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Fuzzy set theory, extensively applied in abundant disciplines, has been recognized as a plausible tool in dealing with uncertain and
vague information due to its prowess in mathematically manipulating the knowledge of imprecision. In fuzzy-data comparisons,
exploring the general ranking measure that is capable of consistently differentiating the magnitude of fuzzy numbers has widely
captivated academics’ attention. To date, numerous indices have been established; however, counterintuition, less discrimination,
and/or inconsistency on their fuzzy-number rating outcomes have prohibited their comprehensive implementation. To ameliorate
their manifested ranking weaknesses, this paper proposes a unified index that multiplies weighted-mean and weighted-area
discriminatory components of a fuzzy number, respectively, called centroid value and attitude-incorporated left-and-right area.
From theoretical proof of consistency property and comparative studies for triangular, triangular-and-trapezoidal mixed, and
nonlinear fuzzy numbers, the unified index demonstrates conspicuous ranking gains in terms of intuition support, consistency,
reliability, and computational simplicity capability. More importantly, the unified index possesses the consistency property for
ranking fuzzy numbers and their images as well as for symmetric fuzzy numbers with an identical altitude which is a rather critical
property for accurate matching and/or retrieval of information in the field of computer vision and image pattern recognition.

1. Introduction

It has been well recognized that uncertainty inevitably exists
in several real-world phenomena due to the inherent errors
or impreciseness ofmeasurement tools,methods, and uncon-
trollable conditions [1, 2]. In managing the uncertainty and
vagueness, the fuzzy set theory has been widely considered as
a powerful tool [3, 4]. And many scholars have made special
efforts in proposing more and more effective approaches to
deal with practical problems in the fuzzy environment. Since
the inception of the fuzzy set theory, Soliman and Mantawy
[5] showed that five major strongly connected branches have
been developed, including fuzzy mathematics, fuzzy logic
and artificial intelligence, fuzzy systems, uncertainty and
information, and fuzzy decision-making. Their subbranches
have also been established; for example, fuzzy differential
equations [6–14] and fuzzy integrodifferential equations [15–
22] are of fuzzy mathematics while fuzzy-number rank-
ing, the focus of this paper, is of fuzzy decision-making.
Specifically, based on its feasible mathematical capacity for

representing the imprecise information in practice, we have
observed many successful cases spreading in disparate disci-
plines, such as robot selection [23], supplier selection [24],
logistics center allocation [25], facility location determina-
tion [26], choosing mining methods [27], manufacturing
process monitoring [1, 2, 28–31], cutting force prediction
[32], firm-environmental knowledge management [33, 34],
green supply-chain operation [35], and weapon procurement
decision [36]. Apparently, to find their best alternative, those
decisive problems are evaluated under resource constraints
and with to some extent linguistic preference of multiat-
tribute, which is realized from users’ perspectives, as well as
subjective quantification of multiple characteristics, which is
assessed from decision-makers [2, 3, 37–39]. In these cases,
fuzzy-data comparisons and rankings are inevitable.

As the fuzzy data (fuzzy numbers) can overlap with
each other and are represented by possibility distributions,
their comparison and ordering, not akin to that of real
numbers which can be linearly ordered, become challenging
and cumbersome. Generally, to rank fuzzy quantities, a set of
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fuzzy numbers, through a specific defuzzification measure, is
converted into real numbers, where a natural order between
them is definitive [40]. However, evenwhen ordering for a set
of single fuzzy numbers, this defuzzification procedure does
lose a certain amount of fuzziness/imprecision information
existing in the original data [1, 40–47], not to mention
the ordering for problems of multicriteria decision-making,
where sets of fuzzy numbers have experienced some mathe-
matical operations [48]; therefore, much endeavor has been
attempted to minimize loss of information, a fundamental
problem for fuzzy-data analysis.

Jain [49] in 1977 first launched a fuzzy set rating
procedure for multiple-aspect decision-making. Since then,
exploring a general ranking measure, capable of consistently
differentiating the magnitude of fuzzy numbers, has widely
captivated academics’ attention [50]. Nowadays, a majority of
diverse improved approaches/indices established from wide-
range perspectives focus on either compensating their prede-
cessors’ failures in certain reasonable properties for ordering
of fuzzy quantities [43, 44] or resolving the counterintuitive,
indiscriminate, and/or inconsistent rating outcomes among
certain types of fuzzy numbers [42, 51–54].

In general, the existing rankingmeasures can be classified
into two main categories:

(i) Indices that value the fuzzy number itself such as
center-, area-, and deviation-driven ordering mea-
sures

(ii) Indices that not only evaluate the fuzzy number itself,
but also gauge decision-maker’s attitude in regard to
specific purposes such as confidence and risk

In category one, Yager [55] and Lee and Li [56] first bor-
rowed statistical center-orientedmeasures for assessing fuzzy
numbers, where the former constructed a centroid (weighted
mean) index and the latter developed mean and standard
deviation indices; however, Cheng [57] pointed out their
inefficient manipulation of the fuzzy numbers that possesses
unusually large or small data (outliers) andmean-and-spread
values. To cope with the inefficiencies, R. Saneifard and R.
Saneifard [58], Zhang et al. [59], Bodjanova [60, 61], and
Yamashiro [62] suggested amedian index, a resistantmeasure
of the center, to take into account data located on the tails;
Cheng [57] proposed coefficient-of-variation and distance
indices; but both indices were later criticized for some incon-
sistent ordering among specific types of fuzzy numbers [63].
Based on the area between the centroid point and the original
point, Chu and Tsao [63] succeeded in establishing an area-
driven ranking index; unfortunately, because of its inherent
computation flaw, the area indexwas questioned byWang and
Lee [64] who illustrated some numerical examples to show
its counterintuitive results and further provided a compelling
revised index to resolve the problem. Nonetheless, Wang and
Lee’s area index does have its own deficiency of ordering
correctness when encountering fuzzy numbers with identical
centroid points [65]. By defining fuzzy-number maximal and
minimal reference sets, Wang et al. [66] first introduced a
deviation-driven ordering index by combining right-and-left
deviation degree with the coefficient of relative variation; not

surprisingly, this index was argued (1) bearing mathematical
incapability with zero value in the denominator [53] and
pointed out (2) leaving substantial room for improvement
under some special occasions such as fuzzy numbers with the
same left, right, and total utilities [39] as well as ranking fuzzy
numbers’ images [46].

