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With the development of modernization, the application of seamless tube becomes widespread. As the first process of seamless
tube, piercing is vital for the quality of the tube. The solid round billet will be transformed into a hollow shell after the piercing
process. The defects of hollow shell cannot be cleared in the following process, so a monitoring model for the quality of the hollow
shell is important. But the piercing process is very complicated, and a mechanism model is difficult to build between the qualities
of the hollow shell and measurement variables. Furthermore, an intelligent model is needed. We established two piercing process
monitoring and fault diagnosis models based on the multiway principal component analysis (MPCA) model and the multistage
MPCAmodel, respectively, and furthermore we made a comparison between these two concepts. We took three ways to divide the
period based on process, 𝐾-means, and GA, respectively. Simulation experiments have shown that the multistate MPCA method
has advantage over the MPCAmethod and the model based on the genetic algorithm (GA) can monitor the process effectively and
detect the faults.

1. Introduction

The application of seamless steel pipe has penetrated into
every aspect of life, for instance, bicycle, aerospace, and
boiler. In the meantime, a higher quality of the steel pipe is
important. Piercing is the first step of the process. It is a fact
that the quality of the hollow shell will affect the quality of
the pipe directly. Piercing can be divided into 3 categories:
pressure piercing, punch piercing, and oblique piercing.
Pressure piercing is based on press; punch piercing depends
on the push bar machine; cross piercing is a new piercing
technology invented by Germany Mannesmann brothers in
1885, and a solid round steel can be perforated into a seamless
steel pipe in a procedure, which has occupied an important
position in seamless tube production.

Then, we make an introduction for the piercing process
based on the Baosteel Tube Branch Diescher mill; as shown
in Figure 1, Diescher skew rolling puncher is composed
primarily of two rollers, around two guide wheels and plug.
During the process of piercing, the roller is the main drive
outer piercing tool, and its roll body is usually divided into

three stages: the entrance cone, the exit cone, and the rolling
zone. Sections of the entrance can drag the tube bill billet
into the piercing zone and pierce. Exit cone can reduce
capillary wall, flat capillary surface, reel shell wall thickness,
and round the capillary. Rolling belt is the transition between
the inlet cone and outlet cone. Guide wheels are the fixed
outer perforated tool, which guide the billet and the capillary
tube, stabilize rolling line, close groove ring, and limit the
horizontal piercing of the capillary. The plug is the inner
piercing tools. Plug keeps the axial position fixed by the
support of the top rod in the piercing zone. Experiments have
proved that in the process of piercing, the external diameter of
work-piece changes little while the inner diameter is mainly
controlled by plug stilettos in the range of zero to the required
value. It can be concluded that piercing roller, guide wheel,
and plug play important roles in the deformation of cross
piercing.

Some problems still exist in the piercing process, such as
folding, crack, chain belt, and unequal thickness.These issues
are very difficult to eliminate later in tube rolling or even
result in more serious faults. Therefore, we need to establish
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Figure 1: Sketch map of Diescher puncher.

a model to monitor the quality of the shell. We set up an
intelligent model (i.e., a piercing production monitoring and
fault diagnosis model) which can effectively detect faults due
to piercing and eliminate losses in time.

The piercing process is a typical batch process with
features such as multiperiod and dynamic multivariable, so
we can establish the monitoring and diagnosis model by
the batch process statistics method. The model based on
the measurement data is mainly established by the principal
component analysis (PCA), the partial least squares (PLS),
and other projection methods. Nomikos and MacGregor
proposed batch process monitoring and quality prediction
algorithms [1–3] based on themultiway principal component
analysis (MPCA) and the multiway partial least squares
(MPLS) which means a lot for the batch process statistical
modeling, online monitoring, fault diagnosis, and quality
prediction control based on the data. But the traditional
modeling method has inherent limitations for batch process.
According to the multiperiod of batch process, the pro-
cess can be divided into several periods, and then we can
establish the statistical analysis model based on subperiods
for process monitoring and fault diagnosis. Methods for
dividing period of the process mainly include knowledge-
based method which is applicable for a better understanding
of the mechanism of the practical operation; characteristic
analysis method extracts signal feature; automatic identifica-
tionmethod identifies period automatically by the algorithm,
such as clustering algorithm and MP algorithm. The two-
period MPCA algorithm [4] proposed by Kosanovich et al.
as well as the multistage algorithm proposed by Dong and
Mcavoy [5] is the first step and the initial exploration to
understand the concept of periods. Since then, the British
Professors Martin and Morris’ team [6, 7] launched the
corresponding statistical analysis based on the concept of
“group” and Lennox et al. [8] did related research on local
modeling method. Duchesne and MacGregor [9] proposed

a pathway multiblock PLS algorithm and they introduced
intermediate measuring of quality to build a multiblock PLS
model to analyze local effects of quality affected by the
process trajectory. But for the actual process, the intermediate
measurement value of quality is difficult to obtain, which
hinders the wide application of the algorithm. The idea of
localmodeling such as “group” or “block” is actually a version
of the concept of period. Ündey and Çinar [10] proposed con-
cept of periods directly and established a process monitoring
and quality prediction model based on subperiod.

