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This study investigates predicting the pullout capacity of small ground anchors using nonlinear computing techniques. The input-
output prediction model for the nonlinear Hammerstein-Wiener (NHW) and delay inputs for the adaptive neurofuzzy inference
system (DANFIS) are developed and utilized to predict the pullout capacity.The results of the developedmodels are compared with
previous studies that used artificial neural networks and least square support vectormachine techniques for the same case study.The
in situ data collection and statistical performances are used to evaluate the models performance. Results show that the developed
models enhance the precision of predicting the pullout capacity when compared with previous studies. Also, the DANFIS model
performance is proven to be better than other models used to detect the pullout capacity of ground anchors.

1. Introduction

Light structures, which are built in open areas, are supported
with the ground using small anchors. Such anchors are
designed to resist tensile and uplift forces [1–4] and are
usually supported at a shallow depth (about 1m) with small
pullout capacity [2, 5, 6]. Therefore, designers rarely put
efforts into designing such small ground anchors [5]. In
contrast, Shahin and Jaksa [7] introduced new design criteria
for small anchors based on advanced prediction models.

The numerical prediction models are used to detect the
pullout capacity of small ground anchors based on input-
output mapping for the in situ data. Shahin and Jaksa [7]
utilized 119 anchors’ test data to introduce predictionmodels.
They used the neural networks technique to extract the
pullout capacity [7]. In addition, Shahin and Jaksa [2, 6] used
artificial neural network (ANN)model for the design of small
anchors and they were able to predict the pullout capacity.
Samui et al. [5] developed a prediction model based on the
least square support vector machine (LSSVM) to detect the

pullout capacity of small anchors; and they concluded that
the LSSVM performs better than the ANN [5].

Nowadays, integrated system identifications are used to
design nonlinear input-output prediction models [8, 9]. In
general, these models can be divided into multi-input multi-
output (MIMO), single-input single-output (SISO), or multi-
input single-output (MISO). The selection of the appropriate
model depends on the collected data and sensitivity of
the input and output variables. Most common integrated
identification models are presented in [8] and it is reported
that the Hammerstein-Wiener model outperformed other
models [8]. Also, it is found that the nonlinear Hammerstein-
Wiener model performance is better than the linear one [10].
On the other hand, the adaptive neurofuzzy inference system
(ANFIS) is used widely for the designing of prediction’s
models; more details on the ANFIS model design and
previous studies can be found in [11–14]. The performance
of the ANFIS model is better with MISO variables [13,
14]. Arsava et al. [14] introduced a time delayed-ANFIS
(DANFIS) prediction model for the control structures, and
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Figure 1: MISO-NHWmodel diagram structure.

they found that DANFIS model performance is much better
than conventional ANFISmodels. Based on the above review,
the nonlinear Hammerstein-Wiener (NHW) and DANFIS
models can be used to detect the pullout capacity. Therefore,
a new model will be developed to detect the pullout capacity,
and the results will be compared with ANN [2] and LSSVM
[5] models based on Shahin and Jaksa [2] data collection.

The objectives of this study are the following: (1) to
examine the capability of the NHW and DANFIS models
for predicting small ground anchors pullout capacity; (2) to
compare the performance of developedmodels with previous
studies; and (3) to study the significance of input variables on
pullout capacity of small ground anchor.

2. Material and Methods

2.1. Prediction Models. The MISO prediction models, NHM
and DANFIS, are utilized in this study to extract the pullout
capacity of small ground anchors.Thesemodels are described
in the following subsections.

2.1.1. Nonlinear Hammerstein-Wiener Model. The NHW
model is an integrated prediction model using nonlinear and
linear transforming functions [8]. The model includes input
and output nonlinear functions and linear model connected
the input and output functions [10]. The nonlinear one-layer
sigmoid and wavelet networks, saturation, one-dimension
polynomial, and piecewise functions are used for the input
(𝑓) and output (ℎ) transforming [15]. In addition, the similar
polynomial functions (B and F) are defined in the time-
shift operator. Figure 1 represents the NHWmodel diagram.
To predict the pullout capacity (𝑄(𝑖)), the input variables
(𝑢𝑗(𝑖)), and transforming results 𝑥𝑗(𝑖) and 𝑦(𝑖) are utilized
and calculated. More details for the NHW model can be
found in [16, 17].