Emphatically, the aforementioned drawbacks plagued on
this deviation-driven ordering index have somewhat reignited
the development of category two, initially proposed by Liou
and Wang [67] in 1992, and contrived ranking measures that
not only evaluate the fuzzy number itself, but also consider
decision-maker’s attitude in relation to specific purposes.The
evidence can be seen in the most recent works; for example,
to remove shortages of Wang et al.’s deviation-degree index
[66], Wang and Luo [39] incorporated decision-maker’s
attitude towards risk into left-and-right area between fuzzy-
number points and the positive-and-negative ideal points;
to improve Liou and Wang’s index [67], Yu and Dat [48]
incorporated decision-maker’s attitude regarding confidence
into left-right-total integral value subjected to fuzzy-number
median value. More recently, Das and Guha [68] proposed
a new ranking approach by computing the centroid point
of trapezoidal intuitionistic fuzzy numbers (TrIFN) and
applied it to solve multicriteria decision-making problems in
combination with expert’s degree of satisfaction. However,
their formulas fail to effectively work when their TrIFN
(𝑎, 𝑏, 𝑐, 𝑑) becomes either (𝑎, 𝑎, 𝑐, 𝑑) or (𝑎, 𝑏, 𝑐, 𝑐) or the sat-
isfaction/dissatisfaction degree takes a value of zero. In addi-
tion, as shown in Table 1, certain shortcomings such as coun-
terintuition, less reliability, inconsistency, complex/laborious
computation, and indecisive ranking results have been found
to be existing in several current ranking approaches.

Ostensibly, as opposed to the prolific ranking indices to
date that have been presented in category one, the estab-
lished ranking indices related to category two are still few,
leaving a wide range of topics for further investigation.
Based on the integration of the two categories, this paper
proposes a unified index that multiplies weighted mean and
weighted area, two discriminatory components of a fuzzy
number, respectively, called centroid value (the category one
measurement) and attitude-incorporated left-and-right area
(the category two measurement). According to comprehen-
sively comparative studies from triangular, triangular-and-
trapezoidal mixed, and nonlinear fuzzy numbers, the unified
index demonstrates obtrusive ranking benefits with respect
to intuition support, computational easiness, consistency, and
reliability capability.

Aside from the Introduction, the remainder of this paper
is organized into four sections as follows. Section 2 provides
preliminary definitions and remarks for the research. The
proposed unified index is described in Section 3, whose com-
parative studies with some existing ranking indices are done
with several literature-exemplary fuzzy numbers in Section 4.
Summary and conclusions make up the last section.

2. Preliminaries

The following definitions and remarks are mainly adopted
from Zimmermann [69] and Lee [70].
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Definition 1 (fuzzy subset). Let R be a nonempty set. The
fuzzy subset 𝐴 of R is defined by a function 𝜉𝐴 : R → [0, 1].
𝜉𝐴 is called amembership function.

Definition 2 (𝛼-cut set). The 𝛼-cut set of 𝐴, denoted by 𝐴𝛼𝑐,
is defined by 𝐴𝛼𝑐 = {𝑥 ∈ R : 𝜉𝐴(𝑥) ≥ 𝛼} for all 𝛼 ∈ (0, 1].
The 0-cut set 𝐴0𝑐 is defined as the closure of the set {𝑥 ∈ R :
𝜉𝐴(𝑥) > 0}.
Definition 3 (𝛼-level set). The 𝛼-level set of𝐴, denoted by𝐴𝛼,
is defined by 𝐴𝛼 = {𝑥 ∈ R : 𝜉𝐴(𝑥) = 𝛼} for all 𝛼 ∈ [0, 1].
Definition 4 (fuzzy number). A fuzzy number 𝐴 =
(𝑎, 𝑏, 𝑐, 𝑑; 𝑤) is described as any fuzzy subset of the real line
R with the membership function 𝜉𝐴(𝑥) which is given by

𝜉𝐴 (𝑥) =
{{{{{{{
{{{{{{{
{

𝜉𝐿
𝐴
(𝑥) , 𝑎 ≤ 𝑥 < 𝑏

𝑤, 𝑏 ≤ 𝑥 ≤ 𝑐
𝜉𝑅
𝐴
(𝑥) , 𝑐 < 𝑥 ≤ 𝑑

0, otherwise,

(1)

where 0 ≤ 𝑤 ≤ 1 is a constant and 𝜉𝐿
𝐴
(𝑥), 𝜉𝑅
𝐴
(𝑥) are continuous

functions on [0, 1].
A fuzzy number has the following properties:

(i) 𝐴 is normal if there exists an 𝑥 ∈ R such that 𝜉𝐴(𝑥) =
1; that is, 𝑤 = 1.

(ii) 𝜉𝐴(𝑥) is fuzzy convex; that is, 𝜉𝐴(𝑡𝑥 + (1 − 𝑡)𝑦) ≥
min{𝜉𝐴(𝑥), 𝜉𝐴(𝑦)} for 𝑡 ∈ [0, 1].

(iii) 𝜉𝐴(𝑥) is upper semicontinuous; that is, {𝑥 ∈ R :
𝜉𝐴(𝑥) ≥ 𝛼} is a closed subset of R for each 𝛼 ∈ (0, 1].

(iv) The 0-level set 𝐴0 is a closed and bounded subset of
R.

Since 𝐴𝛼 ⊂ 𝐴0 for each 𝛼 ∈ (0, 1], condition (iv) shows
that the 𝛼-level sets 𝐴𝛼 are bounded subsets of R for all
𝛼 ∈ (0, 1]. It is well known that condition (ii) is satisfied if and
only if the 𝛼-level set 𝐴𝛼 is a convex subset of R. Therefore,
from conditions (i)–(iv), it is implied that if 𝐴 is a fuzzy
number, then the 𝛼-level set of 𝐴 is a closed, bounded, and
convex subset ofR, that is, a closed interval inR, denoted by
𝐴𝛼 = [𝐴𝐿𝛼, 𝐴𝑈𝛼].
Remark 5. Let 𝐴 be a fuzzy number. Then, the following
statements hold true:

(i) 𝐴𝐿𝛼 ≤ 𝐴𝑈𝛼 for all 𝛼 ∈ [0, 1].
(ii) 𝐴𝐿𝛼 is increasing with respect to 𝛼 ∈ [0, 1]; that is,

𝐴𝐿𝛼 ≤ 𝐴𝐿𝛽 for 0 ≤ 𝛼 < 𝛽 ≤ 1.
(iii) 𝐴𝑈𝛼 is decreasing with respect to 𝛼 ∈ [0, 1]; that is,

𝐴𝑈𝛼 ≥ 𝐴𝑈𝛽 for 0 ≤ 𝛼 < 𝛽 ≤ 1.
Remark 6. Let𝐴 be a fuzzy number such that its membership
function is strictly increasing on interval [𝑎, 𝑏] and strictly

Ã�㰀
i

−di −ci −bi −ai

�휉Ã(x)
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Figure 1: 𝐴󸀠𝑖 is the image of 𝐴 𝑖.

decreasing on interval [𝑐, 𝑑]. From the fact of strict mono-
tonicity, 𝜉𝐿

𝐴
(𝑥) and 𝜉𝑅

𝐴
(𝑥) are continuous functions on [0, 1].

