There are several works aiming to reduce
end-to-end delay for individual sessions. In [12], a virtual
queue-based gradient is established for nodes. In [13], the
authors develop a delay-aware cross-layer algorithm using a
novel link-rate allocation strategy and a regulated scheduling
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policy. A hop-count based queuing structure is used in
[14] to provide a worst case hop count to the destination.
However, theseworks fail to provide explicit end-to-enddelay
guarantees. Deterministic worst case delay guarantees are
derived from the algorithm in [15] which uses explicit delay
information from the head-of-line packet at each queue in
one-hop networks. Considering both one-hop and multihop
wireless networks, [16] designs an opportunistic scheduling
scheme that guarantees a bounded worst case delay for
each session. Our paper is mostly related to the study in
[16]. However, different from [16], our algorithm consists of
two phases and the persistent service virtual queue [16] is
redesigned.

The key contributions of this paper can be summarized as
follows.

(i) The paper proposes a two-phase algorithmwhich can
provide a bound on theworst case end-to-end delay of
individual sessions by designing a novel virtual delay
queue structure.

(ii) By transforming the stochastic control problem into
a deterministic optimization problem using the Lya-
punov drift-plus-penalty technique, we design a joint
congestion control, routing, and scheduling algo-
rithm.

(iii) The performance in terms of utility optimality and
network stability of the algorithm is demonstrated
with rigorous theoretical analyses. It is shown that
the proposed algorithm can achieve a time average
throughput utility that can be arbitrarily close to the
optimal value, with queue backlogs being bounded by
constants.

The remainder of this paper is organized as follows.
Section 2 introduces the systemmodel and problem formula-
tion. In Section 3, the algorithm is designed using Lyapunov
optimization. The performance analyses of the proposed
algorithm are presented in Section 4. The simulation results
are given in Section 5. Conclusions are provided in Section 6.

2. Network Model and Problem Formulation

2.1. Network Model. Consider a multihop wireless network
consisting of several nodes. Let the network be modeled by
a directed connectivity graph 𝐺(𝑁, 𝐿), where 𝑁 is the set of
nodes and (𝑖, 𝑗) ∈ 𝐿 represents a unidirectional wireless link
between node 𝑖 and node 𝑗which is in the transmission range
of 𝑖. Let𝑀 be the set of unicast sessions 𝑚 between source-
destination pairs in the network.𝑁

𝑠
is the set of source nodes

𝑠
𝑚
and 𝑁

𝑑
is the set of destination nodes 𝑑

𝑚
of session 𝑚.

Packets from the source node traverse multiple wireless hops
before arriving at the destination node.

The system is assumed to run in a time-slotted fashion.
Nodes in the network communicate using only one channel.
𝑎
𝑛𝑗
(𝑡) ∈ {0, 1} is used to indicate whether link (𝑛, 𝑗) is used

to transmit packets in time slot 𝑡. 𝑎
𝑛𝑗
(𝑡) = 1 implies that the

link is scheduled. In thismodel, scheduling is subjected to the
following constraints:

∑

𝑗:(𝑛,𝑗)∈𝐿

𝛼
𝑛𝑗
(𝑡) + ∑

𝑖:(𝑖,𝑛)∈𝐿

𝛼
𝑖𝑛
(𝑡) ≤ 1, (1)

𝛼
𝑛𝑗
(𝑡) + ∑

𝑘∈𝑁

∑

𝑙

𝛼
𝑘𝑙
(𝑡) ≤ 1, (2)

where node 𝑙 is in the transmission range of 𝑛 and 𝑂(𝑛)
denotes the set of nodes with (𝑛, 𝑖) ∈ 𝐿. 𝐼(𝑛) denotes the
set of nodes with (𝑗, 𝑛) ∈ 𝐿. Constraint (1) implies that each
node is equipped with only one radio, and thus, it can either
transmit or receive data at any given time. Constraint (2)
states that a node transmitting packets will interfere with the
data receptions of the nodes in its transmission range.

2.2. Virtual Queue at the Transport Layer. 𝐴
𝑚
(𝑡) ∈ [0, 𝐴

(𝑚)

max]
denotes the arrival rate of session 𝑚 injected into the
transport layer from the application layer at the source node
and 𝐴(𝑚)max is the maximum arrival rate of session 𝑚. 𝑟

𝑚
(𝑡) ∈

[0, 𝐴
𝑚
(𝑡)] is the admitted rate of session 𝑚 injected into the

network layer. 𝜂
𝑚
(𝑡) ∈ [0, 𝐴

(𝑚)

max] is an auxiliary variable
known as the virtual input rate. The virtual queue at the
transport layer of source node 𝑠

𝑚
of session 𝑚 is denoted by

𝑌
𝑚
that is updated as follows:

𝑌
𝑚
(𝑡 + 1) = max {𝑌

𝑚
(𝑡) − 𝑟

𝑚
(𝑡) , 0} + 𝜂

𝑚
(𝑡) . (3)

If each virtual queue 𝑌
𝑚
is guaranteed to be stable, according

to the necessity and sufficiency for queue stability [17],
it is apparent that 𝜂

𝑚
≤ 𝑟
𝑚
, where the time average

value of time-varying variable 𝑥(𝑡) is denoted by 𝑥 =

lim
𝑡→∞

(1/𝑡) ∑
𝑡−1

𝜏=0
𝐸(𝑥(𝜏)). Therefore, the lower bound of 𝑟

𝑚

can be derived from 𝜂
𝑚
which can be calculated.

2.3. Data Queue at the Network Layer. The data backlog
queue for session𝑚 at the network layer of node 𝑛 is denoted
by 𝑄(𝑚)
𝑛
(𝑡). In each slot 𝑡, the queue is updated as

𝑄
(𝑚)

𝑛
(𝑡 + 1)

= max{𝑄(𝑚)
𝑛
(𝑡) − ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) − 𝐷

(𝑚)

𝑛
(𝑡) , 0}

+ ∑

𝑗∈𝐼(𝑛)

𝜇
(𝑚)

𝑗𝑛
(𝑡) + 1

{𝑛=𝑠
𝑚
}
𝑟
𝑚
(𝑡) ,

(4)

where 𝜇(𝑚)
𝑛𝑖
(𝑡) is the amount of data of session 𝑚 to be

forwarded from node 𝑛 to 𝑖 in time slot 𝑡. 1
{𝑛=𝑠
𝑚
}
is an

indicator function that denotes 1 if 𝑛 = 𝑠
𝑚
and 0 otherwise.

