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Using the theory of complete discrimination system and the computer algebra system MAPLE V.17, we compute the number of
forts for the logistic mapping 𝑓𝜆(𝑥) = 𝜆𝑥(1 − 𝑥) on [0, 1] parameterized by 𝜆 ∈ (0, 4]. We prove that if 0 < 𝜆 ≤ 2 then the number
of forts does not increase under iteration and that if 𝜆 > 2 then the number of forts is not bounded under iteration. Furthermore,
we focus on the case of 𝜆 > 2 and give for each 𝑘 = 1, . . . , 7 some critical values of 𝜆 for the change of numbers of forts.

1. Introduction

Iteration is the act of repeating a process with the aim of
approaching a desired goal, target, or result. In mathematical
sense, for a fixed integer 𝑛 ≥ 1, the 𝑛th iterate𝑓𝑛 of amapping
𝑓 : 𝐸 → 𝐸, where 𝐸 is a nonempty set, is defined recursively
by

𝑓𝑘 = 𝑓 ∘ 𝑓𝑘−1, 𝑓0 = id, (1)

where ∘ presents the composition of functions and id denote
the identity mapping; that is, id(𝑥) ≡ 𝑥 for all 𝑥 ∈ 𝐸. Being
indispensable in the computer era, iteration brings many
interesting but difficult problems to mathematics. Only from
one-dimensional case, one can simply notice that an iterate of
a linear function of any order remains linear but the degree of
a polynomial may increase drastically, which shows that the
nonlinear complexity is amplified by iteration.

Actually, in the one-dimensional case, the complexity
of nonlinear functions is related to nonmonotonicity. For a
continuous nonmonotonic self-mapping 𝑓 : 𝐼 → 𝐼, where 𝐼
is an interval, a point𝑥0 ∈ 𝐼 is called amonotone point of𝑓 if𝑓
is strictly monotone in a neighborhood of 𝑥0; otherwise, 𝑥0 is
called a nonmonotone point or simply a fort of 𝑓. Obviously,
a linear function does not have a fort generically. In 1980s,
Zhang and Yang (see [1]) investigated the number of forts
for a class of nonmonotonic functions called strictly piecewise

monotone functions and simply PM functions, which are self-
mapping on a compact interval andhave atmost finitelymany
forts each. Let 𝑆(𝑓) denote the set of all forts of𝑓 and let𝑁(𝑓)
denote the cardinality of 𝑆(𝑓). It is shown in [1, 2] that

0 = 𝑁(𝑓0) ≤ 𝑁 (𝑓) ≤ 𝑁(𝑓2) ≤ ⋅ ⋅ ⋅ ≤ 𝑁 (𝑓𝑘)

≤ 𝑁(𝑓𝑘+1) ≤ ⋅ ⋅ ⋅ ;
(2)

that is, the number 𝑁(𝑓𝑘) of forts is nondecreasing as 𝑘 is
increasing. One can similarly prove that (2) also holds for
functions defined on the wholeR. It is easy to find nonlinear
functions whose number of forts, regarded as the damagers
of monotonicity, increases rapidly under iteration. Consider
the quadratic function

𝑓 (𝑥) = 4𝑥 (1 − 𝑥) , 𝑥 ∈ [0, 1] , (3)

for example. Computing derivatives of 𝑓𝑖, 𝑖 = 1, . . . , 5, and
counting the number of real zeros with odd multiplicity for
the derivatives (𝑓𝑖)󸀠 (as done in [3]), we get 𝑁(𝑓) = 1,
𝑁(𝑓2) = 3, 𝑁(𝑓3) = 7, 𝑁(𝑓4) = 15, and 𝑁(𝑓5) = 31.
From the increasing tendency,without continuing the tedious
computation, we have the following question: Does 𝑁(𝑓𝑘)
have a bound or approach infinity as 𝑘 tends to ∞? How can
we compute the number of forts for nonmonotonic functions?