The previous work applied the method of subperiods
and also proved that each period has different potential
characteristics. They applied the prior traditional statistical
analysis method directly, although subperiods were studied
rather than a whole process. Essentially speaking, the defects
of the traditional modeling method had not been cleared.
In order to overcome the above disadvantages and make
the best of period characteristics in the process, Lu et al.
[11] believed that the MPCA/MPLS has laid an important
foundation for statistical analysis, online monitoring, fault
diagnosis, and even quality control of batch processes which
are based onmultivariate statistical method, proposed period
division algorithm for batch process, and developed process
monitoring and quality prediction algorithm [11–14] based
on subperiod PCA/PLS model further. Zhao [15] divided the
process into several stages in a soft measurement method to
establish a multistage MPCA model for online monitoring,
and the model was successfully applied to the injection
molding process.

GA [16] is a biological evolution model that simulates
Darwinian’s genetic selection and the natural elimination
process by selection, crossover, and mutation. It is a global
optimization algorithm which has been widely used in the
batch process; for example, Leardi [17] used GA algorithm
and an improved algorithm for feed rate of penicillin fermen-
tation process optimization and achieved good results.

In this paper, we establish two different models. First, we
establish the capillary quality monitoring and fault diagnosis
model based on MPCA model. Then, we build multistage
MPCA monitoring model based on the multiperiod of batch
process and we applied methods based on process, 𝐾-
means clustering, andGA optimization, respectively, in order
to make divisions. The simulation effect showed that the
multistageMPCA obtains a better effect and that the division
based on the GA optimization algorithm detected the faults
more clearly.

2. Monitoring and Fault Diagnosis of
Multivariate Statistical Process

2.1. Data Characteristics of Batch Process. Batch processes are
repetitive production process. The corresponding data sets
have one more dimension than the continuous production
process data set. We can use three-dimensional data matrix
𝑋(𝐼×𝐽×𝐾), as shown in Figure 2, where the three dimensions
𝐼, 𝐽, and 𝐾, respectively, represent the batch number of
samples, number of process variables, and the number of
measuring points in each operation. We need to unfold the
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Figure 2: Three-dimensional data for batch processes.
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Figure 3: Six ways of unfolding three-dimensional matrix.

three-dimensional data matrix into two-dimensional model.
Theunfoldingmethods involve sixways, as shown in Figure 3.

The discussion of methods unfolding three-dimensional
data and the comparison of the corresponding process moni-
toring methods are introduced in [18–20].TheMPCAmodel
actually uses the 𝐷 expansion method. The 𝐷 expansion
method preserves the information of the first dimension and
puts each of its vertical slices𝑋(𝐼×𝐽) side by side to the right,
resulting in𝑋(𝐼×𝐾𝐽). Here, we unfold the𝑋(𝐼×𝐽×𝐾)matrix
by 𝐷 expansion method and standardize 𝑋(𝐼 × 𝐾𝐽) by the
following formula:
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2.2. The Monitoring Model of Batch Process

2.2.1. Model of MPCA Algorithm. After 𝑋(𝐼 × 𝐽 × 𝐾) is
expanded into 𝑋(𝐼 × 𝐽𝐾), normalized into �̃�(𝐼 × 𝐾𝐽), and
cut into 𝐾 vertical slices 𝑋

𝑘
(𝐼 × 𝐽), they will be decomposed

into𝐾 loadmatrixes𝑃
𝑘
, scorematrixes𝑇

𝑘
, and feature vectors

Egen
𝑘
by using singular value decomposition for each slice.

The load matrix and feature can be defined by formula (2),
and the number of principal components can be calculated by
cumulative contribution rate based on formula (3). The load
matrix �̃�(𝐽 × 𝐴) in the principal component space is first A
columns of load matrix 𝑃.
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Principal component analysis model for process monitoring
is shown in formula (4). In current monitoring and fault
diagnosis, judging whether statistics 𝑇2 and SPE are over the
limit is usually used to determine whether faults happen. 𝑇2
and SPE can be defined by formula (5).
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The control limits of 𝑇2 approximately obey 𝐹 distribu-
tion:
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where 𝑛 is the number of samples for the model, 𝐴 is the
number of the principal components, and 𝛼 is the significant
level.

