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The construction and several control problems of a new hyperchaotic finance system are investigated in this paper. Firstly, a
new four-dimensional hyperchaotic finance system is introduced, based on which a new hyperchaos is then generated by setting
parameters. And the qualitative analysis is numerically studied to confirm the dynamical processes, for example, the bifurcation
diagram, Poincaré sections, Lyapunov exponents, and phase portraits. Interestingly, the obtained results show that this new system
can display complex characteristics: chaotic, hyperchaotic, and quasiperiodic phenomena occur alternately versus parameters.
Secondly, three single input adaptive controllers are designed to realize the control problems of such system: stabilization,
synchronization, and coexistence of antisynchronization and complete synchronization, respectively. It is noted that the designed
controllers are simpler than the existing ones. Finally, numerical simulations are provided to demonstrate the validity and the
effectiveness of the proposed theoretical results.

1. Introduction

It is well known that the classical chaotic attractor was
firstly found by Lorenz in 1963 [1]. As a most significant
system in nonlinear dynamical systems, chaos systems and
their relative problems have attracted a lot of consideration
from all kinds of researchers in many fields of science, and
many significant results have been obtained in the past few
decades; for details, see [2–6] and the references therein.
From then on, chaos becomes a hot topic for a broad
class of applications in physics, electrical engineering, secure
communication, and many other fields [4–6]. As we know
that the positive Lyapunov exponent of the chaotic systems
is a critical prerequisite in these applications. The three-
dimensional chaotic system only has one positive Lyapunov
exponent; thus it is typically difficult to meet some certain
requirements. For instance, the messages which are masked
by the simple chaotic systems are easy to decipher in secure
communication [4, 5]. Different from the ordinary chaos,
the hyperchaotic system has at least two positive Lyapunov
exponents and thus has more prominent advantages due to
its higher dimensions and more unpredictable behaviors.
Accordingly, the hyperchaotic systems have been investigated

extensively, and various control techniques and approaches
have been developed and utilized [7–9]. It should be pointed
out that the above-mentioned works are based on the
hyperchaotic models with complex structure. However, such
models are difficult to be verified in reality. This motivates
the author to construct a simple system that can display rich
dynamical characteristics.

It is well known that the OGY method [10] for chaos
control was firstly observed in 1990. Meanwhile, the PC
method [11] for chaos synchronization firstly achieved chaos
synchronization in 1990. Since then, a lot of researchers who
are from all kinds of scientific fields had to pay an increas-
ing interest to investigate chaos systems and their relative
problems in the past years, and many significant theoretical
results and experiments conclusions have been published;
for details please see [12–27] and the references therein. In
recent years, several typical kinds of chaos synchronization
have been identified, for example, complete synchronization
(or synchronization) [14, 15], phase synchronization [16, 17],
lag synchronization [18, 19], generalized synchronization [20,
21], antisynchronization [22, 23], projective synchronization
[24, 25], coexistence of antisynchronization and complete
synchronization [26, 27], and simultaneous synchronization
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and antisynchronization [27]. However, for the chaotic or
hyperchaotic systems, there are still some important ques-
tions needed to be further investigated, such as the com-
plexity of the controllers and the existence of some control
problems, which partly motivates the present work.

For the economic systems, the chaotic behavior in those
systems was first found in 1985 [28]. It is noted that chaotic
behavior in economics implies that the considered economic
system has an inherent indefiniteness.Thus, it is of important
value to study the chaotic finance system in order to achieve
a stable economic growth. A novel chaotic finance system
[3] was presented in 2001. There are four subblocks which
construct the system model, that is, money, production,
labor force, and stock. This system model is described by
three state variables of the time variations: 𝑥1 stands for the
interest rate; 𝑥2 and 𝑥3 are the investment demand and the
price index, respectively. Since this chaotic finance system
is proposed, many works have been done for this finance
system [29, 30]. Recently, a novel hyperchaotic finance system
[31] is presented in 2010 and some important results have
been obtained. However, there are some limitations in the
existing results. For example, in the stabilization problem
and the complete synchronization problem of such system,
the designed controllers are too complicated to be used in
applications. On the other hand, the coexistence of antisyn-
chronization and complete synchronization problem of this
hyperchaotic finance system has not been investigated so far.
Therefore, this new hyperchaotic finance system needs to be
further investigated.