Polynomials, a special class of nonmonotonic functions,
possess the advantage that each fort of a polynomial of degree
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≥ 1 is either a peak or a valley although the notion is not true
in general. In this paper, we focus on the family of logistic
mappings:

𝑓𝜆 (𝑥) = 𝜆𝑥 (1 − 𝑥) , 𝑥 ∈ [0, 1] , (4)

where 𝜆 ∈ (0, 4] is a parameter, which is one of the simplest
polynomial mappings, and a typical example used to show
chaos and some complicated dynamics, for those problems.
First of all, we introduce the theory of complete discrimination
system (see [4]) and then use it to give a method for the
computation of𝑁(𝑓)with 𝑓 polynomial in Section 2. In Sec-
tion 3, we employ themethod in the computer algebra system
MAPLE V.17 for the family of logistic mappings. We prove in
Theorem 4 that 𝑁(𝑓𝑘

𝜆
) = 𝑁(𝑓𝜆) = 1 for all integer 𝑘 ≥ 2 if

0 < 𝜆 ≤ 2 and that𝑁(𝑓𝑘
𝜆
) approaches∞ as 𝑘 → ∞ if 2 < 𝜆 ≤

4. Furthermore, for various choices of 𝜆 ∈ (2, 4], we compute
the number𝑁(𝑓𝑘

𝜆
) for each fixed 𝑘 = 2, 3, . . . , 7 inTheorem 5.

2. Preliminaries

In general, for polynomial

𝑓 (𝑥) =
𝑛

∑
𝑖=0

𝑎𝑖𝑥
𝑖, (5)

where 𝑛 ≥ 2 and 𝑎𝑛 ̸= 0. 𝑁(𝑓𝑘), 𝑘 = 1, 2, . . ., is decided by
real zeros of the derivatives (𝑓𝑘)󸀠.

Lemma 1 (see [3, Lemma 2.1]). 𝑥0 is a fort of a real polyno-
mial 𝑓 if and only if 𝑥0 is a real zero of the derivative 𝑓󸀠 of odd
multiplicity. Moreover,𝑁(𝑓) is odd (resp., even) if the degree 𝑛
of 𝑓 is even (resp., odd).

Actually, the above lemma shows how a real zero of the
derivative 𝑓󸀠 can be a fort of 𝑓. Note that (𝑓𝑘)󸀠 = (𝑓󸀠 ∘

𝑓𝑘−1)(𝑓󸀠 ∘ 𝑓𝑘−2) ⋅ ⋅ ⋅ (𝑓󸀠 ∘ 𝑓)𝑓󸀠. Then the set of zeros of (𝑓𝑘)󸀠

is a union of the set of zeros of 𝑓󸀠 ∘ 𝑓𝑘−1 and the set of zeros
of (𝑓󸀠 ∘ 𝑓𝑘−2) ⋅ ⋅ ⋅ (𝑓󸀠 ∘ 𝑓)𝑓󸀠. Therefore, in order to know if 𝑓𝑘

have more forts than 𝑓𝑘−1, we need to judge if 𝑓󸀠 ∘ 𝑓𝑘−1 have
real zeros different from (𝑓󸀠 ∘ 𝑓𝑘−2) ⋅ ⋅ ⋅ (𝑓󸀠 ∘ 𝑓)𝑓󸀠’s with odd
multiplicities; the following lemma gives the answer.

Lemma2 (see [3, Lemma 2.5]). Let𝐺 and𝑃 be real polynomi-
als and 𝐺(𝑥) ̸≡ 0. Then the composition 𝐺 ∘ 𝑃 and the deriva-
tive 𝑃󸀠 do not have a common real zero with odd multiplicity.

Taking 𝐺 = 𝑓󸀠 and 𝑃 = 𝑓𝑘−1, by Lemmas 1 and 2,
we see that (𝑓𝑘)󸀠 has more real zeros of odd multiplicities
than (𝑓𝑘−1)󸀠 if and only if 𝑓󸀠 ∘ 𝑓𝑘−1 has real zeros with odd
multiplicities. Hence, in the process of computing𝑁(𝑓𝑘), we
only need to find out the number of real zeros for 𝑓󸀠 ∘ 𝑓𝑘−1

with odd multiplicities. For this reason, we first introduce
some notations of the theory of complete discrimination
system (see [4, 5]) which will lead us to solve this problem.