In addition, ∑
𝑚∈𝑀

𝜇
(𝑚)

𝑛𝑖
(𝑡) must not be greater than 𝜇max,out

𝑛
.

𝐷
(𝑚)

𝑛
∈ [0, 𝐷max] represents the number of packets of session

𝑚 that are dropped by node 𝑛 in slot 𝑡. The optimization of
𝜇
(𝑚)

𝑛𝑖
(𝑡) is the routing decision. As assumed in [18], in this

paper, the transmission capacity of any link is set to be 1.
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Therefore, 𝜇(𝑚)
𝑛𝑖
(𝑡) is either 0 or 1, and it can not be greater

than 𝑄(𝑚)
𝑛
(𝑡), which is denoted as

𝜇
(𝑚)

𝑛𝑖
(𝑡) ∈ {0,min {𝑄(𝑚)

𝑛
(𝑡) , 1}} ,

∀ (𝑛, 𝑖) ∈ 𝐿, 𝑛 ̸= 𝑑
𝑚
, 𝑚 ∈ 𝑀,

(5)

and ∑
𝑚∈𝑀

𝜇
(𝑚)

𝑛𝑖
(𝑡) = 𝛼

𝑛𝑖
(𝑡), ∀(𝑛, 𝑖) ∈ 𝐿, can also be derived.

The actual amount of packets of session 𝑚 dropped in slot 𝑡
can be defined as

̃
𝐷
(𝑚)

𝑛
(𝑡) = min {𝑄(𝑚)

𝑛
(𝑡) − 𝜇

(𝑚)

𝑛
(𝑡) , 𝐷

(𝑚)

𝑛
(𝑡)} . (6)

2.4. Persistent Service Virtual Queue. The 𝜖-persistent service
queue designed in [16] can ensure bounded worst case delay
for general types of utility functions.We denote this queue by
𝐺
(𝑚)

𝑛
, and in each slot, the queue is updated as

𝐺
(𝑚)

𝑛
(𝑡 + 1) = max{𝐺(𝑚)

𝑛
(𝑡) + 1

{𝑄
(𝑚)

𝑛
(𝑡)>0}

⋅ (𝜖 − ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡)) − 𝐷

(𝑚)

𝑛
(𝑡) − 1

{𝑄
(𝑚)

𝑛
(𝑡)=0}

⋅ 𝜇
max,out
𝑛

, 0} .

(7)

From the algorithm in [16] we find that 𝐺(𝑚)
𝑛

is used in
decision of resource allocation and packet dropping. Since in
most slots 𝑄(𝑚)

𝑛
(𝑡) > 0, 𝐺(𝑚)

𝑛
may increase fast. According to

the packet drop decision algorithm, high value of 𝜖-persistent
service queue leads to serious packets drop.Therefore, the fast
increase of 𝐺(𝑚)

𝑛
leads to dropping of packets and this results

in a significant drop in throughput utility.
In this paper, we redesign the 𝜖-persistent service queue

that is denoted by𝑍(𝑚)
𝑛

. In each slot 𝑡, the queue is updated as

𝑍
(𝑚)

𝑛
(𝑡 + 1) = max{𝑍(𝑚)

𝑛
(𝑡) + 𝜖

1
⋅ 1
{𝑄
(𝑚)

𝑛
(𝑡)>𝑄

(𝑚)

𝑛,standard}

+ 𝜖
2
⋅ 1
{𝑄
(𝑚)

𝑛
(𝑡)≤𝑄

(𝑚)

𝑛,standard}
− 𝐷
(𝑚)

𝑛
(𝑡)

− ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) , 0} ,

(8)

where 𝜖
1
> 𝜖
2
> 0. 𝜖

1
and 𝜖
2
are constants. 𝑄(𝑚)

𝑛,standard is a
constant value that is calculated in phase I of the algorithm
which will be given in Section 3. Initial backlog 𝑍(𝑚)

𝑛
(0) is

supposed to be 0.
𝑄
(𝑚)

𝑛,standard is the time average of length of queue of session
𝑚 in node 𝑛. According to (8), 𝑍(𝑚)

𝑛
increases fast only when

𝑄
(𝑚)

𝑛
(𝑡) > 𝑄

(𝑚)

𝑛,standard, and thus 𝑍(𝑚)
𝑛

should grow slower than
𝐺
(𝑚)

𝑛
. According to the packet drop decision algorithm, the

number of packets dropped in our new algorithm should

decrease and throughput should increase, compared with the
algorithm in [16].

Any algorithm that maintains bounded 𝑄
(𝑚)

𝑛
(𝑡) and

𝑍
(𝑚)

𝑛
(𝑡) ensures persistent service with bounded worst case

delay, as shown inTheorem 1.

Theorem 1 (worst case delay). For all time slots 𝑡 ∈

{0, 1, 2, . . .} and all sessions𝑚 ∈ 𝑀, suppose that the algorithm
can ensure

𝑄
(𝑚)

𝑛
(𝑡) ≤ 𝑄

(𝑚),max
𝑛

,

𝑍
(𝑚)

𝑛
(𝑡) ≤ 𝑍

(𝑚),max
𝑛

,

(9)

where𝑄(𝑚),max
𝑛

and𝑍(𝑚),max
𝑛

are finite upper bounds for𝑄(𝑚)
𝑛
(𝑡)

and 𝑍(𝑚)
𝑛
(𝑡), respectively. Assuming First Input First Output

(FIFO) service, the worst case delay of the nondropped data at
node 𝑛 is bounded by the constant𝑊(𝑚),max

𝑛
, which is given as

𝑊
(𝑚),max
𝑛

= ⌈

(𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

)

𝜖
2

⌉ , (10)

where ⌈𝑥⌉ denotes the smallest integer that is greater than or
equal to 𝑥.