Motivated by the above discussions, a four-dimensional
hyperchaotic finance system is presented, which can generate
double-wing chaotic and hyperchaotic attractors with three
equilibrium points. In comparison with the most existing
results, this model has simple structure and can display
complex dynamics: chaotic, hyperchaotic, and quasiperi-
odic phenomena occur alternately. Furthermore, some basic
dynamic properties of the new hyperchaotic finance system
regarding equilibria, dissipation, Lyapunov exponent, Lya-
punov dimension, bifurcation diagram, and Poincaré sec-
tions are investigated.Then, three control problems: stabiliza-
tion, synchronization, and coexistence of antisynchroniza-
tion and complete synchronization are derived with simple
yet physically implementable controllers. Finally, numerical
simulations are provided to demonstrate effectiveness and the
validity of the proposed theoretical results. In conclusion, the
main contributions of this paper are given as follows:

(1) A new hyperchaotic finance system is firstly intro-
duced, based on which a new hyperchaos is then
generated by setting the parameters.

(2) Dynamic properties of the new generated hyper-
chaotic finance system are investigated extensively
in Section 3, which are important and interesting. It
should be pointed out that these dynamic properties
results are different from the existing results.

(3) Three control problems of the hyperchaotic finance
system are investigated extensively in Section 4. It
is noted that the obtained results in this paper have
some advantages over the exiting results. In particular,

it should be pointed out that the coexistence of
antisynchronization and complete synchronization
in the two hyperchaotic finance systems is studied,
which is a new result.

The rest of this paper is organized as follows. In Section 2,
a new hyperchaotic model is introduced, based on which
a new hyperchaos is generated by setting the parameters.
In Section 3, the dynamic properties of such hyperchaotic
finance system are investigated. In Section 4, several control
problems of such hyperchaotic finance system are studied
extensively, followed by the conclusions in Section 5.

2. Model Formulation

A dynamic model of finance has been reported in [29–31],
which is composed of four subblocks, production, money,
stock, and labor force, and expressed by four first-order dif-
ferential equations. The model describes the time variations
of four state variables: the interest rate 𝑥, the investment
demand 𝑦, the price exponent 𝑧, and the average profit
margin 𝑤. It is well known that the factors affecting the
interest rates are related not only to investment demand
and price index, but also to the average profit margin. And
the average profit margin and interest rate are proportional.
Some important results have been obtained. In the next, the
four-dimensional hyperchaotic finance system is expressed as
follows: 𝑥̇ = 𝑧 + (𝑦 − 𝑎) 𝑥 + 𝑤̇𝑦 = 1 − 𝑏𝑦 − 𝑥2𝑧̇ = −𝑥 − 𝑐𝑧𝑤̇ = −𝑑𝑥𝑦 − 𝑘𝑤,

(1)

where (𝑥, 𝑦, 𝑧, 𝑤)𝑇 ∈ 𝑅4 is the state vector, 𝑎 is the saving,𝑏 is the per investment cost, 𝑐 is the elasticity of demands
of commercials, and 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 are positive constant
parameters.

In order to generate a new hyperchaos, we set 𝑎 = 0.9, 𝑏 =0.2, 𝑐 = 1.5, 𝑑 = 0.2, and select 𝑘 as a governing param-
eter according to the two criterions in [7]. The dynamical
properties of the hyperchaotic system (1) are firstly studied
in Section 3, including symmetry, dissipation, equilibrium
point, Lyapunov exponent, Lyapunov dimension, bifurcation
diagram, and Poincaré sections. Then, three control prob-
lems of such system are investigated in Section 4, that is,
stabilization, complete synchronization, and coexistence of
antisynchronization and complete synchronization.