Discriminants of polynomials are useful in determining
the number of zeros for polynomials. Let Discr(𝑓) denote

the discriminant matrix of the polynomial 𝑓, which is
constructed by the Sylvester matrix of 𝑓 and 𝑓󸀠 as seen in
[4, Definition 1]. For each 𝜏 = 1, . . . , 𝑛, let 𝐷𝜏(𝑓) denote the
determinant of its submatrix formed by the first 2𝑖 rows and
the first 2𝑖 columns.The 𝑛-tuple (𝐷1, 𝐷2, . . . , 𝐷𝑛) is called the
discriminant sequence of 𝑓 and the list

(sign (𝐷1) , sign (𝐷2) , . . . , sign (𝐷𝑛)) (6)

is called the sign list of 𝑓, where sign(𝑥) is defined to be equal
to either 1 if 𝑥 > 0, 0 if 𝑥 = 0, or −1 if 𝑥 < 0. Given a sign list
(𝑠1, 𝑠2, . . . , 𝑠𝑛) of 𝑓, we make a new list (𝜀1, 𝜀2, . . . , 𝜀𝑛), called
the revised sign list of 𝑓, in the following regulation:

If (𝑠𝑖, 𝑠𝑖+1, . . . , 𝑠𝑖+𝑗) is a section of the given list such
that 𝑠𝑖 ̸= 0, 𝑠𝑖+1 = 𝑠𝑖+2 = ⋅ ⋅ ⋅ = 𝑠𝑖+𝑗−1 = 0, and 𝑠𝑖+𝑗 ̸= 0,
then replace the subsection (𝑠𝑖+1, 𝑠𝑖+2, . . . , 𝑠𝑖+𝑗−1) with
(𝜀𝑖+1, 𝜀𝑖+2, . . . , 𝜀𝑖+𝑗−1), where 𝜀𝑖+𝑟 = (−1)[(𝑟+1)/2]𝑠𝑖 for
𝑟 = 1, 2, . . . , 𝑗 − 1; otherwise, let 𝜀𝜏 = 𝑠𝜏.

The following lemma tells us how to find the number of
distinct zeros by means of the revised sign list.

Lemma3 (see [4,Theorem 1]). Let𝑓 be a real polynomial and
suppose that the number of the sign changes in the revised sign
list of 𝑓 is ]. Then the number of pairs of distinct conjugate
complex zeros of 𝑓 equals ]. Furthermore, if the number of
nonvanishing members in the revised sign list is 𝑙, then 𝐹 has
𝑙 − 2] distinct real zeros.

Now, we are ready to apply the above lemmas to detail
the process in computing 𝑁(𝑓𝑘), 𝑘 = 1, 2, . . .. First of all,
we compute 𝑓𝑘 and 𝑓󸀠 ∘ 𝑓𝑘−1 and the discriminant sequence
for 𝑓󸀠 ∘ 𝑓𝑘−1. Secondly, under algebraic relations among
coefficients 𝑎𝑖’s in the discriminant sequence, discuss the sign
of each component of the discriminant sequence and list the
sign lists. Then, compute the revised sign lists for 𝑓󸀠 ∘ 𝑓𝑘−1

through the sign lists. According to the revised sign lists,
we find out the number of real zeros of 𝑓󸀠 ∘ 𝑓𝑘−1 with odd
multiplicities and finally obtain𝑁(𝑓𝑘).

The above idea can be implemented in the computer alge-
bra systemMAPLE V.17, and we will use this method for the
logistic mappings up to iteration index 𝑘 = 7 in next section.

3. Number of Forts

In this section, we first draw a conclusion for the logistic
mappings which describe that the numbers of forts can be
preserved or approach∞ as 𝜆 varies under iteration and then
compute 𝑁(𝑓𝑘

𝜆
) for 𝑓𝜆(𝑥) up to iteration index 𝑘 = 7 with

different choice of 𝜆.

Theorem 4. The logistic mappings 𝑓𝜆 defined in (4) have
𝑁(𝑓𝑘
𝜆
) = 𝑁(𝑓𝜆) = 1 for all integer 𝑘 ≥ 2 if and only if

0 < 𝜆 ≤ 2. Otherwise, 𝑁(𝑓𝑘
𝜆
) approaches ∞ as 𝑘 → ∞.
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Table 1: The number of forts of 𝑓𝑖, 𝑖 = 1, 2, . . . , 7.