For residual subspace, SPE
𝑘
of the MPCAmodel approx-

imately obeys 𝜒2 distribution at time 𝑘:
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where 𝑔 is a constant and ℎ is the freedom degree of the
𝜒
2 distribution. V

𝑘
and 𝑚

𝑘
are, respectively, the mean and

variance of the square prediction error at time 𝑘.
But due to the fact that the MPCA algorithm regards a

batch of data as an entity, it is insensitive for the small fault.
Obviously the batch process has multiperiod characteristic;
that is, the process has three periods: first unstable piercing
process, stable piercing process, and secondary unstable
piercing process.The characteristic variables of different sub-
periods are not the same. Therefore, we propose a subperiod
MPCA for fault monitoring and fault diagnosis of batch
process.

2.2.2. Model of Subperiod MPCA Algorithm. Division of
period is the first problem for subperiod MPCA model. We
adopt the methods based on process, 𝐾-means clustering,
and a GA optimization method.

(1) Piercing process includes three periods: the first unsta-
ble process where the metal ahead of billet fills piercing zone
gradually (i.e., billet goes through touching the roller (first
bite) until the metal spread out of the piercing zone), which
includes first bite and second bite; the stable process which
is the main stage of piercing process, from the front of billet
filling piercing zone to the rear leaving the piercing zone; and
the second unstable process where the rear metal leaves the
piercing zone gradually until the end. The monitoring model
is in accordance with the three processes.

(2) The idea of 𝐾-means clustering algorithm is that the
similarity of the same cluster is large and the similarity of
different cluster is small, and the algorithm is summarized as
follows:

(1) Selecting 𝑘 objects as the initial clustering center from
𝑛 data objects

(2) Calculating the distance between each object and
the center object, divide the objects according to the
minimum distance

(3) Calculating the mean value of each cluster
(4) Looping (3)-(4) until each cluster is invariable
(3) GA algorithm is a global optimization algorithm,

simulating the genetic mechanism of nature. The genetic
algorithm regards the binary or decimal chromosome as the
solution of problems. The basic genetic operation has selec-
tion, crossover, and the mutation. Initialize the chromosome
group first, and the chromosome group will converge to the
optimal solution after the basic genetic operations. In general,
we have several problems to solve before using GA, such as
the method of “chromosome” coding [21], parameter setting
of genetic algorithm, and the choosing of fitness function.

Here, we need to optimize the periods of piercing process;
that is, we want to determine the sections of the optimal
length of 𝑊1, 𝑊2, and 𝑊3, which belongs to integer opti-
mization problem with constraints; thus, we choose decimal
coding.

For parameter setting of the GA [22], we analyze the
following: the general choice is 𝑛 = 30∼160 due to the fact that
it is hard to get the solution for small size and the convergence
is slow for big one. Crossover probability 𝑃

𝑐
may be too little

to search forward or too big to break the structure of high
adaptive value, and a usual choice is 𝑃

𝑐
= 0.25∼0.75. Similarly,

the common choice of mutation rate 𝑃
𝑚
is 0.01∼0.2, which

can be too small to produce new genetic results or too big to
change genetic algorithm into a random search.

The selection of fitness function is also very important.
We select false positive rate as fitness function, searching for
the minimum value of the fitness function.

2.3. Fault Diagnosis. When 𝐻𝑜𝑡𝑒𝑙𝑙𝑖𝑛𝑔-𝑇2 and SPE indexes
are beyond time limit control, it indicates that the fault has
occurred in the production process, but the fault origin is
unknown. We can get the fault information through the
contribution plot and then diagnose the origin of fault.

Contribution Plot of 𝐻𝑜𝑡𝑒𝑙𝑙𝑖𝑛𝑔-𝑇. According to formula (8),
the contribution of the 𝑎th principal component is

𝑇
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Calculated by the following, one gets
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Contribution Plot of 𝑆𝑃𝐸. It ismuch simpler.The contribution
of the 𝑖th variable can be calculated by

𝐶SPE,𝑥𝑗 = sign (𝑥
𝑗
− �̂�
𝑗
) ⋅

(𝑥
𝑗
− �̂�
𝑗
)
2

SPE
.

(12)

In the contribution chart, the obvious process variables
provide valuable information for fault analysis when there is
a fault.