In this study, four input variables are used to predict
the pullout capacity of a MISO model. The trail and errors
method is used to select the input and output nonlinear-
ity functions. Therefore, the nonlinearity input function is
applied to each input variable (𝑗), and the output 𝑥𝑗(𝑖) of each
variable can be calculated as follows:

𝑥𝑗 (𝑖) = 𝑓 (𝑢𝑗 (𝑖)) . (1)

The linear output block 𝑦(𝑖) is a summation of the inputs
as follows:

𝑦 (𝑖) =
𝑛

∑
𝑗=1

𝐵𝑗 (𝑘)
𝐹𝑗 (𝑘) 𝑥𝑗 (𝑖) , (2)

where 𝑛 is the number of inputs for a MISOmodel and 𝐵𝑗(𝑘)
and 𝐹𝑗(𝑘) are polynomials defined in the time-shift operator

𝑘. The model order is chosen based on zero order (𝐵𝑗) and
pole order (𝐹𝑗), with delays set to zero and 𝑛 selected as 4.
The zero-pole orders are obtained using the prediction error
method. As such, the pullout capacity can be calculated as
follows:

𝑄 (𝑖) = ℎ (𝑦 (𝑖)) . (3)

In this paper, the prediction trials were performed with
the Matlab command nlhw of the system identification
toolbox. Moreover, the models were obtained using model
error in which the minimized criterion is the square of the
errors, normalized by the length of the data set. In addition,
the models performances are evaluated.

2.1.2. Delay Inputs for the Adaptive Neurofuzzy Inference
System (DANFIS). The time delayed adaptive neurofuzzy
inference system (DANFIS) is proposed in [14] to predict
the complex nonlinear behavior of smart structures. In this
paper, the DANFIS model is developed to predict the pullout
capacity of small ground anchors based onMISOparameters.
Figure 2 illustrates the developedmodel using four input data
sets and one delay for the output variable. The ANFIS model
consists of a set of fuzzy rules with appropriate membership
functions to generate the stipulated input-output pairs in the
solution of uncertain and ill-defined systems [12, 14, 18, 19]. As
presented in Figure 2, the ANFIS model contains five layers
that are the input, inputmembership function (MF), rules list,
outputMF, and the output layers.Therefore, it is important to
define the types and the values of MF for each input variable.
Figure 2 shows two MFs for each variable, as shown in the
input MF layer.

The process of the ANFIS model can be found in [14, 18].
As presented in Figure 2, the ANFIS model can be used for
mapping the nonlinear MISO variables [20]. In this case, the
nonlinear MISO mapping model can be expressed as follows
[14, 20]:

𝑄 (𝑙) = 𝑔 (𝑢𝑙−𝑑1 , 𝑢𝑙−𝑑2 , . . . , 𝑢𝑙−𝑑𝑛 , 𝑄𝑙−𝑑, 𝑒𝑙−𝑑) + 𝑒 (𝑙) , (4)

where [𝑢1, 𝑢2, . . . , 𝑢𝑛] are the input variables, 𝑄 is the model
output (pullout capacity), 𝑒 is the model error, 𝑔 is a
scalar nonlinear mapping function, and the time delay is
represented by the term 𝑑. In this study, four input variables
are used and the time delay is assigned a value of one. In
general, the if-then rules for the ANFIS model depend on
the number of MFs. For each rule, the ANFIS fuzzy model
of Takagi and Sugeno (TS) [21] can be applied as follows [18].

Assuming first that 𝑙 = 2, while 𝑙 = 2, 3, . . . , 𝑛; 𝑛 is
the number of measurements; and 𝑑 = 1, as presented in
Figure 2, the model rule 𝑖 for the four inputs can be processed
as follows.
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Figure 2: MISO-DANFIS model diagram structure.