This implies that 𝐴 is also a real fuzzy number.

Definition 7 (the image of a fuzzy number [4]). Let 𝑛 fuzzy
numbers be 𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤𝑖) (𝑖 = 1, 𝑛). Then, the image
of 𝐴 𝑖 is 𝐴󸀠𝑖 = (−𝑑𝑖, −𝑐𝑖, −𝑏𝑖, −𝑎𝑖; 𝑤𝑖), as shown in Figure 1.

3. A Unified Index

Based on integration of the two aforementioned categories for
ranking fuzzy numbers, a unified index, which combines cen-
troid value (weighted mean) and attitude-incorporated left-
and-right area (weighted area), is proposed in this section.

Definition 8 (centroid value (a center-driven measure that
belongs to category one)). Centroid value of a fuzzy number
𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤𝑖) for 𝑖 = 1, 𝑛, symbolized by CV𝑖, is
defined as [3, 4, 38, 63, 65, 71]

CV𝑖 =
∫𝑑𝑖
𝑎𝑖

𝑥𝜉𝐴𝑖 (𝑥) 𝑑𝑥
∫𝑑𝑖
𝑎𝑖

𝜉𝐴𝑖 (𝑥) 𝑑𝑥
. (2)

From the statistical point of view, it is the weighted mean
of 𝐴 𝑖, meaning that when 𝐴 𝑖 = (𝑎, 𝑎, 𝑎, 𝑎; 𝑤𝑖), we can
accordingly have CV𝑖 = 𝑎.
Definition 9 (left-and-right areas (an area-driven measure
that belongs to category one)). Left-and-right areas of a fuzzy
number 𝐴 𝑖 for 𝑖 = 1, 𝑛, denoted by 𝑆𝐿𝑖 and 𝑆𝑅𝑖 , are given by

𝑆𝐿𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝐿
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑆𝑅𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝑅
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(3)

where 𝑔𝐿
𝐴𝑖

(𝑦) and 𝑔𝑅
𝐴𝑖

(𝑦) stand for inverse functions of
the left-and-right membership functions, 𝜉𝐿

𝐴𝑖
(𝑥) and 𝜉𝑅

𝐴𝑖
(𝑥),

respectively, and visual views of 𝑆𝐿𝑖 and 𝑆𝑅𝑖 are shown in
Figure 2 [72].

Now, a fuzzy-number measure belonging to category two
is presented. It also contemplates decision-maker’s attitude as
regards data revelation, called attitude-incorporated left-and-
right area, signified by AA𝜆𝑖 .

AA𝜆𝑖 = 𝜆𝑆𝑅𝑖 + (1 − 𝜆) 𝑆𝐿𝑖 , (4)
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Figure 2: Left area 𝑆𝐿𝑖 and right area 𝑆𝑅𝑖 .

where 𝜆 ∈ [0, 1] is level of optimism reflecting a data-revela-
tion optimism degree of a decision-maker, where the larger
the 𝜆 set by the decision-maker is, the more optimistic
attitude the decision-maker has on the data revelation. Two
extreme cases are 𝜆 = 0, meaning the decision-maker is
completely pessimistic, and 𝜆 = 1, meaning the decision-
maker is completely optimistic. Case 𝜆 = 1/2 reflects a
neutral decision attitude. From the mathematical viewpoint,
(4) can be seen as a weighted-area value of 𝐴 𝑖.

For boosting the fuzzy-number discrimination power, let
us consider an index named UI𝜆𝑖 by multiplying two size-
discriminatory values of a fuzzy number; that is,

UI𝜆𝑖 = (CV𝑖 + 𝜀𝑖) [𝜆𝑆𝑅𝑖 + (1 − 𝜆) 𝑆𝐿𝑖 ] . (5)

UI𝜆𝑖 is called unified index. And, 𝜀𝑖 initially takes a very
small real number which is quantifiable and rational for
comparing the targeted fuzzy numbers whose centroid values
take a value of zero, CV𝑖 = 0. It is used to provide consistent
ranking power when CV𝑖 = 0. Particularly, this paper
suggests using 𝜀𝑖 = 𝑤𝑖 × 10−9 so that we can efficiently
rank fuzzy numbers that have similar centroids but different
height.

Remark 10. Consider the ranking of two fuzzy numbers,
𝐴 𝑖 and 𝐴𝑗. Given the data-optimistic level 𝜆, from (5), we
obtain their realized unified indices, UI𝜆𝑖 and UI𝜆𝑗 . Then, the
following decisions can be made:

(i) At the data-optimistic level 𝜆, if UI𝜆𝑖 > UI𝜆𝑗 , then𝐴 𝑖 ≻
𝐴𝑗.

(ii) At the data-optimistic level 𝜆, if UI𝜆𝑖 < UI𝜆𝑗 , then𝐴 𝑖 ≺
𝐴𝑗.

(iii) At the data-optimistic level 𝜆, if UI𝜆𝑖 = UI𝜆𝑗 , then𝐴 𝑖 ≃
𝐴𝑗.

Now, we will prove the unified index’s consistency prop-
erty when ranking fuzzy numbers and their images. Without
loss of generality, CV𝑖 ̸= 0 is considered in the following.

Proposition 11. Let 𝐴󸀠𝑖 = (−𝑑𝑖, −𝑐𝑖, −𝑏𝑖, −𝑎𝑖; 𝑤𝑖) be the image
of a fuzzy number𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤𝑖) for 𝑖 = 1, 𝑛. Its centroid

value is CV𝑖󸀠 = −CV𝑖, left-and-right areas are 𝑆𝑅𝑖󸀠 = 𝑆𝐿𝑖 and 𝑆𝐿𝑖󸀠 =
𝑆𝑅𝑖 , attitude-incorporated left-and-right area is AA𝜆𝑖󸀠 = AA1−𝜆𝑖
and AA1−𝜆𝑖󸀠 = AA𝜆𝑖 , and unified index is UI𝜆𝑖󸀠 = −UI1−𝜆𝑖 and
UI1−𝜆𝑖󸀠 = −UI𝜆𝑖 .
Proof. From (2),

CV𝑖󸀠 =
∫−𝑎𝑖
−𝑑𝑖

𝑥𝜉𝐴󸀠
𝑖
(𝑥) 𝑑𝑥

∫−𝑎𝑖
−𝑑𝑖

𝜉𝐴󸀠
𝑖
(𝑥) 𝑑𝑥 = −∫𝑑𝑖

𝑎𝑖
𝑥𝜉𝐴𝑖 (𝑥) 𝑑𝑥

∫𝑑𝑖
𝑎𝑖

𝜉𝐴𝑖 (𝑥) 𝑑𝑥
= −CV𝑖. (6)

Based on (3),

𝑆𝐿𝑖󸀠 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝐿
𝐴󸀠
𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝑅
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑆𝑅𝑖

𝑆𝑅𝑖󸀠 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝑅
𝐴󸀠
𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤𝑖

0
𝑔𝐿
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑆𝐿𝑖 .

