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An iterative learning control problem for nonlinear systems with delays is studied in detail in this paper. By introducing the 𝜆-norm
and being inspired by retardedGronwall-like inequality, the novel sufficient conditions for robust convergence of the tracking error,
whose initial states are not zero, with time delays are obtained. Finally, simulation example is given to illustrate the effectiveness of
the proposed method.

1. Introduction

Since iterative learning control is proposed by Arimoto et
al. in 1984 (see [1]), this feedforward control approach has
become a major research area in recent years. Iterative learn-
ing control, which belongs to the intelligent control method-
ology, is an approach for fully utilizing the previous control
information and improving the transient performance of
studied systems that is suitable for repetitive movements. Its
goal is to achieve full range of tracking tasks on finite interval
(see [2–14]).

In practice, the control problem of systems with delays
has always been an interesting research, since time delay can
be often encountered in awide range, such as aircraft systems,
turbojet engines, microwave oscillators, nuclear reactors, and
chemical processes. The existence of time delay in a system
may degrade the control performance and even at worst
may become a source of instability. Stabilization problem of
control systems with delay has received much attention for
several decades and some research results have been reported
in the literature (see [3, 11, 13, 15–23]). However, only a few
results are available for nonlinear systems, combining with
the iterative learning control items, with time delays [11, 24–
26]. In this paper, under the case that the 𝑘th iterative state
vector 𝑥𝑘(𝑡) is different from the (𝑘+1)th iterative state vector
𝑥𝑘+1(𝑡), that is, 𝑥𝑘+1(𝑡) − 𝑥𝑘(𝑡) ̸= 0, the iterative learning
controller of nonlinear time-delayed systems is designed by
using 𝜆-norm and retarded Gronwall-like inequality.

Before ending this section, it is worth pointing out the
main contributions of this paper as follows.

(1) The iterative learning control problem for nonlinear
systems with delays is investigated. That is, we consider the
system

�̇�𝑘 (𝑡) = 𝑓 (𝑡, 𝑥𝑘 (𝑡)) + 𝑔 (𝑡, 𝑥𝑘 (𝑡 − 𝜏)) + 𝑢𝑘 (𝑡) , (1)

which is different from the mentioned system

�̇�𝑘 (𝑡) = 𝑓 (𝑡, 𝑥𝑘 (𝑡)) + 𝑢𝑘 (𝑡) (2)

in past literature.
(2) Based on retarded Gronwall-like inequality and the

convergence of tracking error 𝑒𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡), the
practical output 𝑦𝑘(𝑡) is determinate by the previous iterative
learning control information 𝑥𝑘(𝑡), 𝑢𝑘(𝑡), 𝜑𝑘,ℎ(𝑡).

2. Preliminaries

Throughout this paper, the 2-norm for the 𝑛-dimensional
vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑇 is defined as ‖𝑥‖ = (∑
𝑛

𝑖=1
𝑥
2

𝑖
)
1/2,

while the 𝜆-norm for a function is defined as ‖ ⋅ ‖𝜆 =

sup
𝑡∈[0,𝑇]

{𝑒
−𝜆𝑡

‖ ⋅ ‖}, where the superscript 𝑇 represents the
transpose and 𝜆 > 0. 𝐼 and 0 represent the identity matrix
and a zero matrix, respectively.
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Lemma 1 (see [10, 27]). Consider

sup
𝑡∈[0,𝑇]

(𝑒
−𝜆𝑡

∫

𝑡

0

‖𝑥 (𝜏)‖ 𝑑𝜏) ≤
1

𝜆
‖𝑥 (𝑡)‖𝜆 . (3)

Lemma 2 (see [28] retarded Gronwall-like inequality). Con-
sider such an inequality

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

∫

𝑏𝑖(𝑡)

𝑏𝑖(𝑡0)