Proof. Fix any slot 𝑡 ≥ 0, and let 𝐴(𝑚)
𝑛
(𝑡) represent the data

that arrives at queue 𝑄(𝑚)
𝑛

on slot 𝑡. As the service is FIFO,
the data 𝐴(𝑚)

𝑛
(𝑡) is placed at the end of the queue𝑄(𝑚)

𝑛
on slot

𝑡 + 1. We want to prove that all of the data 𝐴(𝑚)
𝑛
(𝑡) departs

queue 𝑄(𝑚)
𝑛

on or before slot 𝑡 + 𝑊(𝑚),max
𝑛

. We prove this in
three cases.

Case 1. If 𝑄(𝑚)
𝑛
(𝜏) > 𝑄

(𝑚)

𝑛,standard for all 𝜏 ∈ {𝑡 + 1, . . . , 𝑡 +

𝑊
(𝑚),max
𝑛

}, the following can be derived

𝑍
(𝑚)

𝑛
(𝜏 + 1) ≥ 𝑍

(𝑚)

𝑛
(𝜏) + 𝜖

1
− ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏)

− 𝐷
(𝑚)

𝑛
(𝜏) .

(11)

Summing the above over 𝜏 ∈ {𝑡 + 1, . . . , 𝑡 + 𝑊(𝑚),max
𝑛

} yields

𝑍
(𝑚)

𝑛
(𝑡 + 1 +𝑊

(𝑚),max
𝑛

) − 𝑍
(𝑚)

𝑛
(𝑡 + 1)

≥ 𝜖
1
⋅ 𝑊
(𝑚),max
𝑛

−

𝑡+𝑊
(𝑚),max
𝑛

∑

𝜏=𝑡+1

[ ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏) + 𝐷

(𝑚)

𝑛
(𝜏)] .

(12)

For 𝑍(𝑚)
𝑛
(𝑡 + 1 +𝑊

(𝑚),max
𝑛

) ≤ 𝑍
(𝑚),max
𝑛

, (12) can be rearranged
to yield

𝜖
1
⋅ 𝑊
(𝑚),max
𝑛

− 𝑍
(𝑚),max
𝑛

≤

𝑡+𝑊
(𝑚),max
𝑛

∑

𝜏=𝑡+1

[ ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏) + 𝐷

(𝑚)

𝑛
(𝜏)] .

(13)
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According to (10), 𝑊(𝑚),max
𝑛

is the smallest integer that is
greater than or equal to (𝑄(𝑚),max

𝑛
+ 𝑍
(𝑚),max
𝑛

)/𝜖
2
. Therefore,

we can get𝑊(𝑚),max
𝑛

≥ (𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

)/𝜖
2
, and we can

derive

𝜖
1
⋅ 𝑊
(𝑚),max
𝑛

− 𝑍
(𝑚),max
𝑛

≥ 𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

− 𝑍
(𝑚),max
𝑛

= 𝑄
(𝑚),max
𝑛

.

(14)

Then, the following can be derived:

𝑡+𝑊
(𝑚),max
𝑛

∑

𝜏=𝑡+1

[ ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏) + 𝐷

(𝑚)

𝑛
(𝜏)] ≥ 𝑄

(𝑚),max
𝑛

≥ 𝑄
(𝑚)

𝑛
(𝑡 + 1) .

(15)

Equation (15) means that all the data in queue 𝑄(𝑚)
𝑛

on slot
𝑡+1 (including all of the data𝐴(𝑚)

𝑛
(𝑡)which arrives at𝑄(𝑚)

𝑛
on

slot 𝑡) can depart the queue on or before the slot 𝑡 +𝑊(𝑚),max
𝑛

.
Therefore, in the condition of 𝑄(𝑚)

𝑛
(𝜏) > 𝑄

(𝑚)

𝑛,standard for all 𝜏 ∈
{𝑡 + 1, . . . , 𝑡 + 𝑊

(𝑚),max
𝑛

}, the worst case delay of nondropped
data at node 𝑛 is bounded by

𝑊
(𝑚),max
𝑛,Case 1 = ⌈

(𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

)

𝜖
2

⌉ . (16)

Case 2. If 𝑄(𝑚)
𝑛
(𝜏) ≤ 𝑄

(𝑚)

𝑛,standard for all 𝜏 ∈ {𝑡 + 1, . . . , 𝑡 +

𝑊
(𝑚),max
𝑛

}, the following can be derived:

𝑍
(𝑚)

𝑛
(𝑡 + 1 +𝑊

(𝑚),max
𝑛

) − 𝑍
(𝑚)

𝑛
(𝑡 + 1)

≥ 𝜖
2
⋅ 𝑊
(𝑚),max
𝑛

−

𝑡+𝑊
(𝑚),max
𝑛

∑

𝜏=𝑡+1

[ ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏) + 𝐷

(𝑚)

𝑛
(𝜏)] .

(17)

Similar to Case 1, the bound of the worst case delay of
nondropped data at node 𝑛 in Case 2 is derived as

𝑊
(𝑚),max
𝑛,Case 2 = ⌈

(𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

)

𝜖
2

⌉ . (18)

Case 3. If 𝑄(𝑚)
𝑛
(𝜏) > 𝑄

(𝑚)

𝑛,standard in 𝑛1 slots of 𝜏 ∈ {𝑡 + 1, . . . , 𝑡 +
𝑊
(𝑚),max
𝑛

} and 𝑄(𝑚)
𝑛
(𝜏) ≤ 𝑄

(𝑚)

𝑛,standard in 𝑛
2
slots of 𝜏 ∈ {𝑡 +

1, . . . , 𝑡+𝑊
(𝑚),max
𝑛

} and if we also have 𝑛
1
+𝑛
2
= 𝑊
(𝑚),max
𝑛

, the
following can be derived:

𝑍
(𝑚)

𝑛
(𝑡 + 1 +𝑊

(𝑚),max
𝑛

) − 𝑍
(𝑚)

𝑛
(𝑡 + 1)

≥ 𝜖
1
⋅ 𝑛
1
+ 𝜖
2
⋅ 𝑛
2

−

𝑡+𝑊
(𝑚),max
𝑛

∑

𝜏=𝑡+1

[ ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏) + 𝐷

(𝑚)

𝑛
(𝜏)] .