Ranges of 𝜆 𝑁(𝑓𝜆) 𝑁(𝑓2
𝜆
) 𝑁(𝑓3

𝜆
) 𝑁(𝑓4

𝜆
) 𝑁(𝑓5

𝜆
) 𝑁 (𝑓6

𝜆
) 𝑁(𝑓7

𝜆
)

𝜆1,0 < 𝜆 ≤ 𝜆2,1 1 1 1 1 1 1 1
𝜆2,1 < 𝜆 ≤ 𝜆3,2 1 3 5 7 9 11 13
𝜆3,2 < 𝜆 ≤ 𝜆3,4 1 3 7 13 21 31 43
𝜆3,4 < 𝜆 ≤ 𝜆3,6 1 3 7 13 23 37 57
𝜆3,6 < 𝜆 ≤ 𝜆3,7 1 3 7 13 23 37 59
𝜆
3,7

< 𝜆 ≤ 𝜆
4,3

1 3 7 13 23 39 65
𝜆4,3 < 𝜆 ≤ 𝜆4,9 1 3 7 15 29 53 93
𝜆4,9 < 𝜆 ≤ 𝜆4,10 1 3 7 15 29 53 95
𝜆4,10 < 𝜆 ≤ 𝜆4,11 1 3 7 15 29 55 101
𝜆4,11 < 𝜆 ≤ 𝜆5,5 1 3 7 15 29 55 103
𝜆5,5 < 𝜆 ≤ 𝜆5,12 1 3 7 15 31 61 117
𝜆5,12 < 𝜆 ≤ 𝜆6,8 1 3 7 15 31 61 119
𝜆6,8 < 𝜆 ≤ 𝜆7,13 1 3 7 15 31 63 125
𝜆7,13 < 𝜆 ≤ 4 1 3 7 15 31 63 127

Proof. In order to obtain the condition for𝑁(𝑓𝑘
𝜆
) = 𝑁(𝑓𝜆) =

1, from the method mentioned in the end of Section 2, we
need to compute𝑁(𝑓2

𝜆
). Simple computation shows that

𝑓󸀠
𝜆
∘ 𝑓𝜆 = 2𝜆𝑥2 − 2𝜆𝑥 + 1. (7)

Then computing the discriminant sequence of (7), we have

(𝜆2, 𝜆3 (𝜆 − 2)) . (8)

From (8), if 0 < 𝜆 < 2, the revised sign list is (1, −1), implying
that 𝑓󸀠

𝜆
∘ 𝑓𝜆 has one pair of complex zeros, which leads to

𝑁(𝑓2
𝜆
) = 1; if 𝜆 = 2, the revised sign list is (1, 0), implying

that 𝑓󸀠
𝜆
∘ 𝑓𝜆 has a double real zero, which leads to𝑁(𝑓2

𝜆
) = 1;

therefore,𝑁(𝑓𝜆) = 𝑁(𝑓𝑘
𝜆
) = 1 if and only if 0 < 𝜆 ≤ 2.

Without loss of generality, we can turn the general form
𝑓𝜆(𝑥) = −𝜆𝑥2 + 𝜆𝑥 into

𝑓𝜆 (𝑥) = −𝜆 (𝑥 −
1

2
)
2

+
𝜆

4
. (9)

So the vertex of the parabola is

(𝑥0, 𝑦0) fl (
1

2
,
𝜆

4
) . (10)

If 2 < 𝜆 ≤ 4, then 𝑓𝜆 and a diagonal line intersect at two
points 𝜉1 and 𝜉2, where 𝜉1 < 𝑥0 < 𝜉2. Obviously, 𝜉1 and 𝜉2 are
fixed points of 𝑓𝜆; 𝜉1 = 0 and 𝜉2 = (𝜆 − 1)/𝜆 and 𝑓𝜆 is strictly
increasing on the subinterval [𝜉1, 𝑥0]. Thus,

𝜉1 < 𝑓−𝑘−1
𝜆

(𝑥0) < 𝑓−𝑘
𝜆

(𝑥0) < 𝑥0,

∀𝑘 = 1, 2, . . . , lim
𝑘→+∞

𝑓−𝑘
𝜆

(𝑥0) = 𝜉1.
(11)

Since

𝑆 (𝑓𝑘
𝜆
) = 𝑆 (𝑓𝑘−1

𝜆
) ∪ {𝑥 ∈ [0, 1] : 𝑓𝑘−1

𝜆
∈ 𝑆 (𝑓𝜆)} , (12)

we get

S (𝑓𝑘
𝜆
) \S (𝑓𝑘−1

𝜆
) = S (𝑓𝜆 ∘ 𝑓

𝑘−1

𝜆
) \S (𝑓𝑘−1

𝜆
)

= (S (𝑓𝑘−1
𝜆

)

∪ {𝑥 ∈ [0, 1] : 𝑓𝑘−1
𝜆

(𝑥) ∈ S (𝑓𝜆)}) \S (𝑓𝑘−1
𝜆

)

= {𝑥 ∈ [0, 1] : 𝑓𝑘−1
𝜆

(𝑥) ∈ S (𝑓𝜆)} \S (𝑓𝑘−1
𝜆

)

̸= 0 ∀𝑘 ∈ N
+,

(13)

which implies that 𝑁(𝑓𝑘
𝜆
) approaches ∞ as 𝑘 → ∞. This

completes the proof.