(7)

According to (4) and with the above results, 𝑆𝑅𝑖󸀠 = 𝑆𝐿𝑖 and 𝑆𝐿𝑖󸀠 =𝑆𝑅𝑖 , we further have
AA𝜆𝑖󸀠 = 𝜆𝑆𝑅𝑖󸀠 + (1 − 𝜆) 𝑆𝐿𝑖󸀠 = 𝜆𝑆𝐿𝑖 + (1 − 𝜆) 𝑆𝑅𝑖 = AA1−𝜆𝑖 . (8)

Similarly,

AA1−𝜆𝑖󸀠 = (1 − 𝜆𝑆𝑅𝑖󸀠) + 𝜆𝑆𝐿𝑖󸀠 = (1 − 𝜆) 𝑆𝐿𝑖 + 𝜆𝑆𝑅𝑖 = AA𝜆𝑖 . (9)

Finally, regarding (5) and the aforementioned outcomes, we
can simply obtain

UI𝜆𝑖󸀠 = CV𝑖󸀠 [𝜆𝑆𝑅𝑖󸀠 + (1 − 𝜆) 𝑆𝐿𝑖󸀠] = −UI1−𝜆𝑖 ,
UI1−𝜆𝑖󸀠 = CV𝑖󸀠 [(1 − 𝜆) 𝑆𝑅𝑖󸀠 + 𝜆𝑆𝐿𝑖󸀠] = −UI𝜆𝑖 .

(10)

We complete the proof.

Proposition 12. Let a set of fuzzy numbers be 𝐴𝑘 = (𝑎𝑘, 𝑏𝑘,𝑐𝑘, 𝑑𝑘; 𝑤𝑘) and their images 𝐴󸀠𝑘 = (−𝑑𝑘, −𝑐𝑘, −𝑏𝑘, −𝑎𝑘; 𝑤𝑘), 𝑘 =
1, 𝑛. For a pairwise comparison of 𝐴 𝑖 and 𝐴𝑗 for 𝑖, 𝑗 ∈ 𝑘, two
statements hold true: (1)UI𝜆𝑖 > UI𝜆𝑗 if and only if UI

1−𝜆
𝑖󸀠 < UI1−𝜆𝑗󸀠

and (2) UI𝜆𝑖 < UI𝜆𝑗 if and only if UI
1−𝜆
𝑖󸀠 > UI1−𝜆𝑗󸀠 .
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Proof. Consider UI𝜆𝑖 > UI𝜆𝑗 . From Proposition 11, we have
the results UI𝜆𝑖 = −UI1−𝜆𝑖󸀠 and UI𝜆𝑗 = −UI1−𝜆𝑗󸀠 . Thus, UI1−𝜆𝑖󸀠 <
UI1−𝜆𝑗󸀠 . On the other hand, considerUI1−𝜆𝑖󸀠 < UI1−𝜆𝑗󸀠 . According
to Proposition 11, UI1−𝜆𝑖󸀠 = −UI𝜆𝑖 and UI1−𝜆𝑗󸀠 = −UI𝜆𝑗 . Hence,
UI𝜆𝑖 > UI𝜆𝑗 . Overall, the proof is completed.

Remark 13. Let a set of fuzzy numbers be 𝐴𝑘 = (𝑎𝑘, 𝑏𝑘, 𝑐𝑘,𝑑𝑘; 𝑤𝑘) and their images 𝐴󸀠𝑘 = (−𝑑𝑘, −𝑐𝑘, −𝑏𝑘, −𝑎𝑘; 𝑤𝑘), 𝑘 =
1, 𝑛. As regards Remark 10 and Propositions 11 and 12, the
following decisions can be made for a pairwise comparison
of 𝐴 𝑖 and 𝐴𝑗, for 𝑖, 𝑗 ∈ 𝑘.

(i) At the data-optimistic level 𝜆, if UI𝜆𝑖 > UI𝜆𝑗 , which is
equivalent to UI1−𝜆𝑖󸀠 < UI1−𝜆𝑗󸀠 , then 𝐴 𝑖 ≻ 𝐴𝑗, which is
equivalent to 𝐴󸀠𝑖 ≺ 𝐴󸀠𝑗.

(ii) At the data-optimistic level 𝜆, if UI𝜆𝑖 < UI𝜆𝑗 , which is
equivalent to UI1−𝜆𝑖󸀠 > UI1−𝜆𝑗󸀠 , then 𝐴 𝑖 ≺ 𝐴𝑗, which is
equivalent to 𝐴󸀠𝑖 ≻ 𝐴󸀠𝑗.

(iii) At the data-optimistic level 𝜆, if UI𝜆𝑖 = UI𝜆𝑗 , which is
equivalent to UI1−𝜆𝑖󸀠 = UI1−𝜆𝑗󸀠 , then 𝐴 𝑖 ≃ 𝐴𝑗, which is
equivalent to 𝐴󸀠𝑖 ≃ 𝐴󸀠𝑗.

Finally, the following theory is very useful for ranking
“symmetric” fuzzy numbers with an identical altitude.

Theorem 14. Consider a set of “symmetric” fuzzy numbers,
𝐴𝑘 = (𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘; 𝑤𝑘), and their images 𝐴󸀠𝑘 = (−𝑑𝑘, −𝑐𝑘, −𝑏𝑘,
−𝑎𝑘; 𝑤𝑘), 𝑘 = 1, 𝑛. By using the unified index, the pairwise
comparison of𝐴 𝑖 and𝐴𝑗 for 𝑖, 𝑗 ∈ 𝑘 is 𝜆 = 0.5,𝐴 𝑖 ≃ 𝐴𝑗 (𝐴󸀠𝑖 ≃
𝐴󸀠𝑗), 𝜆 ∈ [0, 0.5), 𝐴 𝑖 ≺ 𝐴𝑗 (𝐴󸀠𝑖 ≻ 𝐴󸀠𝑗), and 𝜆 ∈ (0.5, 1],
𝐴 𝑖 ≻ 𝐴𝑗 (𝐴󸀠𝑖 ≺ 𝐴󸀠𝑗).
Proof. (i) Since 𝐴 𝑖 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖; 𝑤) and 𝐴𝑗 = (𝑎𝑗, 𝑏𝑗, 𝑐𝑗,
𝑑𝑗; 𝑤) for 𝑖, 𝑗 = 1, 𝑛 are symmetric, we have 𝑎𝑖 + 𝑑𝑖 = 𝑎𝑗 + 𝑑𝑗.
Moreover, from (2),