(19)

Let 𝜖
∗
= (𝜖
1
⋅ 𝑛
1
+ 𝜖
2
⋅ 𝑛
2
)/ 𝑊
(𝑚),max
𝑛

; we can get

𝑍
(𝑚)

𝑛
(𝑡 + 1 +𝑊

(𝑚),max
𝑛

) − 𝑍
(𝑚)

𝑛
(𝑡 + 1)

≥ 𝜖
∗
⋅ 𝑊
(𝑚),max
𝑛

−

𝑡+𝑊
(𝑚),max
𝑛

∑

𝜏=𝑡+1

[ ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝜏) + 𝐷

(𝑚)

𝑛
(𝜏)] .

(20)

It is easy to derive 𝜖
2
< 𝜖
∗
< 𝜖
1
. Similar to Case 1, the bound

of theworst case delay of nondropped data at node 𝑛 inCase 3
is

𝑊
(𝑚),max
𝑛,Case 3 = ⌈

(𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

)

𝜖
2

⌉ . (21)

Considering the three cases above, the worst case delay of
the nondropped data at node 𝑛 is bounded by the constant
𝑊
(𝑚),max
𝑛

, which is given as

𝑊
(𝑚),max
𝑛

= ⌈

(𝑄
(𝑚),max
𝑛

+ 𝑍
(𝑚),max
𝑛

)

𝜖
2

⌉ . (22)

2.5. Throughput Utility Optimization Problem. Similar to the
design of the utility function in [16], let𝑈

𝑚
(⋅) be strictly con-

cave, twice differentiable, and nondecreasing utility function
with 𝑈

𝑚
(0) = 0. 𝑟 = (𝑟

𝑚
, 𝑚 ∈ 𝑀) denotes the throughput

of the network. Λ is the capacity region of the network [17].
Then, the throughput utility maximization problem 𝑃1 can
be defined as follows:

max ∑

𝑚∈𝑀

𝑈
𝑚
(𝑟
𝑚
) − ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝑑
(𝑚)

𝑛
, (23)

s.t. 𝑟 ∈ Λ, (24)

(1) , (2) , (5) , (25)

where 𝑑(𝑚)
𝑛

is the time average value of 𝐷(𝑚)
𝑛
(𝑡). 𝛽
𝑚
is the

maximum slope of the utility function𝑈
𝑚
(𝑥). Constraint (24)

means that the network stability is guaranteed.

3. Dynamic Algorithm via
Lyapunov Optimization

The Lyapunov optimization technique is applied to solve 𝑃1.
𝑄
(𝑚)

𝑛
(∀𝑛 ∈ 𝑁,𝑚 ∈ 𝑀), 𝑌

𝑚
(∀𝑚 ∈ 𝑀), and 𝑍(𝑚)

𝑛
(∀𝑛 ∈

𝑁,𝑚 ∈ 𝑀) are used in the dynamic algorithm. Let Θ(𝑡) =
[𝑄(𝑡), 𝑌(𝑡), 𝑍(𝑡)] be the network state vector in time slot 𝑡.
Define the Lyapunov function as

𝐿 (Θ (𝑡)) =
1

2
[ ∑

𝑚∈𝑀

(𝑌
𝑚
(𝑡))
2

+ ∑

𝑛∈𝑁

∑

𝑚∈𝑀

(𝑄
(𝑚)

𝑛
(𝑡))
2

+ ∑

𝑛∈𝑁

∑

𝑚∈𝑀

(𝑍
(𝑚)

𝑛
(𝑡))
2

] .

(26)
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The conditional Lyapunov drift in time slot 𝑡 is

Δ (Θ (𝑡)) = 𝐸 {𝐿 (Θ (𝑡 + 1)) − 𝐿 (Θ (𝑡)) | Θ (𝑡)} . (27)

To maximize a lower bound for ∑
𝑚∈𝑀

𝑈
𝑚
(𝑟
𝑚
) −

∑
𝑚∈𝑀

∑
𝑛∈𝑁

𝛽
𝑚
𝑑
(𝑚)

𝑛
, the drift-plus-penalty function can

be defined as

Δ
𝑉
(Θ (𝑡)) = Δ (Θ (𝑡)) − 𝑉𝐸{ ∑

𝑚∈𝑀

𝑈
𝑚
(𝜂
𝑚
(𝑡))

− ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝐷
(𝑚)

𝑛
(𝑡) | Θ (𝑡)} ,

(28)

where 𝑉 is the weight of the utility defined by the user. The
following inequality can be derived:

𝐸 {Δ
𝑉
(Θ (𝑡))} ≤ 𝐵 − Ψ

1
(𝑡) − Ψ

2
(𝑡) − Ψ

3
(𝑡) − Ψ

4
(𝑡)

+ ∑

𝑛∈𝑁

∑

𝑚∈𝑀

𝑍
(𝑚)

𝑛
⋅ 𝜖
1
,

(29)

where Ψ
1
(𝑡), Ψ

2
(𝑡), Ψ

3
(𝑡), and Ψ

4
(𝑡) can be evaluated as

follows:

Ψ
1
(𝑡) = ∑

𝑚∈𝑀

[𝑉 ⋅ 𝑈
𝑚
(𝜂
𝑚
(𝑡)) − 𝑌

𝑚
(𝑡) ⋅ 𝜂
𝑚
(𝑡)] ,

Ψ
2
(𝑡) = ∑

𝑚∈𝑀

𝑟
𝑚
(𝑡) ⋅ [𝑌

𝑚
(𝑡) − 𝑄

(𝑚)

𝑛
(𝑡) ⋅ 1
{𝑛=𝑠
𝑚
}
] ,

Ψ
3
(𝑡) = ∑

𝑛∈𝑁

∑

𝑚∈𝑀

∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡)

⋅ [𝑄
(𝑚)

𝑛
(𝑡) − 𝑄

(𝑚)

𝑖
(𝑡) + 𝑍

(𝑚)

𝑛
(𝑡)] ,

Ψ
4
(𝑡) = ∑

𝑛∈𝑁

∑

𝑚∈𝑀

𝐷
(𝑚)

𝑛
(𝑡)

⋅ [𝑄
(𝑚)

𝑛
(𝑡) + 𝑍

(𝑚)

𝑛
(𝑡) − 𝑉 ⋅ 𝛽

𝑚
] .