𝑓𝑖 (𝑡, 𝑠) 𝑤𝑖 (𝑢 (𝑠)) 𝑑𝑠,

𝑡0 ≤ 𝑡 < 𝑡1,

(4)

and suppose that

(1) all 𝑤𝑖 (𝑖 = 1, 2, . . . , 𝑛) are continuous and nondecreas-
ing functions on [0, +∞) and are positive on (0, +∞)

such that 𝑤1 ∝ 𝑤2 ∝ ⋅ ⋅ ⋅ ∝ 𝑤𝑛;

(2) 𝑎(𝑡) is continuously differentiable in 𝑡 and nonnegative
on [𝑡0, 𝑡1), where 𝑡0, 𝑡1 are constants and 𝑡0 < 𝑡1;

(3) all 𝑏𝑖 : [𝑡0, 𝑡1) → [𝑡0, 𝑡1) (𝑖 = 1, 2, . . . , 𝑛) are
continuously differentiable and nondecreasing such
that 𝑏𝑖(𝑡) ≤ 𝑡 on [𝑡0, 𝑡1);

(4) all 𝑓𝑖(𝑡, 𝑠), 𝑖 = 1, 2, . . . , 𝑛, are continuous and nonneg-
ative functions on [𝑡0, 𝑡1) × [𝑡0, 𝑡1).

Take the notation 𝑊𝑖(𝑠, 𝑠0) fl ∫
𝑠

𝑠0
(𝑑𝑧/𝑤𝑖(𝑧)) for 𝑠 > 0, where

𝑠0 > 0 is a given constant. It is denoted by 𝑊𝑖(𝑠) simply when
there is no confusion. If 𝑢(𝑡) is a continuous and nonnegative
function on [𝑡0, 𝑡) satisfying (4), then

𝑢 (𝑡) ≤ 𝑊
−1

𝑛
[𝑊𝑛 (𝑟𝑛 (𝑡)) + ∫

𝑏𝑛(𝑡)

𝑏𝑛(𝑡0)

max
𝑡0≤𝜏<𝑡

𝑓𝑛 (𝜏, 𝑠) 𝑑𝑠] ,

𝑡0 ≤ 𝑡 ≤ 𝑇,

(5)

where 𝑟𝑛(𝑡) is determined recursively by

𝑟1 (𝑡) fl 𝑎 (𝑡0) + ∫

𝑡

𝑡0


𝑎

(𝑠)


𝑑𝑠,

𝑟𝑖+1 (𝑡) fl 𝑊
−1

𝑖
[𝑊𝑖 (𝑟𝑖 (𝑡)) + ∫

𝑏𝑛(𝑡)

𝑏𝑛(𝑡0)

max
𝑡0≤𝜏<𝑡

𝑓𝑛 (𝜏, 𝑠) 𝑑𝑠] ,

𝑖 = 1, 2, . . . , 𝑛 − 1;

(6)

𝑇 < 𝑡1 and 𝑇 is the largest number such that

𝑊𝑖 (𝑟𝑖 (𝑇)) + ∫

𝑏𝑛(𝑇)

𝑏𝑛(𝑡0)

max
𝑡0≤𝜏<𝑇

𝑓𝑛 (𝜏, 𝑠) 𝑑𝑠 ≤ ∫

+∞

𝑠0

𝑑𝑧

𝑤𝑖 (𝑧)
,

𝑖 = 1, 2, . . . , 𝑛.

(7)

3. Main Results

Consider the following system with time delay:

�̇�𝑘 (𝑡) = 𝑓 (𝑡, 𝑥𝑘 (𝑡)) + 𝑔 (𝑡, 𝑥𝑘 (𝑡 − 𝜏)) + 𝑢𝑘 (𝑡) ,

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡) + 𝑀𝑒𝑘 (𝑡)