Theorem 4 shows that the number 𝑁(𝑓𝑘
𝜆
) approaches ∞

as 𝑘 → ∞ for each fixed 𝜆 ∈ (2, 4]. It is also interesting
to see for each fixed 𝑘 how the number 𝑁(𝑓𝑘

𝜆
) varies as the

parameter 𝜆 changes in (2, 4]. The following theorem shows
the change of numbers𝑁(𝑓𝑘

𝜆
) as 𝜆 varies for each 𝑘 = 2, . . . , 7

(but larger 𝑘 can be considered if the computational capacity
of our computer is better). It gives a sequence of parameter
values at which new forts arise.

Theorem 5. 𝑁(𝑓2
𝜆
) = 3 for all 𝜆 ∈ (2, 4] and 𝑁(𝑓3

𝜆
) = 5

and 7 for 𝜆 ∈ (2, 𝜆3,2] and 𝜆 ∈ (𝜆3,2, 4], respectively, where
𝜆3,2 fl √5 + 1 ≈ 3.236067977. For more details, with the
convenient notations 𝜆1,0 fl 0 and 𝜆2,1 fl 2, numbers 𝑁(𝑓𝑘

𝜆
),

𝑘 = 1, 2, . . . , 7, are given in Table 1, where

𝜆4,3 ≈ 3.831874056,

𝜆3,4 ≈ 3.498561699,

𝜆5,5 ≈ 3.960270127,

𝜆3,6 ≈ 3.627557530,

𝜆3,7 ≈ 3.738914913,

𝜆6,8 ≈ 3.990267047,
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𝜆4,9 ≈ 3.844568792,

𝜆4,10 ≈ 3.905706470,

𝜆4,11 ≈ 3.937536445,

𝜆5,12 ≈ 3.977766422,

𝜆7,13 ≈ 3.997583118.

(14)

Proof. By (8), if 2 < 𝜆 ≤ 4, the revised sign list of 𝑓󸀠
𝜆
∘ 𝑓𝜆 is

(1, 1), implying that it has two distinct real zeros, which shows
that𝑁(𝑓2) = 3.

Furthermore, in order to obtain𝑁(𝑓3
𝜆
), we compute

𝑓󸀠
𝜆
∘ 𝑓2
𝜆
= 2𝜆3𝑥4 − 4𝜆3𝑥3 + 2𝜆3𝑥2 + 2𝜆2𝑥2 − 2𝜆2𝑥

+ 1.
(15)

As shown in Section 2, we give the discriminant sequence for
(15):

(𝜆6, 𝜆11 (𝜆 − 2) , 𝜆
14

(𝜆 − 2)
2 , 𝜆15 (𝜆2 − 2𝜆 − 4)

⋅ (𝜆 − 2)
3) .

(16)

Then, the revised sign list for (16) is

(i) (1, 1, 1, 1), if 𝜆3,2 < 𝜆 ≤ 4, which implies that 𝑓󸀠
𝜆
∘ 𝑓2
𝜆

has 4 distinct simple real zeros;

(ii) (1, 1, 1, 0), if 𝜆 = 𝜆3,2, which implies that 𝑓󸀠
𝜆
∘ 𝑓2
𝜆
has

3 distinct real zeros, 2 of which are simple zeros and
the remaining one is a double zero;

(iii) (1, 1, 1, −1), if 𝜆2,1 < 𝜆 < 𝜆3,2, which implies that 𝑓󸀠
𝜆
∘

𝑓2
𝜆
has one pair of complex zeros and 2 distinct simple

real zeros.