(30)

𝐵 is a constant and satisfies

𝐵 ≥
1

2
∑

𝑚∈𝑀

[(𝜂
𝑚
(𝑡))
2

+ (𝑟
𝑚
(𝑡))
2

] +
1

2

⋅ ∑

𝑚∈𝑀

∑

𝑛∈𝑁

[

[

( ∑

𝑗∈𝐼(𝑛)

𝜇
(𝑚)

𝑗𝑛
(𝑡) + 1

{𝑛=𝑠
𝑚
}
𝑟
𝑚
(𝑡))

2

+ ( ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) + 𝐷

(𝑚)

𝑛
(𝑡))

2

]

]

+
1

2
∑

𝑚∈𝑀

∑

𝑛∈𝑁

[𝜖
1

− ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) − 𝐷

(𝑚)

𝑛
(𝑡)]

2

,

(31)

according to 0 ≤ 𝜂
𝑚
(𝑡) ≤ 𝐴

(𝑚)

max, 0 ≤ 𝑟𝑚(𝑡) ≤ 𝐴
(𝑚)

max, 𝜇
(𝑚)

𝑛𝑖
(𝑡) ∈

{0, 1}, and 0 ≤ 𝐷(𝑚)
𝑛
(𝑡) ≤ 𝐷max, and 𝜖1 is a constant value and

the constant 𝐵must exist.

The algorithm CCWD is based on the drift-plus-penalty
framework [17] and the main design principle of the algo-
rithm is to minimize the right-hand side of (29). The
algorithm includes two phases.

Phase I. Choose a sufficiently large𝑇. From time 𝑡 = 0, . . . , 𝑇−
1, run the algorithm proposed in [16] using 𝑄∗(𝑚)

𝑛
(𝑡) as the

size of data queues. Set𝑄(𝑚)
𝑛,standard to be (1/𝑇)∑

𝑇−1

𝜏=0
𝑄
∗(𝑚)

𝑛
(𝜏) +

𝜌, where 𝜌 is a constant.

Phase II. This phase includes five components.

Source Rate Control. For each session 𝑚 ∈ 𝑀 at source node
𝑠
𝑚
, the admitted rate 𝑟

𝑚
(𝑡) is chosen to solve

max 𝑟
𝑚
(𝑡) ⋅ [𝑌

𝑚
(𝑡) − 𝑄

(𝑚)

𝑛
(𝑡) ⋅ 1
{𝑛=𝑠
𝑚
}
] , (32)

s.t. 0 ≤ 𝑟
𝑚
(𝑡) ≤ 𝐴

𝑚
(𝑡) . (33)

Problem (32) is a linear optimization problem, and if 𝑌
𝑚
(𝑡) >

𝑄
(𝑚)

𝑠
𝑚

(𝑡), 𝑟
𝑚
(𝑡) is set to be 𝐴

𝑚
(𝑡); otherwise it is set to be zero.

Virtual Input Rate Control. For each session𝑚 ∈ 𝑀 at source
node 𝑠

𝑚
, the virtual input rate 𝜂

𝑚
(𝑡) is chosen to solve

max 𝑉 ⋅ 𝑈
𝑚
(𝜂
𝑚
(𝑡)) − 𝑌

𝑚
(𝑡) ⋅ 𝜂
𝑚
(𝑡) , (34)

s.t. 0 ≤ 𝜂
𝑚
(𝑡) ≤ 𝐴

(𝑚)

max. (35)

Since the utility function 𝑈
𝑚
(⋅) is strictly concave and twice

differentiable, (34) is a concave maximization problem with
linear constraint. 𝜂

𝑚
(𝑡) can be chosen by

𝜂
𝑚
(𝑡) = max{min{𝑈−1

𝑚
(
𝑌
𝑚
(𝑡)

𝑉
) , 𝐴
(𝑚)

max} , 0} , (36)

where 𝑈−1
𝑚
(⋅) is the inverse function of𝑈

𝑚
(⋅) that is the first-

order derivative of 𝑈
𝑚
(⋅). Since the utility function 𝑈

𝑚
(⋅)

is strictly concave and twice differentiable, 𝑈
𝑚
(⋅) must be a

monotonic function, and therefore, 𝑈−1
𝑚
(⋅)must exist.

Joint Routing and Scheduling. At the node 𝑛 ∈ 𝑁, routing and
scheduling decisions 𝜇(𝑚)

𝑛𝑖
(𝑡) for each session 𝑚 ∈ 𝑀 can be

made by solving the following:

max ∑

𝑛∈𝑁

∑

𝑚∈𝑀

∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) ⋅ [𝑄

(𝑚)

𝑛
(𝑡) − 𝑄

(𝑚)

𝑖
(𝑡) + 𝑍

(𝑚)

𝑛
(𝑡)] ,

s.t. (1) , (2) , (5) .

(37)

First, for each link (𝑛, 𝑖), the session 𝑚∗ for link (𝑛, 𝑖) can be
chosen as

𝑚
∗

= argmax
𝑚∈𝑀

{𝑄
(𝑚)

𝑛
(𝑡) − 𝑄

(𝑚)

𝑖
(𝑡) + 𝑍

(𝑚)

𝑛
(𝑡)} . (38)

The weight of link (𝑛, 𝑖) is defined as 𝑤
𝑛𝑖

= 𝑄
(𝑚
∗

)

𝑛
(𝑡) −

𝑄
(𝑚
∗

)

𝑖
(𝑡) + 𝑍

(𝑚
∗

)

𝑛
(𝑡). Therefore, the joint routing and schedul-

ing problem can be reduced to the following:

max ∑

𝑛∈𝑁

∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚
∗

)

𝑛𝑖
(𝑡) ⋅ 𝑤

𝑛𝑖
, (39)

s.t. (1) , (2) , (5) . (40)
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Transmission rates 𝜇(𝑚
∗

)

𝑛𝑖
(𝑡) are chosen based on (39) which is

a tough problem.The solution requires global knowledge and
a centralized algorithm.