Rule 𝑖 is as follows: if 𝑢1 is 𝐴, 𝑢2 is 𝐵, 𝑢3 is 𝐶, 𝑢4 is𝐷, and
𝑄 is 𝐹, then

𝑓𝑖 = 𝑝𝑖𝑢1 + 𝑞𝑖𝑢2 + 𝑘𝑖𝑢3 + 𝑚𝑖𝑢4 + 𝑔𝑖𝑄 + 𝑟𝑖, (5)

where [𝑢1, 𝑢2, 𝑢3, 𝑢4] are the input variables, 𝑄 is the delayed
output variable (pullout capacity), 𝑓 is the output of the TS
fuzzy system, and 𝑝𝑖, 𝑞𝑖, 𝑘𝑖, 𝑚𝑖, 𝑔𝑖, 𝑟𝑖 are the consequent
parameters [18]. Therefore, as shown in Figure 2, the output
of the five layers can be presented as follows:

The Output of the Input MF Layer (𝑂1𝑖 )

𝑂1𝑖 = 𝜇𝐴𝑖 (𝑢1) , 𝜇𝐵𝑖 (𝑢2) , 𝜇𝐶𝑖 (𝑢3) , 𝜇𝐷𝑖 (𝑢4) , 𝜇𝐹𝑖 (𝑄) , (6)

where 𝜇𝐴𝑖 , 𝜇𝐵𝑖 , 𝜇𝐶𝑖 , 𝜇𝐷𝑖 , and 𝜇𝐹𝑖 are the MFs for the input
variables of the model. The MF shape is divided into contin-
uous and piecewise differentiable functions with normalized
output (0 1) [12, 18]. Triangular MFs are used which can be
presented for the first input (𝑢1) as follows (the same relation
can be found for each input variable):

𝜇𝐴𝑖 (𝑢1) = max (min(𝑢1 − 𝑎𝑏 − 𝑎 , 𝑐 − 𝑢1𝑐 − 𝑏 ) , 0) , (7)

where the parameters a, b, and c are the triangularMF values.
These parameters can be called the premise parameters as
they are the adjustable parameters in the premise part.

The Output of the Rule Layer. This layer has two processes;
the first is calculating the firing strength of each fuzzy rule, as
follow:

𝑂2𝑖 = 𝑤𝑖
= 𝜇𝐴𝑖 (𝑢1) × 𝜇𝐵𝑖 (𝑢2) × 𝜇𝐶𝑖 (𝑢3) × 𝜇𝐷𝑖 (𝑢4)
× 𝜇𝐹𝑖 (𝑄) .

(8)

The second is normalizing the firing strength, as follows:

𝑂3𝑖 = 𝑤𝑖 = 𝑤𝑖
∑𝑁𝑗=1 𝑤𝑗

, (9)

where,𝑁 is the number of input variables.

The Output of the Output MF Layer. In this layer, the node
functions (𝑓𝑖) are applied with the previous layer output; the
first-order TS model is used and the output of this layer can
be expressed as follows:

𝑂4𝑖 = 𝑤𝑖 × 𝑓𝑖. (10)

TheOutput of the Output Layer. As the last step, the output of
this layer is calculated as follows:

𝑂5𝑖 = 𝑄 (𝑙) =
𝑁

∑
𝑖=1

𝑤𝑖 × 𝑓𝑖. (11)

Based on (4) and (11), to estimate the 𝑗 element (𝑗 = 𝑖−1),
the DANFIS output is calculated as follows [14, 22]:

𝑂5𝑗 = 𝑄 (𝑙) =
𝑁

∑
𝑗=1

𝑤𝑗 × 𝑓𝑗. (12)
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Figure 3: Database for field pullout tests (from Samui et al. [5]).