CV𝑖 =
∫𝑑𝑖
𝑎𝑖

𝑥𝜉𝐴𝑖 (𝑥) 𝑑𝑥
∫𝑑𝑖
𝑎𝑖

𝜉𝐴𝑖 (𝑥) 𝑑𝑥
= 𝑎𝑖 + 𝑑𝑖

2 ,

CV𝑗 =
∫𝑑𝑗
𝑎𝑗

𝑥𝜉𝐴𝑗 (𝑥) 𝑑𝑥
∫𝑑𝑗
𝑎𝑗

𝜉𝐴𝑗 (𝑥) 𝑑𝑥
= 𝑎𝑗 + 𝑑𝑗

2 .
(11)

Therefore, CV𝑖 = CV𝑗.
(ii) According to (3) and (4), we have

AA𝜆𝑖 = 𝜆𝑆𝑅𝑖 + (1 − 𝜆) 𝑆𝐿𝑖
AA𝜆𝑗 = 𝜆𝑆𝑅𝑗 + (1 − 𝜆) 𝑆𝐿𝑗 ,

(12)

where

𝑆𝐿𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝐿
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑆𝑅𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝑅
𝐴𝑖

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑆𝐿𝑗 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝐿
𝐴𝑗

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑆𝑅𝑗 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑤

0
𝑔𝑅
𝐴𝑗

(𝑦) 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(13)

Due to the symmetry, we have AA𝜆𝑖 < AA𝜆𝑗 for 𝜆 ∈
[0, 0.5), AA𝜆𝑖 = AA𝜆𝑗 when 𝜆 = 0.5, and vice versa.

(iii) From (i), (ii), and (5), we have

(i) 𝜆 ∈ [0, 0.5), UI𝜆𝑖 < UI𝜆𝑗 ,

(ii) 𝜆 = 0.5, UI𝜆𝑖 = UI𝜆𝑗 ,

(iii) 𝜆 ∈ (0.5, 1], UI𝜆𝑖 > UI𝜆𝑗 .

Finally, according to Remark 13, we complete the proof.

4. Comparative Studies

In this section, several fuzzy-number examples, which
are popular in the literature for a wide range of fuzzy-
number comparative studies, are used to compare ranking
performance between the unified index and some up-to-
date representative indices from the publications. To make
it easier to follow the whole discussion of comparison,
Table 1 briefly shows the evaluated types of fuzzy numbers,
reference sources, and critical shortcomings of the refer-
ences. Detailed explanations about performance shortages
for existing indices in contrast with the proposed index are
subsequently described in Examples 15∼22.

It can be noted that, based on Propositions 11 and 12 and
Remark 13, the unified index fulfills the consistency property
for ranking the fuzzy numbers and their partnered images; for
conciseness, in several examples, the consistency of image-
ranking results is not mentioned or shown on the result
tables.

4.1. Ranking of Normal Triangular Fuzzy Numbers. This
subsection focuses on the ranking of normal triangular fuzzy
numbers with some special shape which are recognizably
difficult to discriminate in the literature. First, a case with
two congruent fuzzy numbers is employed for checking
index’s computation easiness; then, the work is extended
on three similar fuzzy numbers for contrasting indices’
ranking consistency and intuition satisfaction; finally, an
example, which includes a slight move-away fuzzy number
and two fuzzy numbers with an identical center value and
geometric enlargement relationship, is examinedwith respect
to ranking indices’ reliability and consistency.

Example 15. Rank two fuzzy numbers 𝐴1 = (1, 4, 5) and
𝐴2 = (2, 3, 6) as shown in Figure 3 [48], which are congruent,
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Table 1: The ranking performance assessments for some representative indices as opposed to the unified index.

Section Example Evaluated fuzzy numbers Compared references Shortcomings (cf. the index)

Section 4.1 Example 15 𝐴1 = (1, 4, 5)
Yu & Dat [48] More laborious in computation𝐴2 = (2, 3, 6)

Section 4.1 Example 16
𝐴1 = (5, 6, 7) Chu & Tsao [63] Counterintuition
𝐴2 = (5.9, 6, 7) Cheng [57] Counterintuition
𝐴3 = (6, 6, 7) Yu & Dat [48] Less reliability

Section 4.1 Example 17
𝐴1 = (1, 3, 5)

Liou &Wang [67], Yu & Dat [48]
Inconsistency

Counterintuition at 𝜆 = 0𝐴2 = (2, 3, 4)
𝐴3 = (1, 4, 6)

Section 4.2 Example 18 𝐴1 = (1, 5, 5)
Zhang et al. [73]

Computation complexity
𝐴2 = (2, 3, 5, 5) Inconsistency

Section 4.2 Example 19
𝐴1 = (0, 3, 6)

Ky Phuc et al. [38], Asady [46]
Computation complexity

Indecisive ranking for (𝐴1, 𝐴3)𝐴2 = (−1, 0, 2)
𝐴3 = (0, 2, 4, 6)

Section 4.2 Example 20
𝐴1 = (−12, 1, 2)

Abbasbandy & Hajjari [74],
Nasseri & Sohrabi [75]

Counterintuition𝐴2 = (−23/12, 1/12, 13/12)
𝐴3 = (−6, 0, 1, 1)

Section 4.3 Example 22 𝐴1 = (1, 2, 5) Ky Phuc et al. [38], Asady [46],
Zhang et al. [73] More elaborate in computation𝐴2 = (1, 2, 2, 4)

�휉Ã(x)

x
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Figure 3: Fuzzy numbers 𝐴1 and 𝐴2 in Example 15.

but overlapping after flipping and sliding movement. Here,
the proposed unified index is contrasted with themost recent
work published by Yu and Dat [48] in 2014 as regards
computation simpleness.

According to the unified index in (5), we simply have
the results shown in Table 2, 𝐴1 ≺ 𝐴2 (𝐴󸀠1 ≻ 𝐴󸀠2) at
any arbitrary level-of-optimism attitude of data revelation
from the decision-maker, 𝜆 ∈ [0, 1]. Yu and Dat [48]
advocated the identical ranking result in this case; however,
their computation of median values before ranking these two
fuzzy numbers is procedure-laborious in practice as reported
by some predecessors [58–62].

By the same token, when comparing two normal triangu-
lar fuzzy numbers 𝐵1 = (0.1, 0.6, 0.8) and 𝐵2 = (0.2, 0.5, 0.9),
taken from [76] and based on the proposed approach, we
always have 𝐵1 ≺ 𝐵2, which is coherent with that in [57, 63,

Table 2: Ranking results for Example 15.