Packet Drop Decision. For each session𝑚 ∈ 𝑀 and each node
𝑛 ∈ 𝑁, choose𝐷(𝑚)

𝑛
to solve

max [𝑄
(𝑚)

𝑛
(𝑡) + 𝑍

(𝑚)

𝑛
(𝑡) − 𝑉 ⋅ 𝛽

𝑚
] ⋅ 𝐷
(𝑚)

𝑛
(𝑡) , (41)

s.t. 0 ≤ 𝐷
(𝑚)

𝑛
(𝑡) ≤ 𝐷max. (42)

Problem (41) is a linear optimization problem, and if𝑄(𝑚)
𝑛
(𝑡)+

𝑍
(𝑚)

𝑛
(𝑡) > 𝑉 ⋅ 𝛽

𝑚
, 𝐷(𝑚)
𝑛
(𝑡) is set to be 𝐷max; otherwise it is set

to be zero.

Update of Queues. 𝑌(𝑡), 𝑄(𝑡), and 𝑍(𝑡) are updated using (3),
(4), and (8) in each time slot.

4. Performance Analysis

Theorem 2 (bounded queues). Assume that 𝐷max ≥

max{𝜖
1
, 𝐴
(𝑚)

max + 𝜇
max,in
𝑛

} holds, where 𝜇max,in
𝑛

denotes the
maximal amount of packets that node 𝑛 can receive from other
nodes in one slot. Then under the algorithm CCWD, all queues
are bounded for all 𝑡 ≥ 0 as follows:

𝑄
(𝑚)

𝑛
(𝑡) ≤ 𝑄

(𝑚),max
𝑛

,

𝑍
(𝑚)

𝑛
(𝑡) ≤ 𝑍

(𝑚),max
𝑛

,

𝑌
𝑚
(𝑡) ≤ 𝑌

(𝑚),max

(43)

provided that these inequalities hold at 𝑡 = 0.The queue bounds
are given by

𝑌
(𝑚),max

= 𝑉 ⋅ 𝛽
𝑚
+ 𝐴
(𝑚)

max,

𝑄
(𝑚),max
𝑛

= 𝑉 ⋅ 𝛽
𝑚
+ 𝜇

max,in
𝑛

+ 1
{𝑛=𝑠
𝑚
}
⋅ 𝐴
(𝑚)

max,

𝑍
(𝑚),max
𝑛

= 𝑉 ⋅ 𝛽
𝑚
+ 𝜖
1
.

(44)

Proof. The theorem is proved by induction.
(1) According to the induction principle, if 𝑌

𝑚
(𝑡) ≤

𝑌
(𝑚),max holds for all 𝑡 and supposing that 𝑌

𝑚
(𝑡) ≤ 𝑌

(𝑚),max

for time slot 𝑡, it should also hold for time slot 𝑡 + 1. If
𝑌
𝑚
(𝑡) ≤ 𝑉 ⋅ 𝛽

𝑚
, then 𝑌

𝑚
(𝑡 + 1) ≤ 𝑉 ⋅ 𝛽

𝑚
+ 𝐴
(𝑚)

max = 𝑌
(𝑚),max,

because𝑌
𝑚
can increase by atmost𝐴(𝑚)max in one slot. If𝑉⋅𝛽𝑚 <

𝑌
𝑚
(𝑡) ≤ 𝑌

(𝑚),max, because 𝛽
𝑚
is the maximum slope of the

utility function 𝑈
𝑚
(𝑥), we have

𝑉 ⋅ 𝑈
𝑚
(𝜂
𝑚
(𝑡)) − 𝑌

𝑚
(𝑡) ⋅ 𝜂
𝑚
(𝑡)

≤ 𝑉 ⋅ 𝑈
𝑚
(0) + 𝑉 ⋅ 𝛽

𝑚
⋅ 𝜂
𝑚
(𝑡) − 𝑌

𝑚
(𝑡) ⋅ 𝜂
𝑚
(𝑡)

= 𝑉 ⋅ 𝑈
𝑚
(0) + 𝜂

𝑚
(𝑡) ⋅ (𝑉 ⋅ 𝛽

𝑚
− 𝑌
𝑚
(𝑡))

≤ 𝑉 ⋅ 𝑈
𝑚
(0) = 0

(45)

with equality holding only if 𝜂
𝑚
(𝑡) = 0. Because 𝜂

𝑚
(𝑡) = 0

when 𝑌
𝑚
(𝑡) > 𝑉 ⋅ 𝛽

𝑚
, 𝑌
𝑚
(𝑡) can not increase in the next

slot according to (3). Thus 𝑌
𝑚
(𝑡 + 1) ≤ 𝑌

𝑚
(𝑡)≤ 𝑌

(𝑚),max. Then
𝑌
𝑚
(𝑡) ≤ 𝑌

(𝑚),max for all 𝑡 is proved.
(2) According to the induction principle, if 𝑄(𝑚)

𝑛
(𝑡) ≤

𝑄
(𝑚),max
𝑛

holds for all 𝑡 and supposing that 𝑄(𝑚)
𝑛
(𝑡) ≤ 𝑄

(𝑚),max
𝑛

for time slot 𝑡, it should also hold for time slot 𝑡 + 1. If
𝑄
(𝑚)

𝑛
(𝑡) ≤ 𝑉 ⋅ 𝛽

𝑚
, then

𝑄
(𝑚)

𝑛
(𝑡 + 1) ≤ 𝑄

(𝑚)

𝑛
(𝑡) + ∑

𝑗∈𝐼(𝑛)

𝜇
(𝑚)

𝑗𝑛
(𝑡) + 1

{𝑛=𝑠
𝑚
}
𝑟
𝑚
(𝑡)

≤ 𝑉 ⋅ 𝛽
𝑚
+ 𝜇

max,in
𝑛

+ 1
{𝑛=𝑠
𝑚
}
⋅ 𝐴
(𝑚)

max

= 𝑄
(𝑚),max
𝑛

.