3. The MPCA Model and Multistage MPCA
Model for Piercing Process

3.1. Data Acquisition

(1) We collect 20 data under normal production condi-
tion by using ibaAnalyzer software and get a three-
dimensional data matrix 𝑋(𝐼 × 𝐽 × 𝐾). The three
dimensions, respectively, represent the batch number
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Figure 4: 𝑇2 and SPE plots for MPCA monitoring results of the normal piercing process.
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Figure 5: 𝑇2 and SPE plots for three-stage MPCA monitoring results of the normal process based on process division.

of samples, number of process variables, and the
number of measuring points in each operation (𝐼 =

20, 𝐽 = 24, 𝐾 = 500).
(2) We cut the three-dimensional matrix along the direc-

tion of the third dimension and get 𝐾 vertical slices
𝑋
𝑘
(𝐼 × 𝐽). By decomposing the 𝐾 two-dimensional

time slice matrix, we got 𝐾 load matrixes 𝑃
𝑘
(𝑘 =

1, 2, 3, . . . , 𝐾).

3.2. The On-Monitoring Model Based on the MPCA. First,
we get the load matrix 𝑃 by formula (2) and calculate the
number of principal component by cumulative contribution
rate by formula (3). Then the whole load matrix 𝑃 is
divided into two parts: the principal component space 𝑃∗

and the residual space �̃�
∗. Similarly, eigenvalue diagonal

matrix 𝑆 is correspondingly divided into two parts, 𝑆∗

and �̃�∗.
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Figure 6: 𝑇2 and SPE plots for three-stage MPCA monitoring results of the normal process based on 𝐾-means division.
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Figure 7: 𝑇2 and SPE plots for three-stage MPCA monitoring results of the normal process based on GA division.

The principal component analysis model widely used in
process monitoring field is shown as follows:

𝑇
𝑘
= 𝑋𝑃
∗
, 𝑘 = 1, 2, 3, . . . , 𝐾,

�̂� = 𝑇
𝑘
𝑃
∗
,

𝐸 = 𝑋 − �̂�.

(13)

In current monitoring and fault diagnosis, judging
whether statistics𝑇2 and SPE are over the limit is usually used
to determine whether faults happen. The control limits of 𝑇2

approximately obey 𝐹 distribution shown as formula (5). For
residual subspace, SPE

𝑘
of the MPCA model approximately

obey 𝜒2 distribution at time 𝑘 shown as formula (6).
We judge whether the two indexes are over the limit by

calculating 𝑇2 and SPE:

𝑇
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2
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𝑚
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(𝑥
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)
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.

(14)
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Figure 8: 𝑇2 and SPE monitoring plots of fault 1.
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Figure 9: Principal component contribution plots of fault 1.
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Figure 10: 𝑇2 contribution plots of fault 1.

We collect a normal batch of data and get the plot of
monitoring, as shown in Figure 4.

Under normal operating conditions, the SPE is over the
limit. Contacting three stages of piercing process, the first
instability process, stable process, and the second unstable
process, the two unstable of which can generate large devi-
ation due to mutations of the current and speed. That means
that a MPCA modeling will make large monitoring error, so
it is necessary to build subperiod MPCA model for piercing.

3.3. The Monitoring Model Based on Three-Stage MPCA

3.3.1. Model Based on Process Division. The process of pierc-
ing includes three periods: the first instable process, stable
process, and the second unstable process. The division is in
accordancewith the three processes.Theplot ofmonitoring is
shown in Figure 5, which indicates that the effect is not good
enough.

From Figure 5, it can be seen that the effect of monitoring
has been greatly improved, but there are still false positives.
Thus, we cannot simply divide by the concept of process.
Due to the fact that feature information varies in different
operation period for batch process, we need to improve the
method and then we try the clustering algorithm.

3.3.2. Model Based on 𝐾-Means Division. The idea of 𝐾-
means clustering algorithm is that the similarity of the same
cluster is much more than that of different cluster. We get
three stages by𝐾-means clustering algorithm and get the plot
of monitoring, as shown in Figure 6.

It can be seen from Figure 6 that the effect of 𝐾-
means clustering is still not ideal. The 𝐾-means clustering
algorithm is easy to implement and it is also efficient. But the
parameters, such as the number of subsets of data, the initial
cluster centers, similarity measure, and distance of matrix,
are all hard to determine. The selection has no consistent
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Figure 11: SPE contribution plots of fault 1.

standard, so the global optimal property cannot be obtained
and some other optimal algorithms are needed.

It is known that genetic algorithm (GA) has advantages in
nonlinear optimization and has good effects in batch process
[17], so we choose GA to optimize the divisions.