3. Dynamic Properties

3.1. Symmetry. Since the hyperchaotic system (1) is invari-
ant under the coordinate transformation: (𝑥, 𝑦, 𝑧, 𝑤) →(−𝑥, 𝑦, −𝑧, −𝑤), the system (1) is symmetric with respect to 𝑧-
axis, which implies that all values of such system parameters
are under reflection about 𝑦-axis.
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3.2. Dissipation. The divergence of this four-dimensional
hyperchaotic system (1) is described as

∇𝑉 = 𝜕𝑥̇𝜕𝑥 + 𝜕 ̇𝑦𝜕𝑦 + 𝜕𝑧̇𝜕𝑧 + 𝜕𝑤̇𝜕𝑤 = − (𝑎 + 𝑏 + 𝑐 + 𝑘)= − (2.8 + 𝑘) = −𝑢. (2)

When 𝑢 > 0, that is, 𝑘 > −2.8, thus the system (1)
is a dissipative system. It results in that volume element𝑉0𝑒−𝑢𝑡 → 0 as 𝑡 → ∞. Therefore, all the trajectories of
this four-dimensional hyperchaotic system (1) are ultimately
embedded into an chaotic attractor.

3.3. Equilibria. The equilibria of the system (1) are found by
solving the following nonlinear equations:𝑧 + (𝑦 − 𝑎) 𝑥 + 𝑤 = 0,1 − 𝑏𝑦 − 𝑥2 = 0,−𝑥 − 𝑐𝑧 = 0,−𝑑𝑥𝑦 − 𝑘𝑤 = 0.

(3)

After computation, it results in

𝐸∗1 = (0, 1𝑏 , 0, 0) ,
𝐸∗2 = (√Δ1√Δ2 , −Δ 3Δ 2 , − Δ 1𝑐√Δ2 , −𝑑 (1 + 𝑎𝑐)√Δ1Δ 2 ) ,
𝐸∗3 = (−√Δ1√Δ2 , −Δ 3Δ 2 , Δ 1𝑐√Δ2 , 𝑑 (1 + 𝑎𝑐)√Δ1Δ 2 ) ,

(4)

whereΔ 1 = −𝑐𝑑−𝑏𝑘+𝑐𝑘−𝑎𝑏𝑐𝑘, Δ 2 = −𝑐𝑑+𝑐𝑘, 𝑚 = −𝑘−𝑎𝑐𝑘.
As an example, set 𝑘 = 0.17, the equilibria are given as follows:𝐸∗1 = (0, 5, 0, 0) ,𝐸∗2 = (1.666, −8.87778, −1.11067, 17.4004) ,𝐸∗3 = (−1.666, −8.87778, 1.11067, −17.4004) . (5)

Linearizing the system (1), it results in

𝐽 = (𝑦 − 𝑎 𝑥 1 12𝑥 −𝑏 0 0−1 0 −𝑐 0−𝑑𝑦 −𝑑𝑥1 0 −𝑘). (6)