Here 𝜆2,1 = 2 and 𝜆3,2 = √5 + 1, as defined in the theorem.
𝜆3,2 is the real zero of 𝑔(𝜆) fl 𝜆2−2𝜆−4 in (2, 4]. By Lemmas
1 and 2, 𝑁(𝑓3

𝜆
) = 5 if 𝜆2,1 < 𝜆 ≤ 𝜆3,2 and 𝑁(𝑓3

𝜆
) = 7 if

𝜆3,2 < 𝜆 ≤ 4.
Similarly, compute

𝑓󸀠
𝜆
∘ 𝑓3
𝜆
= 2𝜆7𝑥8 − 8𝜆7𝑥7 + (12𝜆7 + 4𝜆6) 𝑥6

+ (−8𝜆7 − 12𝜆6) 𝑥5

+ (2𝜆7 + 12𝜆6 + 2𝜆5 + 2𝜆4) 𝑥4

+ (−4𝜆6 − 4𝜆5 − 4𝜆4) 𝑥3

+ (2𝜆5 + 2𝜆4 + 2𝜆3) 𝑥2 − 2𝜆3𝑥 + 1.

(17)

Then we obtain the discriminant sequence for 𝑓󸀠
𝜆
∘ 𝑓3
𝜆
:

(𝜆14, 𝜆27 (𝜆 − 2) , 𝜆
38

(𝜆 − 2)
2 , 𝜆47 (𝜆2 − 2𝜆 − 4)

⋅ (𝜆 − 2)
3 , 𝜆54 (𝜆2 − 2𝜆 − 4)

⋅ (𝜆 − 2)
4 , 𝜆59 (𝜆 (𝜆 − 2) (𝜆

2 − 2𝜆 − 4) − 16)

⋅ (𝜆 − 2)
5 , 𝜆62 (𝜆2 − 2𝜆 − 4)

⋅ (𝜆 (𝜆 − 2) (𝜆
2 − 2𝜆 − 4) − 16)

⋅ (𝜆 − 2)
6 , 𝜆63 (𝜆 (𝜆 − 2) (𝜆

2 − 2𝜆 − 4)
2

− 64)

⋅ (𝜆2 − 2𝜆 − 4)
2

(𝜆 − 2)
7) .

(18)

Hence,

(i) for 𝜆2,1 < 𝜆 < 𝜆3,2, the revised sign list for 𝑓󸀠
𝜆
∘ 𝑓3
𝜆
is

(1, 1, 1, −1, −1, −1, 1, −1), implying that 𝑓󸀠
𝜆
∘ 𝑓3
𝜆
has 3

pairs of complex zeros and 2 distinct simple real zeros;
(ii) for 𝜆 = 𝜆3,2, the revised sign list for 𝑓󸀠

𝜆
∘ 𝑓3
𝜆
is

(1, 1, 1, −1, −1, −1, 0, 0) and 𝑓󸀠
𝜆
∘ 𝑓3
𝜆
can be factorized

as

𝑓󸀠
𝜆
∘ 𝑓3
𝜆
=

1

64
(13√5 + 29)

⋅ (32𝑥2 − 32𝑥 + 4√5 + 12√2 − 4√10 − 4)

⋅ (𝑥 −
1

2
−

1

4
√6 − 2√5 + 6√2 − 2√10)

⋅ (𝑥 −
1

2
+

1

4
√6 − 2√5 + 6√2 − 2√10)

⋅ (4𝑥 − 3 + √5)
2

(−4𝑥 + 1 + √5)
2

,

(19)

implying that𝑓󸀠
𝜆
∘𝑓3
𝜆
has a pair of complex zeros and 4

distinct real zeros and two of the 4 distinct real zeros
are simple and the rest are both double zeros;

(iii) for 𝜆3,2 < 𝜆 < 1+ (3+2√5)1/2, where 1+ (3+2√5)1/2

is the real zero of ℎ(𝜆) fl 𝜆(𝜆 − 2)(𝜆2 − 2𝜆 − 4) − 16
in (𝜆3,2, 4], the revised sign list for 𝑓󸀠

𝜆
∘ 𝑓3
𝜆

is
(1, 1, 1, 1, 1, −1, −1, −1), implying that 𝑓󸀠

𝜆
∘ 𝑓3
𝜆
has a

pair of complex zeros and 6 distinct simple real zeros;
(iv) for 𝜆 = 1+(3+2√5)1/2, the revised sign list for𝑓󸀠 ∘𝑓3

is (1, 1, 1, 1, 1, −1, −1, −1), implying that 𝑓󸀠
𝜆
∘ 𝑓3
𝜆
has a

pair of complex zeros and 6 distinct simple real zeros;
(v) for 1 + (3 + 2√5)1/2 < 𝜆 < 𝜆4,3, where