3.3.3. Division by Applying GA Optimization. Genetic algo-
rithm (GA) simulates the evolution of artificial population.
It will converge to the optimal state after generations by
selection, crossover, and mutation. In this paper, we choose
false positives as the target function and the decimal coding
and set the population size for 30, the iteration for 100, and
the chromosome for 2. According to the plot of GA division
segmentation, as shown in Figure 7, the monitoring effect is
greatly improved.

It turns out that the segmentation effect of the GA
optimization algorithm is better. We can conclude from the
four monitoringmodels that (1) the traditionalMPCAmodel
cannot adapt to the batch process for monitoring and it is
necessary to make a division, (2) a simple division by process

cannot involve the changes of the characteristics for the batch
periods, (3) the𝐾-means clustering algorithm division has its
limitations so that it cannot reach the optimal solution, and
(4) GA optimization algorithmwas proposed to optimize the
segmentation and it succeeds.

4. Model for Monitoring and Fault Diagnosis
Based on Multiperiod MPCA

Two kinds of faults are introduced:

Fault 1: Roller speed fault, from 250th to 271th
sampling time, the roller speed is 0.
Fault 2: Guide plate current fault, from 250th to 271th
sampling time, the current is 0.

4.1. Fault Diagnosis for the 1st Roller Speed. We can get the
monitoring plot as shown in Figure 8.

From Figure 8, we can get that the SPE index rises at
250th sampling time and falls at 272th sampling time; that is,
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Figure 12: 𝑇2 and SPE monitoring plots of fault 2.
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Figure 13: Principal component contribution plots of fault 2.
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Figure 14: 𝑇2 contribution plots of fault 2.

monitoring plots of SPE have an obvious alarm phenomenon,
which 𝑇

2 monitoring plots do not have. Multistage MPCA
model can quickly and accurately detect the fault. For
comparison, 𝑇2 contribution plots are still drawn together
with the SPE contribution plots. In order to diagnose the
cause of the fault, this paper, respectively, drew principal
component contribution plots,𝑇2 contribution plots and SPE
contribution plots of 160th, 265th, and 460th sampling time.

From Figure 9, we see that the contribution rate of
each principal component varies at different moments, and
we analyze the contribution rate of each variable for the
largest principal component shown in Figure 9. According
to the contribution rate of variables for the largest principal
component and SPE, we plot Figures 10 and 11.

FromFigures 10 and 11, it can be seen that the first variable
(roller speed) has a much larger contribution rate for the
abnormal principal component vector at the fault moment
than the other variables. The fault diagnosis can also be
obtained as the mutation of the upper roller speed is the

main cause of the fault through knowledge of the statistical
analysis. Also, from the experimental results, although vari-
able contribution rate for the abnormal principal component
vector can diagnose the fault, its monitoring effect is not
obvious. Therefore 𝑇2 contribution plots can serve as the
reference. The fault can be monitored and diagnosed by SPE
contribution clearly.

4.2. Fault Diagnosis for the 23th Guide Plate Current. We can
get the monitoring plot as shown in Figure 12.

Similarly, multistageMPCAmodel can quickly and accu-
rately detect the fault. The principal component contribution
plot is shown as Figure 13.

𝑇
2 contribution plots and SPE contribution plots of 160th,

265th, and 460th sampling time are in Figures 14 and 15,
respectively.

From Figures 14 and 15, it can be seen that the 23th
variable (guide plate current) has a much larger contribution
rate for the abnormal principal component vector at the fault
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Figure 15: SPE contribution plots of fault 2.

moment. The fault diagnosis can also be obtained as the
mutation of the guide plate current is the main cause of the
fault through knowledge of the statistical analysis.

The above fault diagnosis results verify the effectiveness
of the proposed methods.

5. Conclusions

With the increasing demand of the steel pipe, the quality
of the production of the steel tube becomes more and
more important. In this paper, we build effective models for
monitoring and fault diagnosis for the quality of capillary,
which can timely reveal fault in the production process of
capillary avoiding greater failure and loss. The first step is
to establish a model of monitoring and fault diagnosis based
on the traditional MPCA, and a division of period is needed
after evaluating the results. Then we discussed the method of
division for piercing process.Webuildmultistagemodel from
three different methods, including division based on process,

𝐾-means algorithm, and GA optimization algorithm. Finally
we prove that the GA optimization has good effects.

Abbreviation

MPCA: Multiway principal component analysis
GA: Genetic algorithm
PCA: Principal component analysis
PLS: Partial least squares
MPLS: Multiway partial least squares.
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