(46)

If 𝑉 ⋅ 𝛽
𝑚
< 𝑄
(𝑚)

𝑛
(𝑡) ≤ 𝑄

(𝑚),max
𝑛

, 𝐷(𝑚)
𝑛
(𝑡) is set to be 𝐷max

according to the packet drop decision algorithm. Because
𝐷max ≥ max{𝜖

1
, 𝐴
(𝑚)

max + 𝜇
max,in
𝑛

}, then

𝑄
(𝑚)

𝑛
(𝑡 + 1) ≤ 𝑄

(𝑚)

𝑛
(𝑡) − 𝐷max + 𝐴

(𝑚)

max + 𝜇
max,in
𝑛

≤ 𝑄
(𝑚)

𝑛
(𝑡) ≤ 𝑄

(𝑚),max
𝑛

.

(47)

Then 𝑄(𝑚)
𝑛
(𝑡) ≤ 𝑄

(𝑚),max
𝑛

for all 𝑡 is proved.
(3) According to the induction principle, if 𝑍(𝑚)

𝑛
(𝑡) ≤

𝑍
(𝑚),max
𝑛

holds for all 𝑡 and supposing that 𝑍(𝑚)
𝑛
(𝑡) ≤ 𝑍

(𝑚),max
𝑛

for time slot 𝑡, it should also hold for time slot 𝑡 + 1. If
𝑍
(𝑚)

𝑛
(𝑡) ≤ 𝑉 ⋅ 𝛽

𝑚
, then

𝑍
(𝑚)

𝑛
(𝑡 + 1) ≤ 𝑍

(𝑚)

𝑛
(𝑡) + 𝜖

1
≤ 𝑉 ⋅ 𝛽

𝑚
+ 𝜖
1
= 𝑍
(𝑚),max
𝑛

. (48)

If 𝑉 ⋅ 𝛽
𝑚
< 𝑍
(𝑚)

𝑛
(𝑡) ≤ 𝑍

(𝑚),max
𝑛

, 𝐷(𝑚)
𝑛

is set to be 𝐷max
according to the packet drop decision algorithm. Because
𝐷max ≥ max{𝜖

1
, 𝐴
(𝑚)

max + 𝜇
max,in
𝑛

}, then

𝑍
(𝑚)

𝑛
(𝑡 + 1) ≤ 𝑍

(𝑚)

𝑛
(𝑡) − 𝐷max + 𝜖1 ≤ 𝑍

(𝑚)

𝑛
(𝑡)

≤ 𝑍
(𝑚),max
𝑛

.

(49)

Then 𝑍(𝑚)
𝑛
(𝑡) ≤ 𝑍

(𝑚),max
𝑛

for all 𝑡 is proved.

Theorem 3 (algorithm performance). One has 𝜑(𝑡) =

∑
𝑚∈𝑀

𝑈
𝑚
(𝑟
𝑚
(𝑡)) − ∑

𝑚∈𝑀
∑
𝑛∈𝑁

𝛽
𝑚
𝐷
(𝑚)

𝑛
(𝑡). Define 𝜑∗(𝑡) =

∑
𝑚∈𝑀

𝑈
𝑚
(𝑟
∗

𝑚
) − ∑
𝑚∈𝑀

∑
𝑛∈𝑁

𝛽
𝑚
𝐷
∗(𝑚)

𝑛
to be the optimal value

of 𝜑(𝑡) subject to constraints (1), (2), and (5), where 𝑟∗
𝑚
and

𝐷
∗(𝑚)

𝑛
are the solutions to maximize 𝜑(𝑡). One can have

∑
𝑚∈𝑀

𝑈
𝑚
(𝑟
𝑚
) − ∑
𝑚∈𝑀

∑
𝑛∈𝑁

𝛽
𝑚
𝑑
(𝑚)

𝑛
≥ 𝜑
∗

(𝑡) − 𝐵/𝑉.



Journal of Electrical and Computer Engineering 7

Proof. The drift-plus-penalty function (28) satisfies

Δ (Θ (𝑡)) − 𝑉 ⋅ 𝐸{ ∑

𝑚∈𝑀

𝑈
𝑚
(𝜂
𝑚
(𝑡))

− ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝐷
(𝑚)

𝑛
(𝑡) | Θ (𝑡)} ≤ 𝐵 − 𝑉

⋅ 𝐸{ ∑

𝑚∈𝑀

𝑈
𝑚
(𝜂
𝑚
(𝑡))

− ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝐷
(𝑚)

𝑛
(𝑡) | Θ (𝑡)} + ∑

𝑚∈𝑀

𝑌
𝑚
(𝑡)

⋅ 𝐸 {𝜂
𝑚
(𝑡) − 𝑟

𝑚
(𝑡) | Θ (𝑡)} + ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝑄
(𝑚)

𝑛
(𝑡)

⋅ 𝐸
{

{

{

∑

𝑗∈𝐼(𝑛)

𝜇
(𝑚)

𝑗𝑛
(𝑡) − ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) + 1

{𝑛=𝑠
𝑚
}
𝑟
𝑚
(𝑡)

− 𝐷
(𝑚)

𝑛
(𝑡) | Θ (𝑡)

}

}

}

+ ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝑍
(𝑚)

𝑛
(𝑡) ⋅ 𝐸{𝜖

1

− ∑

𝑖∈𝑂(𝑛)

𝜇
(𝑚)

𝑛𝑖
(𝑡) − 𝐷

(𝑚)

𝑛
(𝑡) | Θ (𝑡)} ,

(50)

where 𝐵 is a constant value. According toTheorem 4.5 in [17]
and Lemmas 5.6 and 5.7 in [19], the following inequality can
be derived from (50):

Δ (Θ (𝑡)) − 𝑉

⋅ 𝐸{ ∑

𝑚∈𝑀

𝑈
𝑚
(𝜂
𝑚
(𝑡)) − ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝐷
(𝑚)