𝜆 UI𝜆1 UI𝜆2 Ranking result
0.0 8.333 9.167 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.1 9.000 9.900 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.2 9.667 10.633 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.3 10.333 11.367 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.4 11.000 12.100 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.5 11.667 12.833 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.6 12.333 13.567 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.7 13.000 14.300 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.8 13.667 15.033 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
0.9 14.333 15.767 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2
1.0 15.000 16.500 𝐴1 ≺ 𝐴2 and 𝐴󸀠1 ≻ 𝐴󸀠2

77–80]. However, the approaches by R. Chutia and B. Chutia
[81] and Deng [82] lead to a counterintuitive result 𝐵2 ≺ 𝐵1.
Example 16. Consider three triangle fuzzy numbers, 𝐴1 =
(5, 6, 7), 𝐴2 = (5.9, 6, 7), and 𝐴3 = (6, 6, 7) [39], which
are similar and covered with the same right-hand side as
displayed in Figure 4. By human instinct, they are easily
being discriminated; that is, for the fuzzy numbers and their
images, the intuitive and consistent rankings are 𝐴1 ≺
𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3. Therefore, this example is
capable of judging the indices’ performance if intuition- and
consistency-satisfied.

We first check the unified index. Based on (5), Propo-
sitions 11 and 12, and Remark 13, the ranking results, listed
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Table 3: Ranking results for Example 16.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 33.000 37.485 38.000 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.1 33.600 37.831 38.317 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.2 34.200 38.178 38.633 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.3 34.800 38.524 38.950 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.4 35.400 38.871 39.267 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.5 36.000 39.217 39.583 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.6 36.600 39.564 39.900 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.7 37.200 39.910 40.217 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.8 37.800 40.257 40.533 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.9 38.400 40.603 40.850 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
1.0 39.000 40.950 41.167 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
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Ã2 Ã3
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Figure 4: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 16.

in Table 3 for the fuzzy numbers and their images, affirm
the intuitive and consistent outcomes, 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3.

In the literature, while many support the intuitive results
for ranking the fuzzy numbers [39, 46, 57, 66, 83, 84], Chen
[85] and Chu and Tsao [63] provide a different consequence
as 𝐴1 ≺ 𝐴3 ≺ 𝐴2 and Cheng [57] gives 𝐴3 ≺ 𝐴2 ≺ 𝐴1, so
their counterintuitions are apparent.

Moreover, due to scarcity of methods in the literature for
consistently ranking their images, a recent work from Yu and
Dat [48] claimed to bridge the gap. Unfortunately, when 𝜆 =
1, their approach leads to a disparate ranking, 𝐴1 ≃ 𝐴2 ≃
𝐴3 (𝐴󸀠1 ≃ 𝐴󸀠2 ≃ 𝐴󸀠3), indicating that their index as a whole
somewhat lacks reliability.

Example 17. Again, examine three fuzzy numbers, 𝐴1 =
(1, 3, 5), 𝐴2 = (2, 3, 4), and 𝐴3 = (1, 4, 6), as shown in
Figure 5. Visibly, 𝐴3 = (1, 4, 6) is right way out 𝐴1 and𝐴2, so there is no dispute that a capable index should rate
𝐴3 (𝐴󸀠3) as the largest (smallest). The challenging one is to
distinguish 𝐴1 and 𝐴2 (𝐴󸀠1 and 𝐴󸀠2) due to their symmetry
with respect to 𝑥 = 3, identical centroid value, and their
geometric enlargement relationship. Actually, majority of
the existing ranking measures in category one (evaluating
the fuzzy number itself) rank 𝐴1 ≃ 𝐴2, and their image
ranking is not available.Therefore, this example is to compare
the proposed unified index with the category two ranking
measures (not only evaluating the fuzzy number itself, but
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Figure 5: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 17.

also gauging decision-maker’s attitude in regard to specific
purposes such as confidence and risk), initiated byWang and
Luo [39], Yu and Dat [48], Yu et al. [65], and Liou and Wang
[67], in terms of ranking indices’ reliability and consistency.

First, we check the unified index’s results in Table 4.
Regardless of 𝜆 ∈ [0, 1], 𝐴3 (𝐴󸀠3) is always the largest
(smallest), which confirms human intuition. For the ranking
of 𝐴1 and 𝐴2, dividing from 𝜆 = 0.5, 𝐴1 ≃ 𝐴2 (𝐴󸀠1 ≃ 𝐴󸀠2);
the upper part 𝜆 ∈ [0, 0.5), 𝐴1 ≺ 𝐴2 (𝐴󸀠1 ≻ 𝐴󸀠2); the lower
part 𝜆 ∈ (0.5, 1], 𝐴1 ≻ 𝐴2 (𝐴󸀠1 ≺ 𝐴󸀠2). Although this result
has been proved inTheorem 14, there are still some insightful
conclusions to be addressed.

First, this finding is consistent with that of Wang and Luo
[39] and Yu et al. [65]. In fact, with respect to the unified
index, these results are reasonable because the chosen 𝜆 value
manifests the decision-maker’s optimism towards revelation
of left- and right-area data. 𝜆 ∈ (0.5, 1] implies that the
right-area data is more preferred by the decision-maker; 𝜆 ∈
[0, 0.5) represents the notion that the decision-maker is more
optimistic regarding the left-area data; 𝜆 = 0.5 indicates
that the decision-maker is neutral towards preference of data
location.

Then, we evaluate the indices proposed by Yu and Dat
[48] and Liou and Wang [67]. While Yu and Dat’s work
confirms most of the results in Table 4, it does exhibit an
apparent counterintuition issue at 𝜆 = 0, where it suggests
that 𝐴3 does not dominate 𝐴2; that is, 𝐴2 ≃ 𝐴3 (𝐴󸀠2 ≃
𝐴󸀠3). Moreover, Liou and Wang’s index [67] not only afflicts
the same shortage of Yu and Dat’s index, but also has



8 Complexity

Table 4: Ranking results at different optimism levels in Example 17.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 6.000 7.500 9.167 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.1 6.600 7.800 10.083 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.2 7.200 8.100 11.000 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.3 7.800 8.400 11.917 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.4 8.400 8.700 12.833 𝐴1 ≺ 𝐴2 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.5 9.000 9.000 13.750 Ã1 ≃ Ã2 ≺ Ã3 and Ã󸀠1 ≃ Ã󸀠2 ≻ Ã󸀠3
0.6 9.600 9.300 14.667 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.7 10.200 9.600 15.583 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.8 10.800 9.900 16.500 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
0.9 11.400 10.200 17.417 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
1.0 12.000 10.500 18.333 𝐴2 ≺ 𝐴1 ≺ 𝐴3 and 𝐴󸀠1 ≻ 𝐴󸀠2 ≻ 𝐴󸀠3
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Figure 6: Fuzzy numbers 𝐴1 and 𝐴2 in Example 18.

shown inconsistent results for ranking the fuzzy numbers
and their images due to the index’s limited definition and
generalization.