For 𝐽1 = 𝐽(𝐸∗1 ), the eigenvalues can be calculated as 𝜆1 =4.1544, 𝜆2 = −0.4480, 𝜆3 = −1.2764, 𝜆4 = −0.2000,
which implies that 𝐸∗1 is a saddle-focus, thus it is unstable.
About 𝐽2 = 𝐽(𝐸∗2 ) and 𝐽3 = 𝐽(𝐸∗3 ), the eigenvalues are𝜆1 = −10.0559, 𝜆2 = −1.5869, 𝜆3 = −0.0025 + 0.2871𝑖,
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Figure 1: Bifurcation diagram of the system (1) with initial condi-
tions (1, 2, 0.5, 0.5) versus parameter 𝑘.
𝜆4 = −0.0025 − 0.2871𝑖, 𝜆1 = −10.0559, 𝜆2 = −1.5869, 𝜆3 =−0.0025+0.2871𝑖, 𝜆4 = −0.0025−0.2871𝑖, respectively, which
imply that 𝐸∗2 and 𝐸∗3 are stable points.
3.4. Bifurcation Diagram. Bifurcation diagram is a useful
method to show the dynamical processes of a system with
respect to a parameter. In this subsection, the parameter𝑘 is chosen as a control parameter. Figure 1 displays the
bifurcation diagram of the variable 𝑥 versus the parameter𝑘 which is from 0 to 3. It is interesting that the evolution
procedure of the system (1) through chaotic, hyperchaotic,
and periodic orbit, as well as period doubling route to
chaos, which displays complex dynamic properties with the
increasing of the parament 𝑘. In order to show the dynamics
of the system (1) clearly, we test the time course of the system
(1) by selecting several parameters 𝑘. It can be seen from
Figure 2, the state trajectory of the system (1) shows chaos and
quasperiodic routes to chaos with the increase of parameter𝑘, which is consistent with above results.

3.5. Lyapunov Exponent and Poincaré Sections. For the
chaotic systems, Lyapunov exponent is not only an important
index to distinguish chaotic attractor, but also a quantitative
description of the sensitivity about the initial values. In
addition, Poincaré section is also a critical approach to
analyze chaotic system; for example, if there exists a closed
curve, the movement is quasicycle; if there only exists one
fixed point or a few discrete points, the movement is cycle;
and if there exists a collection of distribution points along a
segment of a line or a curve, the movement is chaos. Here,
the Lyapunov exponent and Poincaré sections of the system
(1) with 𝑘 = 3 are investigated, respectively.

Figure 3 shows the Lyapunov exponent diagram of the
hyperchaotic finance system (1). It can be seen that there exist
always two positive Lyapunov exponents, which means that
the proposed finance system (1) is hyperchaotic. Meanwhile,
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Figure 2: Time course of the system (1) with several fixed 𝑘 values.
the Poincaré sections in various planes verify the hyper-
chaotic behavior of the system (1) as shown in Figure 4. With
the following initial conditions: 𝑥(0) = 5, 𝑦(0) = 2, 𝑧(0) =−6, 𝑤(0) = 4, Figure 5 describes the 3D projection of the
strange attractor of the system (1) on (𝑥, 𝑦, 𝑧)-space, (𝑥, 𝑦, 𝑤)-
space, (𝑦, 𝑧, 𝑤)-space, and (𝑥, 𝑤, 𝑧)-space, respectively. In the
next, the time course of 𝑥, 𝑦, 𝑧, 𝑤 is shown with time 𝑡 with
different initial conditions: 𝑥(0) = 1, 𝑦(0) = 2, 𝑧(0) = 0.5,𝑤(0) = 0.5, and 𝑥(0) = 1.01, 𝑦(0) = 2, 𝑧(0) = 0.5, 𝑤(0) = 0.5,
respectively. It can be seen, from Figure 6, the motions of
the system (1) do not remain similar for long when they are
startedwith very similar initial conditions, which implies that
this system is extraordinarily sensitive to initial values.

3.6. Lyapunov Dimension. By Wolf algorithm, the Lyapunov
exponents of this four-dimensional hyperchaotic finance
system (1) are presented as follows:

𝐿1 = 0.034432,𝐿2 = 0.018041,𝐿3 = 0,𝐿4 = −1.1499.
(7)

In addition, the Lyapunov dimension of the system (1) is
derived:

𝐷𝐿 = 𝑗 + 1󵄨󵄨󵄨󵄨󵄨𝐿𝑗+1󵄨󵄨󵄨󵄨󵄨 𝑗∑𝑖=1𝐿 𝑖 = 3 + 0.034432 + 0.0180411.1499= 3.045633 (8)

which is fractional.