− 𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

𝑦𝑘 (𝑡) = 𝐶𝑥𝑘 (𝑡) + 𝐷𝑢𝑘 (𝑡) − 𝜑𝑘,ℎ (𝑡) ,

𝜑𝑘+1,ℎ (𝑡) = 𝜑𝑘,ℎ (𝑡) − 𝐷𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

(8)

where 𝑥𝑘(𝑡) ∈ 𝑅
𝑛, 𝑦𝑘(𝑡) ∈ 𝑅

𝑛, and 𝑢𝑘(𝑡) ∈ 𝑅
𝑛 are the

state vector, output vector, and input vector, respectively. 𝑘

is the number of iterations, 𝑘 ∈ {1, 2, 3, . . .} and 𝑡 ∈ [0, 𝑇].
∫
𝑡

0
𝜓𝑘,ℎ(𝜃)𝑑𝜃 = 1, (𝑡 ≥ ℎ), 𝑀, 𝐶, 𝐷 are real constant matrices;

𝑒𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡), 𝑦𝑑(𝑡) is a reference output.
Suppose that there exist the bounded constants 𝑙𝑓 > 0 and

𝑙𝑔 > 0 such that

𝑓 (𝑡, 𝑥𝑘+1 (𝑡)) − 𝑓 (𝑡, 𝑥𝑘 (𝑡))
 ≤ 𝑙𝑓

𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)
 ,

𝑔 (𝑡, 𝑥𝑘+1 (𝑡 − 𝜏)) − 𝑔 (𝑡, 𝑥𝑘 (𝑡 − 𝜏))


≤ 𝑙𝑔
𝑥𝑘+1 (𝑡 − 𝜏) − 𝑥𝑘 (𝑡 − 𝜏)

 .

(9)

Theorem 3. For system (8) and a given reference 𝑦𝑑(𝑡), if there
exist matrices 𝑀, 𝐶, 𝐷 and functions 𝜓𝑘,ℎ(𝑡) and 𝜑𝑘,ℎ(𝑡) such
that

‖𝐼 − 𝐷𝑀‖ ≤ 𝜌 < 1, (10)

where 𝜌 is a constant, then system (8) with the iterative learning
control law can guarantee that ‖𝑦𝑘(𝑡) − 𝑦𝑑(𝑡)‖ is bounded but
𝑦𝑘(𝑡) cannot track𝑦𝑑(𝑡) on 𝑡 ∈ [0, ℎ] and lim𝑘→∞𝑦𝑘(𝑡) = 𝑦𝑑(𝑡)

on 𝑡 ∈ [ℎ, 𝑇] for arbitrary initial state 𝑥𝑘(0).

Proof. It is easy to know that, for any 𝑡 ∈ [ℎ, 𝑇],

𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)

= ∫

𝑡

0

(�̇�𝑘+1 (𝜃) − �̇�𝑘 (𝜃)) 𝑑𝜃 + 𝑥𝑘+1 (0) − 𝑥𝑘 (0)

= ∫

𝑡

0

(𝑓 (𝜃, 𝑥𝑘+1 (𝜃)) − 𝑓 (𝜃, 𝑥𝑘 (𝜃))) 𝑑𝜃

+ ∫

𝑡

0

(𝑔 (𝜃, 𝑥𝑘+1 (𝜃 − 𝜏)) − 𝑔 (𝜃, 𝑥𝑘 (𝜃 − 𝜏))) 𝑑𝜃

+ ∫

𝑡

0

(𝑢𝑘+1 (𝜃) − 𝑢𝑘 (𝜃)) 𝑑𝜃 + 𝑥𝑘+1 (0) − 𝑥𝑘 (0)

= ∫

𝑡

0

(𝑓 (𝜃, 𝑥𝑘+1 (𝜃)) − 𝑓 (𝜃, 𝑥𝑘 (𝜃))) 𝑑𝜃

+ ∫

𝑡

0

(𝑔 (𝜃, 𝑥𝑘+1 (𝜃 − 𝜏)) − 𝑔 (𝜃, 𝑥𝑘 (𝜃 − 𝜏))) 𝑑𝜃

+ ∫

𝑡

0

𝑀𝑒𝑘 (𝜃) 𝑑𝜃
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− (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) (∫