4.2. Ranking for Normal Triangular-and-Trapezoid Mixed
Fuzzy Numbers. Here, the proposed unified index is used to
broaden the ranking comparisons to normal triangular-and-
trapezoidmixed fuzzy numbers.The cases from the literature
that have one trapezoid mixed with one triangular fuzzy
number, followed by two examples with two triangular fuzzy
numbers, are investigated.

Example 18. Compare a triangular fuzzy number 𝐴1 =
(1, 5, 5) overlapping with a trapezoidal fuzzy number 𝐴2 =
(2, 3, 5, 5), as shown in Figure 6. Of ten existingmeasures that
have been studied in this case, three (30%) support 𝐴1 ≺ 𝐴2
[30, 66, 86] and seven (70%) stand for𝐴1 ≻ 𝐴2 [47, 53, 63, 73,
74, 83, 87]. Clearly, this stark contrast outcome is intriguing
for further investigation. Therefore, in this example, we first
attempt to explain the predecessors’ conflicting consequence
by using the unified index. Then, the index itself will be
compared with the recent work proposed by Zhang et al.
in 2014 [73] to lay out their result similarity as well as their
performance with regard to computation easiness and image
consistency.

Table 5 is the ranking results of using the unified index,
where 𝜆 ∈ [0, 0.8], 𝐴1 ≻ 𝐴2 and 𝜆 ∈ [0.9, 1], 𝐴1 ≺ 𝐴2. Once

Table 5: Ranking results at different optimism levels in Example 18.

𝜆 UI𝜆1 UI𝜆2 Ranking result
0.0 11.000 9.333 𝐴1 ≻ 𝐴2
0.1 11.733 10.267 𝐴1 ≻ 𝐴2
0.2 12.467 11.200 𝐴1 ≻ 𝐴2
0.3 13.200 12.133 𝐴1 ≻ 𝐴2
0.4 13.933 13.067 𝐴1 ≻ 𝐴2
0.5 14.667 14.000 𝐴1 ≻ 𝐴2
0.6 15.400 14.933 𝐴1 ≻ 𝐴2
0.7 16.133 15.867 𝐴1 ≻ 𝐴2
0.8 16.867 16.800 𝐴1 ≻ 𝐴2
0.9 17.600 17.733 𝐴1 ≺ 𝐴2
1.0 18.333 18.667 𝐴1 ≺ 𝐴2

more, the chosen 𝜆 value manifests the decision-maker’s
optimism towards revelation of the left-and-right area of
fuzzy data. From the 𝜆-probability point of view, around 80%
support 𝐴1 ≻ 𝐴2 and 20% favor 𝐴1 ≺ 𝐴2. In fact, this result,
providing a level-of-optimism attitude-based explanation
for conflicts among the comparison, is interesting to be
approximatewith aforementioned percentages obtained from
the literature conclusions. Moreover, it is also similar to
Zhang et al.’s [73] result who uses a preference-probability
relation to explain the uncertainty level of the comparison;
with seven intricate and somewhat complicated steps, they
concluded 𝐴1 ≻ 𝐴2 with a confidence degree of 73% and
𝐴1 ≺ 𝐴2 with 27%.

Finally, it is worth mentioning that as opposed to the
unified index, Zhang et al.’s [73] seven-step algorithm for
ranking fuzzy numbers not only suffers a computation-
complexity problem, but also lacks capacity for ranking the
fuzzy-number image.

Example 19. Taken from [38] and shown in Figure 7, one
trapezoid fuzzy number, 𝐴3 = (0, 2, 4, 6), mingled with two
triangular fuzzy numbers, 𝐴1 = (0, 3, 6) and 𝐴2 = (−1, 0, 2),
is considered in this example. Noticeably, 𝐴2 left distances
away from 𝐴1 and 𝐴3, so there is no argument that a reliable
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Table 6: Ranking results of the three fuzzy numbers in Example 19.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 4.500 0.167 3.000 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.1 5.400 0.183 4.200 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.2 6.300 0.200 5.400 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.3 7.200 0.217 6.600 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.4 8.100 0.233 7.800 𝐴1 ≻ 𝐴3 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠3 ≺ 𝐴󸀠2
0.5 9.000 0.250 9.000 Ã1 ≃ Ã3 ≻ Ã2 and Ã󸀠1 ≃ Ã󸀠3 ≺ Ã󸀠2
0.6 9.900 0.267 10.200 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
0.7 10.800 0.283 11.400 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
0.8 11.700 0.300 12.600 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
0.9 12.600 0.317 13.800 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
1.0 13.500 0.333 15.000 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and 𝐴󸀠3 ≺ 𝐴󸀠1 ≺ 𝐴󸀠2
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Figure 7: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 19.

index should discriminate 𝐴2 (𝐴󸀠2) as the smallest (largest).
The question is the rating result of the triangular fuzzy
number 𝐴1 and the trapezoid fuzzy number 𝐴3 and their
images. Therefore, this example is to compare the unified
index with the recent works of Asady in 2010 and Ky Phuc
et al. [38] in 2012 who proposed a deviation-degree ranking
measure.

First, we check the unified index’s results in Table 6.
Regardless of 𝜆 ∈ [0, 1], 𝐴2 (𝐴󸀠2) is always the smallest
(largest), which confirms human intuition. For the ranking
of 𝐴1 and 𝐴3, dividing from 𝜆 = 0.5, 𝐴1 ≃ 𝐴3 (𝐴󸀠1 ≃ 𝐴󸀠3);
the upper part 𝜆 ∈ [0, 0.5), 𝐴1 ≻ 𝐴3 (𝐴󸀠1 ≺ 𝐴󸀠3); the lower
part 𝜆 ∈ (0.5, 1], 𝐴1 ≺ 𝐴3 (𝐴󸀠1 ≻ 𝐴󸀠3). Literally, this finding
(refer to Theorem 14) is consistent with two fuzzy numbers
with the same attitude and symmetry, shown in Example 17.

Then, we evaluate Ky Phuc et al.’s [38] and Asady’s [46]
deviation-degree index. Despite the exhausted computation,
its capability can only provide the partial result, “𝐴1 ≻ 𝐴2”
and “𝐴3 ≻ 𝐴2,” leaving undecided ranking for 𝐴1 and𝐴3. Actually, as mentioned in Section 1, the deviation-degree
index, belonging to the category one rankingmeasure, has the
limitation for ranking the fuzzy numbers akin to 𝐴1 and 𝐴3
that are overlapping and each has axis-of-symmetry property.