2.2. Case Study. To evaluate the developed models, the field
data of 119 anchors are derived using an in situ test database
from Shahin and Jaksa [2]. Figure 3 represents the data
points and parameters that are considered in this study. As
presented in Figure 3, the input variables are the equivalent
anchor diameter (𝐷eq), embedment depth (𝐿), average cone
resistance (𝑞𝑐) along the embedment depth, average sleeve
friction (𝑓𝑠) along the embedment depth, and installation
technique (IT) and the anchor pullout capacity, (𝑄), is the
output. The installation techniques used in this case are
static and dynamic cases which are represented by 1 and 2,
respectively, as shown in Figure 3. The anchor’s types and
properties and the anchor’s tests process are discussed and
presented in [2].Moreover, the input variablesmeasurements
and evaluation, soil properties, and number of tests, as well
the monitoring of the anchor pullout capacity, are presented
in [7].

The data are divided into training and testing subsets as
presented in [5]. The first 83 data points (70%) are selected
as the training dataset and the remaining 36 data points
(30%) are considered as the testing datasets. The statistical
analyses (maximum (Max.), minimum (Min.), mean (𝑀),
and standard deviation (SD) values) for the training and
testing datasets are presented in Table 1.

FromTable 1, the statisticalmeasurements for the training
and testing datasets show good agreement, meaning that
both of them represent almost similar distributions. Before
the models simulation, the input and output parameters are
normalized by scaling them between 0.2 and 0.8 using (13)
to eliminate their dimension effects and to ensure that all

variables receive equal attention during training; moreover,
it gives the models more flexibility to estimate beyond the
training range [23].

𝑥eq = 𝑎1 (𝑥 − 𝑥min) \ (𝑥max − 𝑥min) + 𝑎2, (13)

where 𝑥min and 𝑥max are minimum and maximum values,
respectively; the constant range values 𝑎1 and 𝑎2 equal 0.6
and 0.2, respectively; the equivalent parameter 𝑥eq is scaled
between 0.2 and 0.8.

2.3. Sensitivity of the Input Variables and Model Performance
Criteria. Thedata sensitivity is studied based on the previous
models designed with the same database [2, 5, 7]. Shahin
and Jaksa [7] evaluated the sensitivity of the ANN model
with different input variables. Their results show that, during
training, the best performance was obtained using the 𝐷eq,𝐿, 𝑓𝑠, and IT input variables, while during validation, the
model performed better when sing the 𝐷eq, 𝐿, 𝑞𝑐, and 𝑓𝑠
input variables. Moreover, Shahin and Jaksa [2] concluded
that the ANN model with four input variables, 𝐷eq, 𝐿, 𝑓𝑠,
and IT, performed the best, while Samui et al. [5] found
that the sensitivity of the 𝑞𝑐 and 𝑓𝑠 is higher than that of
𝐷eq, 𝐿 and the sensitivity of the IT is low. Therefore, because
of the inconsistency of the previous studies, the sensitivity
of the input variables should be studied first. However,
the correlation coefficient between the inputs and output
variables is studied first to evaluate the sensitivity of variables,
while it can be used tomeasure the interdependency between
successive input and output variables [24]. Second, simple
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Table 1: Statistical measurements for the training and testing datasets.

Statistical parameters 𝐷eq (mm) L (mm) 𝑞𝑐 (MPa) 𝑓𝑠 (kPa) IT Q (kN)

Training dataset
Max. 44.60 800.00 3.55 179.71 2.00 3.47
Min. 25.00 400.00 0.95 12.22 1.00 0.29
𝑀 31.66 571.08 1.91 58.01 1.60 1.73
SD 7.88 125.46 0.58 42.18 0.49 0.77

Testing dataset
Max. 44.60 800.00 3.03 178.26 2.00 3.80
Min. 25.00 400.00 0.95 12.22 1.00 0.35
𝑀 28.85 594.44 1.98 56.62 1.56 1.80
SD 7.00 101.26 0.55 36.70 0.50 0.78

Table 2: Correlation coefficient between input and output variables.

Variables 𝐷eq L 𝑞𝑐 𝑓𝑠 IT
Q 0.15 0.44 −0.11 0.54 −0.26

regressionmodel is used to identify the sensitivity of the input
variables, as follows:

𝑄 = 𝑎 + 𝑏1𝐷eq + 𝑏2𝐿 + 𝑏3𝑞𝑐 + 𝑏4𝑓𝑠 + 𝑏5IT, (14)

where, 𝑎, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 are the unknown parameters for
the regressionmodel.These parameters can be estimated and
evaluated using the least square method, as presented in [25,
26]. To examine the significance of each variable, the t-test,
statistical evaluation, is studied. The 𝑡 values are compared
with predetermined 95% confidence and 𝑡𝑓,95% confidence
limit of 𝑡 distribution; 𝑓 is the freedom order. The variables
within 95% are considered highly significant to predict the
pullout capacity.