𝜆4,3

fl
√3

3
(

2 (100 + 12√69)
2/3

+ 11 (100 + 12√69)
1/3

+ 8

(100 + 12√69)
1/3

)

1/2

+ 1 ≈ 3.831874056

(20)
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is the real zero of 𝑝(𝜆) fl 𝜆(𝜆 − 2)(𝜆2 − 2𝜆 − 4)2 − 64

in (1 + (3 + 2√5)1/2, 4], the revised sign list for 𝑓󸀠 ∘ 𝑓3
is (1, 1, 1, 1, 1, 1, 1, −1), implying that 𝑓󸀠

𝜆
∘ 𝑓3
𝜆
has a

pair of complex zeros and 6 distinct simple real zeros;

(vi) for 𝜆 = 𝜆4,3, the revised sign list for 𝑓󸀠
𝜆

∘ 𝑓3
𝜆
is

(1, 1, 1, 1, 1, 1, 1, 0), implying that 𝑓󸀠
𝜆

∘ 𝑓3
𝜆

has 7
distinct real zeros, one of which is a double zero but
the rest are all simple;

(vii) for 𝜆4,3 < 𝜆 ≤ 4, the revised sign list for 𝑓󸀠
𝜆
∘ 𝑓3
𝜆

is (1, 1, 1, 1, 1, 1, 1, 1), implying that 𝑓󸀠
𝜆

∘ 𝑓3
𝜆
has 8

distinct simple real zeros.

It follows that 𝑁(𝑓4
𝜆
) = 7 if 𝜆2,1 < 𝜆 ≤ 𝜆3,2, 𝑁(𝑓4

𝜆
) = 13 if

𝜆3,2 < 𝜆 ≤ 𝜆4,3, and𝑁(𝑓4
𝜆
) = 15 if 𝜆4,3 < 𝜆 ≤ 4.

We similarly compute𝑓󸀠
𝜆
∘𝑓4
𝜆
and obtain the discriminant

sequence

(𝜆30, 𝜆59 (𝜆 − 2) , 𝜆
86

(𝜆 − 2)
2 , 𝜆111 (𝜆2 − 2𝜆 − 4) (𝜆

− 2)
3 , 𝜆134 (𝜆2 − 2𝜆 − 4) (𝜆 − 2)

4 , 𝜆155 (𝜆4 − 4𝜆3

+ 8𝜆 − 16) (𝜆 − 2)
5 , 𝜆174 (𝜆2 − 2𝜆 − 4) (𝜆4 − 4𝜆3

+ 8𝜆 − 16) (𝜆 − 2)
6 , 𝜆191 (𝜆6 − 6𝜆5 + 4𝜆4 + 24𝜆3

− 16𝜆2 − 32𝜆 − 64) (𝜆2 − 2𝜆 − 4)
2

(𝜆 − 2)
7 ,

𝜆206 (𝜆6 − 6𝜆5 + 4𝜆4 + 24𝜆3 − 16𝜆2 − 32𝜆 − 64)