𝑡

0

𝜓𝑘,ℎ (𝜃) 𝑑𝜃 − 1)

= ∫

𝑡

0

(𝑓 (𝜃, 𝑥𝑘+1 (𝜃)) − 𝑓 (𝜃, 𝑥𝑘 (𝜃))) 𝑑𝜃

+ ∫

𝑡

0

(𝑔 (𝜃, 𝑥𝑘+1 (𝜃 − 𝜏)) − 𝑔 (𝜃, 𝑥𝑘 (𝜃 − 𝜏))) 𝑑𝜃

+ ∫

𝑡

0

𝑀𝑒𝑘 (𝜃) 𝑑𝜃.

(11)

So we obtain from condition (9)

𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)
 ≤ 𝑙𝑓 ∫

𝑡

0

𝑥𝑘+1 (𝜃) − 𝑥𝑘 (𝜃)
 𝑑𝜃

+ 𝑙𝑔 ∫

𝑡−𝜏

0−𝜏

𝑥𝑘+1 (𝜃) − 𝑥𝑘 (𝜃)
 𝑑𝜃

+ ∫

𝑡

0

‖𝑀‖
𝑒𝑘 (𝜃)

 𝑑𝜃.

(12)

In this paper, we use Lemma 2. Taking 𝑡0 = 0, 𝑏1(𝑡) = 𝑡,
𝑏2(𝑡) = 𝑡 − 𝜏, 𝑎(𝑡) = ∫

𝑡

0
‖𝑀‖‖𝑒𝑘(𝜃)‖𝑑𝜃, 𝑊1(𝑠) = 𝑙𝑓 ∫

𝑠

1
(𝑑𝑧/𝑧) =

𝑙𝑓 ln𝑠, and 𝑊2(𝑠) = 𝑙𝑔 ∫
𝑠

1
(𝑑𝑧/𝑧) = 𝑙𝑔 ln𝑠, then 𝑟1(𝑡) =

∫
𝑡

0
‖𝑀‖‖𝑒𝑘(𝜃)‖𝑑𝜃 and 𝑟2(𝑡) = exp[ln(∫

𝑡

0
‖𝑀‖‖𝑒𝑘(𝜃)‖𝑑𝜃) +

∫
𝑡

0
(𝑙𝑔/𝑙𝑓)𝑑𝜃] = 𝑒

(𝑙𝑔/𝑙𝑓)𝑡 ⋅∫
𝑡

0
‖𝑀‖‖𝑒𝑘(𝜃)‖𝑑𝜃. Sowe have ‖𝑥𝑘+1(𝑡)−

𝑥𝑘(𝑡)‖ ≤ exp[ln(𝑒
(𝑙𝑔/𝑙𝑓)𝑡 ∫

𝑡

0
‖𝑀‖‖𝑒𝑘(𝜃)‖𝑑𝜃) + ∫

𝑡−𝜏

0−𝜏
𝑑𝜃] =

𝑒
(1+𝑙𝑔/𝑙𝑓)𝑡 ⋅ ∫

𝑡

0
‖𝑀‖‖𝑒𝑘(𝜃)‖𝑑𝜃:

𝑒𝑘+1 (𝑡) = 𝑒𝑘 (𝑡) + 𝑦𝑘 (𝑡) − 𝑦𝑘+1 (𝑡)

= 𝑒𝑘 (𝑡) + 𝐶𝑥𝑘 (𝑡) + 𝐷𝑢𝑘 (𝑡) − 𝜑𝑘,ℎ (𝑡)

− 𝐶𝑥𝑘+1 (𝑡) − 𝐷𝑢𝑘+1 (𝑡) + 𝜑𝑘+1,ℎ (𝑡)

= 𝑒𝑘 (𝑡) − 𝐶 (𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡))

− 𝐷 (𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡))

+ (𝜑𝑘+1,ℎ (𝑡) − 𝜑𝑘,ℎ (𝑡))