4. Three Control Problems of the New
Hyperchaotic Finance System

In this section, three control problems, stabilization, com-
plete synchronization, and coexistence of antisynchroniza-
tion and complete synchronization, of the new hyperchaotic
finance system (1) are investigated extensively, and some new
results are presented.

4.1. Stabilization of the New Hyperchaotic Finance System by
a Single Input Controller. For convenience, let 𝑋 = (𝑥1,𝑥2, 𝑥3, 𝑥4)𝑇 = (𝑥, 𝑦, 𝑧, 𝑤)𝑇; then the system (1) is rewritten



Journal of Control Science and Engineering 5

j j

50 100 150 200 250 300

−2

−1

1

2

50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−1.0

−0.5

0.5

1.0

−1.0

−0.5

0.5

1.0

100 200 300 400 500

x
(t
)

y
(t
)

w
(t
)

z
(t
)

t (min)

t (min)

t (min)

x1(0) = 1

x1(0) = 1.01

50 100 150 200 250 300
t (min)

x1(0) = 1

x1(0) = 1.01

x1(0) = 1

x1(0) = 1.01

x1(0) = 1

x1(0) = 1.01

Figure 3: Lyapunov exponent of system (1) with varying time 𝑡.
as 𝑥̇1 = 𝑓1 (𝑋) = 𝑥3 + (𝑥2 − 𝑎) 𝑥1 + 𝑥4𝑥̇2 = 𝑓2 (𝑋) = 1 − 𝑏𝑥2 − 𝑥21𝑥̇3 = 𝑓3 (𝑋) = −𝑥1 − 𝑐𝑥3𝑥̇4 = 𝑓4 (𝑋) = −𝑑𝑥1𝑥2 − 𝑘𝑥4,

(9)

where 𝑎 = 0.9,𝑏 = 0.2,𝑐 = 1.5,𝑑 = 0.2,𝑘 = 0.17.
(10)

Remark 1. Since system (9) is hyperchaotic, there exist four
positive constants: 𝜆𝑖, 𝑖 = 1, 2, 3, 4, satisfying𝑥𝑖𝑓𝑖 (𝑋) ≤ 𝜆𝑖𝑥2𝑖 , 𝑖 = 1, 2, 3, 4. (11)

According to Section 3.3, 𝐸∗1 = (0, 5, 0, 0) is an equilib-
rium point of the hyperchaotic finance system (9). Next, the
stabilization problem of system (9) will be studied, that is,
designing a physically implementable controller 𝑢 to force the
states of such system to the equilibrium point 𝐸∗1 .

Consider system (9). Obviously, if 𝑥1 = 0, then the
following subsystem

𝑥̇2 = 1 − 𝑏𝑥2𝑥̇3 = −𝑐𝑥3𝑥̇4 = −𝑘𝑥4 (12)

is globally asymptotically stable (GAS) with respect to 𝐸∗1 .
Thus, the controller is designed as

𝑢 = (𝑢1𝑢2𝑢3𝑢4) = (𝑘1𝑥1000 ), (13)
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Figure 4: Poincaré sections of system (1).

and controlled system (9) is presented as𝑥̇1 = 𝑓1 (𝑋) + 𝑢1 = 𝑥3 + (𝑥2 − 𝑎) 𝑥1 + 𝑥4 + 𝑘1𝑥1𝑥̇2 = 𝑓2 (𝑋) + 𝑢2 = 1 − 𝑏𝑥2 − 𝑥21𝑥̇3 = 𝑓3 (𝑋) + 𝑢3 = −𝑥1 − 𝑐𝑥3𝑥̇4 = 𝑓4 (𝑋) + 𝑢4 = −𝑑𝑥1𝑥2 − 𝑘𝑥4,
(14)

where the dynamic gain 𝑘1 is evolved by the following law:𝑘̇1 = −𝛾𝑥21, (15)

where 𝛾 > 0 which is chosen in advance.