In this study, three criteria are used to evaluate the
performance of the models design. The first criterion is the
correlation coefficient (𝑅), which provide linear dependency
information between observation and prediction values. The
second statistical criterion is the mean absolute error (MAE),
which measures the close prediction values to the eventual
outcomes. Finally, the root mean square error (RMSE) is
utilized to describe the average magnitude of the errors by
giving more weight to large errors.

3. Results and Discussions

3.1. Sensitivity Analysis. The scaled data are used in this
section to evaluate the variables sensitivity. The correlations
between the input and output variables are presented in
Table 2.

From Table 2, it can be seen that the degrees of linear
dependence between pullout capacity and average sleeve
friction and embedment depth are higher than equivalent
anchor diameter variables. In addition, the dependencies of
the variables on the average cone resistance and installation
technique to predict the pullout capacity are low. This indi-
cates that the average sleeve friction, embedment depth, and
equivalent anchor diameter variables have more influence on

the pullout capacity and this is also reported by Shahin and
Jaksa [2].

The simple regression model, as presented in (14), is
evaluated and analyzed in Table 3. Four regression models
based on the previous studies, [2, 5–7], are presented to
evaluate the sensitivity of the input variables. The models are
applied to study the effect of each variable on predicting the
pullout capacity, and the correlation coefficients (𝑅) for the
prediction models are calculated. The standard deviations of
these coefficients are estimated by the least square method.
The significance of the estimated coefficients is tested from
the zero-expected value in accordance with the 𝑡𝑓,95% confi-
dence limit of the 𝑡 distribution dependent on the𝑓 degree of
freedom at the 95% confidence level.

As a result of the models correlation and t-test evalua-
tions, the prediction pullout capacity of models 1 and 3 was
found to be equally correlated with original pullout capacity.
Moreover, it can be seen that the coefficients variables of
𝐷eq, 𝐿, and 𝑓𝑠 are significant for the four models, while the
coefficients variables of 𝑞𝑐 and IT are not significant. Hence,
the linear trend of 𝐷eq, 𝐿, and 𝑓𝑠 variables are high and the
prediction effectiveness of the 𝑞𝑐 variable is higher than the
IT variable. Therefore, the sensitivity effects of variables 𝐷eq,𝐿, 𝑞𝑐, and 𝑓𝑠 in the prediction model are high, and these
variables are considered in this study. Herein, it should be
mentioned that the sensitivity results in this study are in
agreement with Samui et al. [5] and the validation evaluation
of the ANN of Shahin and Jaksa [7] for the same case
study.

3.2. Models Analysis. Shahin and Jaksa [6] predicted the
pullout capacity based on two models and three methods;
B-spline neurofuzzy (B-spline-NF) and back-propagation
multilayer perceptrons ANN (MLP-ANN) models are used,
and the Laboratories Central des Ponts et Chaussees (LCPC)
[27], Das [28], and Bowles [29] methods are utilized. In
addition, Samui and Sitharam [30] applied the Relevance
Vector Machine (RVM) prediction model with different ker-
nels (Gaussian (RVM-G), polynomial (RVM-P), and spline
(RVM-spline)). Also, Samui et al. [5] predicted the pullout
capacity using least square support vector machine (LSSVM)
model. Figure 4 illustrates the 𝑅 and RMSE values for the
previous studies.
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Table 3: Linear trend component and coefficient test for the regression models.