Example 20. Additionally, let us consider one trapezoidal
fuzzy number,𝐴3 = (−6, 0, 1, 1), blended with two triangular
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Ã2Ã3
Ã1
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Figure 8: Fuzzy numbers 𝐴1, 𝐴2, and 𝐴3 in Example 20.

fuzzy numbers, 𝐴1 = (−12, 1, 2) and 𝐴2 = (−23/12, 1/12,
13/12), which are adapted from [66] and shown in Figure 8.
Unlike the previous challenging one that is with a symmetric
and triangle-embedded trapezoid shape, they are all left-
skewed fuzzy numbers and easy to be distinguished by human
perception; that is,𝐴1 ≺ 𝐴3 ≺ 𝐴2. Hence, for this subsection,
this example is capable of judging the indices’ performance if
intuition-satisfied.

The result in Table 7, obtained with the unified index,
clearly shows that 𝐴1 ≺ 𝐴3 ≺ 𝐴2, which is identical to
previous works in [46, 47, 63, 64, 66, 87]. However, counter
results are claimed by Abbasbandy and Hajjari [74] who
ranked them as 𝐴1 ≃ 𝐴2 ≃ 𝐴3 and Nasseri and Sohrabi [75]
who suggested 𝐴2 ≺ 𝐴3 ≺ 𝐴1. Both works’ counterintuition
is obvious.

Example 21. Now, two special cases taken fromR. Chutia and
B. Chutia [81] are considered. The first set includes 𝐴1 =
(0.1, 0.1, 0.1, 0.1; 0.8) and 𝐴2 = (−0.1, −0.1, −0.1, −0.1; 1.0)
which were ranked as 𝐴1 > 𝐴2; and the second one includes
𝐵1 = (1, 1, 1, 1; 0.5) and 𝐵2 = (1, 1, 1, 1; 1.0) which were
ranked as 𝐵1 < 𝐵2. The proposed unified index also leads
to similar conclusions as in [37, 78, 81, 88–90], indicating that
the index can effectively work with crisp numbers as well.

4.3. Ranking for Nonlinear Fuzzy Numbers. Finally, although
empirical phenomenon and human perception are rather
unlikely to gather the nonlinear fuzzy numbers, this more
general type can be justifiable for investigating the index’s
computation easiness as well as adaptability.
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Table 7: Ranking results of the three fuzzy numbers in Example 20.

𝜆 UI𝜆1 UI𝜆2 UI𝜆3 Ranking result
0.0 −18.333 −0.229 −4.125 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.1 −16.833 −0.221 −3.850 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.2 −15.333 −0.213 −3.575 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.3 −13.833 −0.204 −3.300 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.4 −12.333 −0.196 −3.025 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.5 −10.833 −0.188 −2.750 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.6 −9.333 −0.179 −2.475 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.7 −7.833 −0.171 −2.200 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.8 −6.333 −0.163 −1.925 𝐴1 ≺ 𝐴3 ≺ 𝐴2
0.9 −4.833 −0.154 −1.650 𝐴1 ≺ 𝐴3 ≺ 𝐴2
1.0 −3.333 −0.146 −1.375 𝐴1 ≺ 𝐴3 ≺ 𝐴2
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Figure 9: Fuzzy numbers 𝐴1 and 𝐴2 in Example 22.

Example 22. Let us consider two fuzzy numbers shown in
Figure 9, adapted from Liou and Wang [67]: 𝐴1 = (1, 2, 5)
and 𝐴2 = (1, 2, 2, 4) with a nonlinear membership function

𝑓𝐴2 (𝑥) =
{{{{{
{{{{{
{

[1 − (𝑥 − 2)2]1/2 , 1 ≤ 𝑥 ≤ 2,
[1 − 1

4 (𝑥 − 2)2]
1/2

, 2 ≤ 𝑥 ≤ 4,
0, otherwise.

(14)

In this nonlinear case, by using the unified index, the con-
clusions in Table 8, 𝐴1 ≻ 𝐴2 (𝐴󸀠1 ≺ 𝐴󸀠2) for 𝜆 ∈ [0, 1], do not
add much complexity for the computation. Obviously, previ-
ous proposedmeasures in [53, 63, 66, 67, 76] possess the same
conclusion and computation easiness. However, in recent
works, Ky Phuc et al. [38], Asady [46], and Zhang et al. [73],
their indices become more complicated and elaborate for
ranking the nonlinear fuzzy numbers as well as their images.

5. Conclusions

Numerous indices for fuzzy-data comparisons and rankings
have been widely implemented to resolve decisive problems
that are evaluated under resources constraint and with to
some extent linguistic preference of multiattribute, realized
from users’ perspectives, as well as subjective quantification
of multiple characteristics, assessed from decision-makers.
However, counterintuition, computation complexity, less reli-
ability, and/or inconsistency on their fuzzy-number rating

Table 8: Ranking results at different optimism levels in Example 22.

𝜆 UI𝜆1 UI𝜆2 Ranking result
0.0 6.750 2.945 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.1 7.650 3.516 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.2 8.550 4.087 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.3 9.450 4.658 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.4 10.350 5.230 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.5 11.250 5.801 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.6 12.150 6.372 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.7 13.050 6.943 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.8 13.950 7.515 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
0.9 14.850 8.086 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2
1.0 15.750 8.657 𝐴1 ≻ 𝐴2 and 𝐴󸀠1 ≺ 𝐴󸀠2

outcomes have hampered their comprehensive implemen-
tation. To lessen their exhibited ranking weaknesses, this
paper develops a unified index thatmultipliesweighted-mean
and weighted-area discriminatory components of a fuzzy
number, respectively, called centroid value (a measure that
values the fuzzy number itself) and attitude-incorporated
left-and-right area (a fuzzy-numbermeasure that also reflects
on the decision-maker’s attitude as regards data revelation).
From theoretical proofs and comparative studies, this unified
index has demonstrated four advantages for ranking fuzzy
numbers.

First, ranking results of the unified index support the
human-intuition judgement. Secondly, it shows computation
easiness regardless of different types of fuzzy numbers. It can
be noted that this computation simplicity becomes crucial for
multiagents-multicriteria decision-making problems, which
normally involve numerous comparisons and analyses of
fuzzy numbers. Thirdly, the unified index can provide a
level-of-optimism attitude-based explanation for ranking
conflicts among the literature. Most importantly, the unified
index possesses the consistency property for ranking fuzzy
numbers and their images as well as for symmetric fuzzy
numbers with an identical altitude. Literally, in fields of
computer vision and image pattern recognition, this property
has been a rather critical one for accurate matching and/or
retrieval of information.
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