𝑛
(𝑡) | Θ (𝑡)}

≤ 𝐵 − 𝑉

⋅ 𝐸{ ∑

𝑚∈𝑀

𝑈
𝑚
(𝑟
∗

𝑚
) − ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝐷
∗(𝑚)

𝑛
| Θ (𝑡)}

− 𝛿
1
⋅ ∑

𝑚∈𝑀

𝑌
𝑚
(𝑡) − 𝛿

2
⋅ ∑

𝑛∈𝑁

∑

𝑚∈𝑀

𝑄
(𝑚)

𝑛
(𝑡) − 𝛿

3

⋅ ∑

𝑛∈𝑁

∑

𝑚∈𝑀

𝑍
(𝑚)

𝑛
(𝑡) ,

(51)

where 𝛿
1
, 𝛿
2
, 𝛿
3
> 0. Inequality (51) can be transformed to

the exact form specified byTheorem 5.4 in [19]. According to

Theorem 5.4 in [19] and the condition 𝜂
𝑚
≤ 𝑟
𝑚
, the following

inequality can be derived:

∑

𝑚∈𝑀

𝑈
𝑚
(𝑟
𝑚
) − ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝑑
(𝑚)

𝑛

≥ ∑

𝑚∈𝑀

𝑈
𝑚
(𝜂
𝑚
) − ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝑑
(𝑚)

𝑛

≥ ∑

𝑚∈𝑀

𝑈
𝑚
(𝑟
∗

𝑚
) − ∑

𝑚∈𝑀

∑

𝑛∈𝑁

𝛽
𝑚
𝐷
∗(𝑚)

𝑛
−
𝐵

𝑉

= 𝜑
∗

(𝑡) −
𝐵

𝑉
.

(52)

Inequality (52) implies that the overall throughput utility
achieved by the algorithm in this paper is within a constant
gap from the optimum value.

5. Simulation

In the simulations, the commonly used greedy maximal
scheduling (GMS) method is used for schedulable link
set generation for each algorithm under comparison. This
method is widely used for implementing backpressure-based
centralized algorithms under sophisticated networks [20].

5.1. Simulation Setup. For simulations, a network with 20
nodes randomly distributed in a square of 1600m2 is con-
sidered. A transmission is successful if a receiver is within
the transmission range of its sender and outside the range of
other concurrent senders. The transmission or interference
range of a node is 15m. There are four unicast sessions
with randomly chosen sources and destinations. Data of each
session is injected into the transport layer with the same rate
in each slot at the source nodes. Parameter 𝑉 is set as 𝑉 =

[500 1000 1500 2000]. The throughput utility function is
𝑈(𝑥) = log(𝑥 + 1). Simulations are run in Matlab R2014a.
The simulation time of phase I lasts 30000 time slots. The
simulation time of phase II lasts 50000 time slots. All initial
queue sizes are set to be 0 and the default values are set as
follows: 𝐷max = 3, 𝛽𝑚 = 1, 𝐴

(𝑚)

max = 2, 𝜇
max,in
𝑛

= 𝜇
max,out
𝑛

= 1,
𝜖
1
= 2, 𝜖
2
= 1, and 𝜌 = 0.

5.2. Performance Comparison. In this section, the perfor-
mance of CCWD is comparedwith that of an existingmethod
called NeelyOpportunistic, which too can provide bounded
worst case delay. NeelyOpportunistic is proposed in [16].The
throughput utilities and the time average number of dropped
packets achieved by CCWD and NeelyOpportunistic are
compared in Figures 1 and 2, respectively. 𝑉 is set to be
1000. The data arrival rate is set to be from 0.2 packets to
1 packet per time slot. In Figure 1, the utility achieved by
CCWD is higher than that of NeelyOpportunistic. Figure 2
shows that fewer packets get dropped using CCWD thanwith
NeelyOpportunistic. According to the packet drop decision
algorithm, high value of 𝜖-persistent service queue leads to
serious packets drop. Asmentioned in Section 2.4, the virtual
queue of CCWD being redesigned in this paper grows slower
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Figure 2: Time average number of dropped packets versus average
data arrival rate.

than the virtual queue of NeelyOpportunistic. Therefore, the
virtual queue structure in NeelyOpportunistic leads to more
serious packet drop and lower throughput utility.

5.3. Impact of 𝑉. According to the analyses in Section 4,
with the increase of 𝑉, the utility achieved by CCWD can
be arbitrarily close to the optimal value with an increase in
the length of queues that is linear in 𝑉. The data arrival rate
𝐴
𝑚
(𝑡) is set to be 0.4 packets per time slot. Since the utility

function is concave and nondecreasing, the optimal value of
throughput utility should be 𝑁session ⋅ log(1 + 𝐴𝑚(𝑡)), where
𝑁session is the number of sessions.𝑁session is 4 in this section.
In this simulation, optimal throughput utility should be 1.34.
Figure 3 shows that the utility value is increased with an
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increasing𝑉. According to (44), it is easy to calculate𝑌(𝑚),max,
𝑄
(𝑚),max, and 𝑍(𝑚),max. In this section, since the maximum

arrival rate 𝐴(𝑚)max of each session is set to be 2 and the
throughput utility function of each session is uniform, 𝑌max,
𝑄max, and 𝑍max can also be calculated using (44). In Figures
4, 5, and 6, 𝑉 is increased from 500 to 2000 and on a log
base 10 scale. From Figures 4, 5, and 6, we can learn that the
time average sizes of 𝑄, 𝑌, and 𝑍 all increase approximately
proportionally with the increase of 𝑉 and are not larger than
the bounds given in Theorem 2. The simulation results show
amatch between the simulations and the theoretical analyses.

6. Conclusions

This paper proposed a two-phase throughput utility maxi-
mization algorithm which provides worst case delay guar-
antees using a new 𝜖-persistent virtual queue for multihop
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wireless networks. Throughput utility optimality of the algo-
rithm is demonstrated with rigorous theoretical analyses.
This algorithm ensures that queues are bounded by constants.
Compared with existing works, the algorithm presented
in this paper performs better in terms of utility and data
dropped. The plan for the future work is to combine this
proposed algorithmwith applications requiring limited delay.
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