Model 𝑡𝑎 𝑡𝑏1 𝑡𝑏2 𝑡𝑏3 𝑡𝑏4 𝑡𝑏5 𝑅
1 𝑄 = 𝑎 + 𝑏1𝐷eq + 𝑏2𝐿 + 𝑏3𝑞𝑐 + 𝑏4𝑓𝑠 + 𝑏5IT 5.5 2.5 7.6 −3.8 9.8 −2.8 0.77
2 𝑄 = 𝑎 + 𝑏1𝐷eq + 𝑏2𝐿 + 𝑏4𝑓𝑠 2.4 2.6 6.2 — 7.5 — 0.70
3 𝑄 = 𝑎 + 𝑏1𝐷eq + 𝑏2𝐿 + 𝑏3𝑞𝑐 + 𝑏4𝑓𝑠 4.9 2.6 8.3 −5.2 9.2 — 0.77
4 𝑄 = 𝑎 + 𝑏1𝐷eq + 𝑏2𝐿 + 𝑏4𝑓𝑠 + 𝑏5IT 4.1 2.6 6.1 — 9.1 −4.4 0.74
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Figure 4: Correlation coefficient (𝑅) and RMSE for the predicted
pullout capacity of previous studies.

From Figure 4, the vector machine method is the best to
detect the pullout capacity of small ground anchors, while
the worst case is the Das method. The better method is the
LSSVM with high 𝑅 = 0.945 and low RMSE = 0.223. Samui
et al. [5] used all variables to design the model and they
found that the sensitivity of 𝑞𝑐 is higher than 𝐷eq, 𝐿, and 𝑓𝑠
variables. Based on Samui et al. [5] and the sensitivity analysis
performed in Section 3.1, the current models are designed.
In this study, two models are developed, NHW and DANFIS,
using𝐷eq, 𝐿, 𝑞𝑐, and𝑓𝑠 as input variables and pullout capacity(𝑄) as the output variable.

To assess the developed models, the models are pro-
grammed on Matlab. In the training phase, 83 datasets are
selected and the coefficients of the models have been chosen
by trial and error. In the NHW model, the same nonlinear
functions for the inputs and output are used. The input-
output nonlinear sigmoid functions and wavelet networks,
saturation, one-dimension polynomial, and piecewise func-
tions are applied with 50 iterations. In addition, the order
chosen of linear function (𝐵𝑗 and 𝐹𝑗) was [1 1 1 1] and
[2 2 8 8] with delays set to zero for 𝐷eq, 𝐿, 𝑞𝑐, and 𝑓𝑠,
respectively. This order is selected to compare the functions
based on trial-and-error approach. The R-values for the
sigmoid, wavelet, and piecewise functions are found to be
0.99, 0.35, and 0.60, respectively. Therefore, the sigmoid
function is selected as a nonlinear function for the input
and output mapping. The better trials for the linear function
orders are presented in Table 4.

Table 4: Linear function order trails evaluation.

[𝐵𝐷eq 𝐵𝐿 𝐵𝑞𝑐 𝐵𝑓𝑠] [𝐹𝐷eq 𝐹𝐿 𝐹𝑞𝑐 𝐹𝑓𝑠] 𝑅
[2 2 2 2] [2 2 2 2] 0.70

[1 1 1 1] [2 2 5 5] 0.95

[1 1 1 1] [2 2 8 8] 0.99

[1 1 1 1] [8 8 2 2] 0.90

The presented values in Table 4 show that themodel order
of pole is more effective than zeros order; in addition, it is
seen that with increased values of the orders for the 𝑞𝑐 and𝑓𝑠 variables, the performance of the model becomes better.
That means the sensitivity of 𝑞𝑐 and 𝑓𝑠 is higher than that
of 𝐷eq, 𝐿. However, the NHW model contains a sigmoid
function for the input and output variables, and [1 1 1 1]
and [2 2 8 8] orders for the linear function are utilized to
predict the pullout capacity.

On the other hand, the DANFIS model is designed using
the four input variables and one-time-delayed output; and
the pullout capacity is the output value. Two MF functions
for each variable are used in this case with 92 nodes and
62 model coefficients. Different MF types are evaluated with
50 iterations, and the best predicted pullout capacity (𝑅 =
0.99) is obtained using triangular MFs, and this result is
reported, also, in Shahin and Jaksa [6, 7]. Figure 5 represents
the DANFIS model design.