= 𝑒𝑘 (𝑡) − 𝐶 (𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)) − 𝐷𝑀𝑒𝑘 (𝑡)

+ 𝐷𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0))

+ (𝜑𝑘+1,ℎ (𝑡) − 𝜑𝑘,ℎ (𝑡))

= (𝐼 − 𝐷𝑀) 𝑒𝑘 (𝑡) − 𝐶 (𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)) ,

(13)

𝑒𝑘+1 (𝑡)
 ≤ ‖𝐼 − 𝐷𝑀‖

𝑒𝑘 (𝑡)


+ ‖𝐶‖
𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)



≤ ‖𝐼 − 𝐷𝑀‖
𝑒𝑘 (𝑡)

 + ‖𝐶‖ 𝑒
(1+𝑙𝑔/𝑙𝑓)𝑇

⋅ ∫

𝑡

0

‖𝑀‖
𝑒𝑘 (𝜃)

 𝑑𝜃.

(14)

Using Lemma 1 and multiplying both sides of the above
inequality (14) by 𝑒

−𝜆𝑡 and taking the 𝜆-norm, we have
𝑒𝑘+1 (𝑡)

𝜆

≤ ‖𝐼 − 𝐷𝑀‖
𝑒𝑘 (𝑡)

𝜆

+
‖𝐶‖ ‖𝑀‖ 𝑒

(1+𝑙𝑔/𝑙𝑓)𝑇

𝜆

𝑒𝑘 (𝑡)
𝜆

= (‖𝐼 − 𝐷𝑀‖ +
‖𝐶‖ ‖𝑀‖ 𝑒

(1+𝑙𝑔/𝑙𝑓)𝑇

𝜆
)

𝑒𝑘 (𝑡)
𝜆 .

(15)

Thus, condition (10) can guarantee (‖𝐼 − 𝐷𝑀‖ +

‖𝐶‖‖𝑀‖𝑒
(1+𝑙𝑔/𝑙𝑓)𝑇/𝜆) < 1 by selecting 𝜆 sufficiently large, so

we have lim𝑘→∞‖𝑒𝑘(𝑡)‖𝜆 = 0 for any 𝑡 ∈ [ℎ, 𝑇]. It follows from
the equivalence of norms; we get that lim𝑘→∞‖𝑒𝑘(𝑡)‖ = 0.

For any 𝑡 ∈ [0, ℎ],

𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)

= ∫

𝑡

0

(𝑓 (𝜃, 𝑥𝑘+1 (𝜃)) − 𝑓 (𝜃, 𝑥𝑘 (𝜃))) 𝑑𝜃

+ ∫

𝑡

0

(𝑔 (𝜃, 𝑥𝑘+1 (𝜃 − 𝜏)) − 𝑔 (𝜃, 𝑥𝑘 (𝜃 − 𝜏))) 𝑑𝜃

+ ∫

𝑡

0

𝑀𝑒𝑘 (𝜃) 𝑑𝜃

− (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) (∫

𝑡

0

𝜓𝑘,ℎ (𝜃) 𝑑𝜃 − 1) ,

𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)


≤ 𝑙𝑓 ∫

𝑡

0

𝑥𝑘+1 (𝜃) − 𝑥𝑘 (𝜃)
 𝑑𝜃

+ 𝑙𝑔 ∫

𝑡−𝜏

0−𝜏

𝑥𝑘+1 (𝜃) − 𝑥𝑘 (𝜃)
 𝑑𝜃

+ ∫

𝑡

0

‖𝑀‖
𝑒𝑘 (𝜃)

 𝑑𝜃

+
𝑥𝑘+1 (0) − 𝑥𝑘 (0)