⋅ (𝜆2 − 2𝜆 − 4)
2

(𝜆 − 2)
8 , 𝜆219 (𝜆2 − 2𝜆 − 4) (𝜆10

− 10𝜆9 + 28𝜆8 + 16𝜆7 − 160𝜆6 + 64𝜆5 + 192𝜆4

+ 384𝜆3 − 256𝜆2 − 1024𝜆 + 1024) (𝜆 − 2)
9 ,

𝜆230 (𝜆4 − 4𝜆3 + 8𝜆 − 16) (𝜆10 − 10𝜆9 + 28𝜆8

+ 16𝜆7 − 160𝜆6 + 64𝜆5 + 192𝜆4 + 384𝜆3 − 256𝜆2

− 1024𝜆 + 1024) (𝜆 − 2)
10 , 𝜆239 (𝜆2 − 2𝜆 − 4) (𝜆8

− 8𝜆7 + 16𝜆6 + 16𝜆5 − 64𝜆4 + 128𝜆 − 256) (𝜆4

− 4𝜆3 + 8𝜆 − 16)
2

(𝜆 − 2)
11 , 𝜆246 (𝜆8 − 8𝜆7 + 16𝜆6

+ 16𝜆5 − 64𝜆4 + 128𝜆 − 256) (𝜆2 − 2𝜆 − 4)
2

(𝜆4

− 4𝜆3 + 8𝜆 − 16)
2

(𝜆 − 2)
12 , 𝜆251 (𝜆4 − 4𝜆3 + 8𝜆

− 16) (𝜆14 − 14𝜆13 + 72𝜆12 − 136𝜆11 − 144𝜆10

+ 1088𝜆9 − 1600𝜆8 − 640𝜆7 + 4096𝜆6 − 512𝜆5

− 4096𝜆4 − 12288𝜆3 + 16384𝜆2 + 8192𝜆 − 16384)

⋅ (𝜆2 − 2𝜆 − 4)
3

(𝜆 − 2)
13 , 𝜆254 (𝜆6 − 6𝜆5 + 4𝜆4

+ 24𝜆3 − 16𝜆2 − 32𝜆 − 64) (𝜆14 − 14𝜆13 + 72𝜆12

− 136𝜆11 − 144𝜆10 + 1088𝜆9 − 1600𝜆8 − 640𝜆7

+ 4096𝜆6 − 512𝜆5 − 4096𝜆4 − 12288𝜆3 + 16384𝜆2

+ 8192𝜆 − 16384) (𝜆2 − 2𝜆 − 4)
4

(𝜆 − 2)
14 ,

𝜆255 (𝜆12 − 12𝜆11 + 48𝜆10 − 40𝜆9 − 192𝜆8 + 384𝜆7

+ 64𝜆6 − 1024𝜆4 − 512𝜆3 + 2048𝜆2 + 4096) (𝜆6

− 6𝜆5 + 4𝜆4 + 24𝜆3 − 16𝜆2 − 32𝜆 − 64)
2

(𝜆2 − 2𝜆

− 4)
5

(𝜆 − 2)
15) .

(21)

Similar discussion gives 𝑁(𝑓5
𝜆
) for various 𝜆 as shown in

Table 1.
It is more complicated to compute discriminant

sequences of𝑓󸀠
𝜆
∘𝑓5
𝜆
and𝑓󸀠
𝜆
∘𝑓6
𝜆
because the two discriminant

sequences contain 32 and 64 components, respectively, and
the biggest component in the discriminant sequence of
𝑓󸀠
𝜆
∘ 𝑓5
𝜆
is a polynomial in the single variable 𝜆 of degree 1152

with 130 terms. Using a similar discussion as for 𝑓󸀠
𝜆

∘ 𝑓𝑘
𝜆
,

𝑘 = 1, 2, 3, 4, we obtain parameter values 𝜆3,6, 𝜆3,7, 𝜆6,8, 𝜆4,9,
𝜆4,10, 𝜆4,11, 𝜆5,12, and 𝜆7,13 as well as the numbers𝑁(𝑓6

𝜆
) and

𝑁(𝑓7
𝜆
) on intervals between them as shown in Table 1. This

completes the proof.

Although we are not able to compute for all 𝑘 those
parameter values for changes of 𝑁(𝑓𝑘

𝜆
) in Theorem 5, those

data of Table 1 for 𝑘 = 1, 2, . . . , 7 show that the number𝑁(𝑓𝑘
𝜆
)

can reach its maximum 2𝑘 − 1 if 𝜆 > 𝜆𝑘,𝑙, 𝑙 = 0, 1, 2, 3, 5, 8, 13.
We naturally have the following.

Question 1. Does 𝑁(𝑓𝑘
𝜆
) reach the maximum 2𝑘 − 1 for any

integer 𝑘 ≥ 1?

Additionally, the well-known Feigenbaum sequence (see
[6, 7]) is 𝜆1 = 3, 𝜆2 ≈ 3.449490, 𝜆3 ≈ 3.544090, 𝜆4 ≈
3.564407, 𝜆5 ≈ 3.568750, 𝜆6 = 3.569690, . . ., at each of
which a period-doubling bifurcation happens in the logistic
mapping. This suggests the following.

Question 2. Is there any relation between our sequence {𝜆𝑘,𝑙}
and the Feigenbaum sequence {𝜆𝑘}?

A related work can be found from [8], but the question is
not answered yet.
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