In this model, 32 fuzzy rules are used, and the numbers of
linear and nonlinear coefficients are 32 and 30, respectively.
The application of the model is presented in Figure 5(a)
which includes the five basic steps of the calculation. The
model begins with the fuzzification of the inputs; then the
rules are applied using the fuzzy operation (AND) and the
implication and transfer data from premise to consequent.
After that, the aggregation of the consequents across rules
and output defuzzification are defined to estimate the pullout
capacity. The typical model is presented in Figure 5(b), and
the adjusted MFs for the five input variables are shown in
Figure 5(c).

The performances of the designed NHW and DANFIS
models are presented in Figure 6 and Table 5. Figure 6
illustrates the scatter plot of the training dataset, and Table 5
presents the statistical performance and comparison of the
developed models and the LSSVM model. From Figure 6, it
can be seen that the performance of the DANFIS model is
better than the NHW model. The coefficients of the linear
fitting for the relation between the observed and predicted
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Figure 5: DANFISmodel design: (a)model application, (b) typical model architecture with five inputs, and (c) adjustedMF for the five inputs
variables.

pullout capacity of small ground anchors are better with the
DANFIS model. In addition, the NHW and the DANFIS
models performed better than the LSSVM [5] model. As
such, the developed models performances are acceptable to
predict the pullout capacity without information losses of the
measured values.

The observed and the predicted values of the pullout
capacity by the NHW and the DANFIS models are shown
in Figure 7 for the testing dataset with high agreement
between them. Table 6 shows the statistical performance of
the developed models and the LSSVM model for the testing

Table 5: Comparison between the developed models and the
LSSVM [5] model for the training data.

Model RMSE (KN) MAE (KN) 𝑅
LSSVM [5] 0.22 0.19 0.94
NHW 6.65𝐸 − 3 8.25𝐸 − 3 0.99
DANFIS 3.91𝐸 − 6 2.40𝐸 − 6 0.99

dataset. The LSSVM model outperforms the ANN model
results for the testing dataset; the MAE is 0.31 and 0.21 KN,
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Figure 6: Training performance of the designed models (a) NHW and (b) DANFIS.
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Figure 7: Testing performance of the designed models (a) NHW and (b) DANFIS.

Table 6: Comparison between designed models and LSSVM [5]
model for the testing data.

Model RMSE (KN) MAE (KN) 𝑅
LSSVM [5] 0.26 0.20 0.94
NHW 2.71𝐸 − 2 1.32𝐸 − 2 0.98
DANFIS 6.47𝐸 − 4 4.03𝐸 − 4 0.99

for the ANN and LSSVMmodels, respectively [5]. As shown
in Table 6 and Figure 7, the developed models predict the
pullout capacity for the testing data with less RMSE (2.71𝐸−2
and 6.47𝐸 − 4, for the NHW and DANFIS, resp.) and higher
accuracy of 𝑅 (0.98 and 0.99, for the NHW and DANFIS,
resp.). Accordingly, the performance of the DANFIS model

is better than the other models in predicting the pullout
capacity of ground anchors.

Finally, the models proposed, DANFIS and NHW, can be
used to detect the pullout capacity with high accuracy with
the DANFIS performing better than the NHW.

4. Conclusions

In this study, two models are developed using nonlinear
integrated system,which are nonlinearHammerstein-Wiener
(NHW) and delay inputs for the adaptive neurofuzzy infer-
ence system (DANFIS) to predict the pullout capacity of small
ground anchors. The input variables sensitivity is studied
to evaluate the variables effectiveness in prediction using
polynomial regression model. The sensitivity analysis shows
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high effect of the equivalent anchor diameter, embedment
depth, average cone resistance along the embedment depth,
and average sleeve friction along the embedment depth
variables in predicting the pullout capacity. The results of
the developed models are evaluated using case study data
and compared with previous studies. It is concluded that
the two proposed models can be used to predict the pullout
capacity with high accuracy. Moreover, the performance of
the DANFIS outperforms the NHW model in training and
testing dataset.
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