∫

𝑡

0

𝜓𝑘,ℎ (𝜃) 𝑑𝜃 − 1



≤ 𝑙𝑓 ∫

𝑡

0

𝑥𝑘+1 (𝜃) − 𝑥𝑘 (𝜃)
 𝑑𝜃

+ 𝑙𝑔 ∫

𝑡−𝜏

0−𝜏

𝑥𝑘+1 (𝜃) − 𝑥𝑘 (𝜃)
 𝑑𝜃

+ ∫

𝑡

0

‖𝑀‖
𝑒𝑘 (𝜃)

 𝑑𝜃 + 𝜂,

(16)

where 𝜂 = sup
𝑡∈[0,ℎ]

(‖𝑥𝑘+1(0) − 𝑥𝑘(0)‖‖ ∫
𝑡

0
𝜓𝑘,ℎ(𝜃)𝑑𝜃 − 1‖).

It is easy to know that
𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)



≤ 𝑒
(1+𝑙𝑔/𝑙𝑓)𝑡 (∫

𝑡

0

‖𝑀‖
𝑒𝑘 (𝜃)

 𝑑𝜃 + 𝜂)

(17)

by using Lemma 2.
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Then
𝑒𝑘+1 (𝑡)

 ≤ ‖𝐼 − 𝐷𝑀‖
𝑒𝑘 (𝑡)



+ ‖𝐶‖
𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)



≤ ‖𝐼 − 𝐷𝑀‖
𝑒𝑘 (𝑡)



+ ‖𝐶‖ 𝑒
(1+𝑙𝑔/𝑙𝑓)𝑇 (∫

𝑡

0

‖𝑀‖
𝑒𝑘 (𝜃)

 𝑑𝜃)

+ ‖𝐶‖ 𝑒
(1+𝑙𝑔/𝑙𝑓)𝑇𝜂.

(18)

Using Lemma 1 and multiplying both sides of the above
inequality by 𝑒

−𝜆𝑡 and taking the 𝜆-norm, we have
𝑒𝑘+1 (𝑡)

𝜆

≤ (‖𝐼 − 𝐷𝑀‖ +
‖𝐶‖ ‖𝑀‖ 𝑒

(1+𝑙𝑔/𝑙𝑓)𝑇

𝜆
)

𝑒𝑘 (𝑡)
𝜆 + 𝜂

= 𝜎
𝑒𝑘 (𝑡)

𝜆 + 𝜂,

(19)

where 𝜎 = ‖𝐼 − 𝐷𝑀‖ + ‖𝐶‖‖𝑀‖𝑒
(1+𝑙𝑔/𝑙𝑓)𝑇/𝜆:

𝑒𝑘+1 (𝑡)
𝜆 +

𝜂

𝜎 − 1
≤ 𝜎 (

𝑒𝑘 (𝑡)
𝜆 +

𝜂

𝜎 − 1
) . (20)

Imitating the above proof, the result lim𝑘→∞‖𝑒𝑘(𝑡)‖𝜆 = 0 for
any 𝑡 ∈ [ℎ, 𝑇] is obtained by selecting 𝜆 sufficiently large. So
it is true that ‖𝑒𝑘(𝑡)‖ is bounded on 𝑡 ∈ [0, ℎ].

Remark 4. When the number of iterations 𝑘 → ∞ and
[ℎ, 𝑇] → [0, 𝑇], the tracking error satisfies that ‖𝑒𝑘(𝑡)‖ → 0

on 𝑡 ∈ [0, 𝑇] for arbitrary initial state 𝑥𝑘(0).
System (8) is

�̇�𝑘 (𝑡) = 𝑓 (𝑡, 𝑥𝑘 (𝑡)) + 𝑔 (𝑡, 𝑥𝑘 (𝑡 − 𝜏 (𝑡))) + 𝑢𝑘 (𝑡) ,

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡) + 𝑀 (𝑡) 𝑒𝑘 (𝑡)

− 𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

𝑦𝑘 (𝑡) = 𝐶 (𝑡) 𝑥𝑘 (𝑡) + 𝐷 (𝑡) 𝑢𝑘 (𝑡) − 𝜑𝑘,ℎ (𝑡) ,

𝜑𝑘+1,ℎ (𝑡) = 𝜑𝑘,ℎ (𝑡) − 𝐷 (𝑡) 𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

(21)

where the delay 𝜏(𝑡) satisfies 0 < �̇�(𝑡) ≤ 𝛾 < 1.
Similar to the proof of Theorem 3, inequality (14) is

written as
𝑒𝑘+1 (𝑡)

 ≤ ‖𝐼 − 𝐷 (𝑡) 𝑀 (𝑡)‖
𝑒𝑘 (𝑡)

 + ‖𝐶 (𝑡)‖

⋅ ‖𝑀 (𝑡)‖ 𝑒
(1+(1−𝛾)𝑙𝑔/𝑙𝑓)𝑇 ⋅ ∫

𝑡

0

𝑒𝑘 (𝜃)
 𝑑𝜃,

𝑒𝑘+1 (𝑡)
𝜆 ≤ (‖𝐼 − 𝐷 (𝑡) 𝑀 (𝑡)‖

+
‖𝐶 (𝑡)‖ ‖𝑀 (𝑡)‖ 𝑒

(1+(1−𝛾)𝑙𝑔/𝑙𝑓)𝑇

𝜆
)

𝑒𝑘 (𝑡)
𝜆 .

(22)

Then we have the following.

Theorem 5. For system (21) and a given reference 𝑦𝑑(𝑡), if
there exist matrices 𝑀(𝑡), 𝐶(𝑡), and 𝐷(𝑡) and functions 𝜓𝑘,ℎ(𝑡)

and 𝜑𝑘,ℎ(𝑡) such that ‖𝐶(𝑡)‖‖𝑀(𝑡)‖ is bounded and ‖𝐼 −

𝐷(𝑡)𝑀(𝑡)‖ ≤ 𝜌 < 1, where 𝜌 is a constant, then system
(21) with the iterative learning control law can guarantee that
‖𝑦𝑘(𝑡) − 𝑦𝑑(𝑡)‖ is bounded but 𝑦𝑘(𝑡) cannot track 𝑦𝑑(𝑡) on
𝑡 ∈ [0, ℎ] and lim𝑘→∞𝑦𝑘(𝑡) = 𝑦𝑑(𝑡) on 𝑡 ∈ [ℎ, 𝑇] for arbitrary
initial state 𝑥𝑘(0).

When 𝑦𝑘(𝑡) = 𝑠(𝑡, 𝑥𝑘(𝑡), 𝑢𝑘(𝑡)) − 𝜑𝑘,ℎ(𝑡) and 𝑠(𝑡, 𝑥𝑘(𝑡),
𝑢𝑘(𝑡)) satisfies

0 < 𝛿1𝐼 < 𝑠𝑢 =
𝜕𝑠 (𝑥𝑘 (𝑡) , 𝑢𝑘 (𝑡))

𝜕𝑢𝑘 (𝑡)
≤ 𝛿2𝐼,

0 < 𝛿3𝐼 < 𝑠𝑥 =
𝜕𝑠 (𝑥𝑘 (𝑡) , 𝑢𝑘 (𝑡))

𝜕𝑥𝑘 (𝑡)
≤ 𝛿4𝐼,

(23)

it is easy to obtain that

𝑠 (𝑡, 𝑥𝑘+1 (𝑡) , 𝑢𝑘+1 (𝑡)) − 𝑠 (𝑡, 𝑥𝑘 (𝑡) , 𝑢𝑘 (𝑡))

= 𝑠𝑥 (𝜁) (𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡))

+ 𝑠𝑢 (𝜁) (𝑢𝑘+1 (𝑡) − 𝑢𝑘 (𝑡)) ,

(24)

where 𝜁 ∈ [𝑥𝑘(𝑡)+𝜔(𝑥𝑘+1(𝑡)−𝑥𝑘(𝑡)), 𝑢𝑘(𝑡)+𝜔(𝑢𝑘+1(𝑡)−𝑢𝑘(𝑡))],
𝜔 ∈ (0, 1).

Consider the following system:

�̇�𝑘 (𝑡) = 𝑓 (𝑡, 𝑥𝑘 (𝑡)) + 𝑔 (𝑡, 𝑥𝑘 (𝑡 − 𝜏)) + 𝑢𝑘 (𝑡) ,

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡) + 𝑀𝑒𝑘 (𝑡)

− 𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

𝑦𝑘 (𝑡) = 𝑠 (𝑡, 𝑥𝑘 (𝑡) , 𝑢𝑘 (𝑡)) − 𝜑𝑘,ℎ (𝑡) ,

𝜑𝑘+1,ℎ (𝑡) = 𝜑𝑘,ℎ (𝑡) − 𝑠𝑢𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) .

(25)

Similar to the proof of Theorem 3, we get

𝑒𝑘+1 (𝑡)
𝜆

≤ (
𝐼 − 𝑠𝑢𝑀

 +

𝑠𝑥
 ‖𝑀‖ 𝑒

(1+𝑙𝑔/𝑙𝑓)𝑇

𝜆
)

𝑒𝑘 (𝑡)
𝜆 .

(26)

So we have the following result.

Theorem 6. For system (25) and a given reference 𝑦𝑑(𝑡), if
conditions (9) are true and there exist matrix 𝑀 and functions
𝜓𝑘,ℎ(𝑡) and 𝜑𝑘,ℎ(𝑡) such that ∫

𝑡

0
𝜓𝑘,ℎ(𝜃)𝑑𝜃 = 1, 𝑡 > ℎ, ‖𝑠𝑥‖ is

bounded, max(‖𝐼 − 𝛿1𝑀‖, ‖𝐼 − 𝛿2𝑀‖) ≤ 𝜌 < 1, where 𝜌 is
a constant, then system (25) with the iterative learning control
law can guarantee that lim𝑘→∞𝑦𝑘(𝑡) = 𝑦𝑑(𝑡) is bounded but
𝑦𝑘(𝑡) cannot track𝑦𝑑(𝑡) on 𝑡 ∈ [0, ℎ] and lim𝑘→∞𝑦𝑘(𝑡) = 𝑦𝑑(𝑡)

on 𝑡 ∈ [ℎ, 𝑇] for arbitrary initial state 𝑥𝑘(0).
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4. Numerical Example

For further illustration, we consider the following system:

�̇�𝑘 (𝑡) = 0.8 cos2 (𝑥𝑘 (𝑡))

− 0.5 (
𝑥𝑘 (𝑡 − 1) + 1

 −
𝑥𝑘 (𝑡 − 1) − 1

)

+ 𝑢𝑘 (𝑡) ,

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡) + 0.9𝑒𝑘 (𝑡)

− 𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

𝑦𝑘 (𝑡) = tanh (2𝑥𝑘 (𝑡) + 0.9𝑢𝑘 (𝑡)) − 𝜑𝑘,ℎ (𝑡) ,

𝜑𝑘+1 (𝑡) = 𝜑𝑘 (𝑡) − 0.9𝜓𝑘,ℎ (𝑡) (𝑥𝑘+1 (0) − 𝑥𝑘 (0)) ,

(27)

where 𝑀 = 0.9 and

𝜓𝑘,ℎ (𝑡) =
{

{

{

𝜋

2 × 0.5
cos(

𝜋

2 × 0.5
𝑡) , 𝑡 ∈ [0, 0.5) ,

0, 𝑡 ∈ [0.5, 5] ,

(28)

taking the reference 𝑦𝑑(𝑡) = sin 𝑡 + 1.
From the above numerical example, it can be easily

proved that the conditions of Theorem 6 are satisfied.

5. Conclusion

In this paper, considering the iterative learning control prob-
lem for nonlinear systems with delays, the novel sufficient
conditions for robust convergence of the tracking error have
been addressed.
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