Remark 2. In [30], the obtained controller is given as

𝑢 = (𝑢1𝑢2𝑢3𝑢4) = (−𝑘2𝑥1−𝑘2𝑦10−𝑘2𝑧1). (16)

Obviously, controller (16) ismore complicated than controller
(13).

For convenience, systems (14) and (15) are called the
auxiliary system, and a candidate Lyapunov function is
introduced as follows:𝑉 (𝑥, 𝑘1) = 12𝑋𝑇𝑋 + 12𝛾 (𝑘1 + 𝐿1)2 , (17)

where

𝐿1 > 𝑀1sup
𝑥
1
̸=0

𝑋𝑇𝑋𝑥21 , 𝑀1 = 4max
𝑖=1

𝜆𝑖. (18)

Then, the following conclusion is presented.

Theorem3. For any initial values, the orbits𝑋(𝑡) of the system
(14) converge to the equilibrium point 𝐸∗1 as 𝑡 → ∞; that is, the
stabilization of system (9) is achieved by the above controller
(13).
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Figure 5: 3D projection of the strange attractor of system (1) on (𝑥, 𝑦, 𝑧)-space, (𝑥, 𝑦, 𝑤)-space, (𝑦, 𝑧, 𝑤)-space, and (𝑥, 𝑤, 𝑧)-space,
respectively.

Proof. The time derivative of 𝑉 with respect to the auxiliary
system is given as follows:𝑉̇ = 𝑋𝑇𝑋̇ + 1𝛾 (𝑘1 + 𝐿1) 𝑘̇1

= 𝑥1 (𝑓1 (𝑋) + 𝑘1𝑥1) + 4∑
𝑖=2

𝑥𝑖𝑓𝑖 (𝑋) − (𝑘1 + 𝐿1) 𝑥21
= 4∑
𝑖=1

𝑥𝑖𝑓𝑖 (𝑋) − 𝐿1𝑥21 ≤ 𝑀1𝑋𝑇𝑋 − 𝐿1𝑥21 < 0.
(19)

Thus the conclusion is proved, which completes the proof.

Numerical simulation is carried out with the following
initial conditions: 𝑥1(0) = 1, 𝑥2(0) = 2, 𝑥3(0) = −4, 𝑥4(0) =−2 and 𝑘1(0) = −1, 𝛾 = 1. Figure 7 displays that system (9) is
stabilized to its equilibrium point 𝐸∗1 .
4.2. Complete Synchronization of the Two Hyperchaotic
Finance Systems by a Single Input Controller. In this sub-
section, the complete synchronization of two hyperchaotic
finance systems with different initial conditions are investi-
gated, and some new results are presented in the following.

Make system (9) the master system; then the correspond-
ing uncontrolled (i.e., 𝑢 = 0) slave system with variable 𝑌
being given as

̇𝑦1 = 𝑓1 (𝑌) = 𝑦3 + (𝑦2 − 𝑎) 𝑦1 + 𝑦4̇𝑦2 = 𝑓2 (𝑌) = 1 − 𝑏𝑦2 − 𝑦21̇𝑦3 = 𝑓3 (𝑌) = −𝑦1 − 𝑐𝑦3̇𝑦4 = 𝑓4 (𝑌) = −𝑑𝑦1𝑦2 − 𝑘𝑦4,
(20)

where 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑇 is the state vector and𝑎, 𝑏, 𝑐, 𝑑, 𝑘 are given as (10).
Let 𝑒 = (𝑒1, 𝑒2, 𝑒3, 𝑒4)𝑇 = 𝑌 − 𝑋; then the uncontrolled

(i.e., 𝑢 = 0) error system is described as

̇𝑒1 = 𝐹1 (𝑋, 𝑒) = −𝑎𝑒1 + 𝑥1𝑒2 + 𝑥2𝑒1 + 𝑒1𝑒2 + 𝑒3 + 𝑒4̇𝑒2 = 𝐹2 (𝑋, 𝑒) = −𝑏𝑒2 − 2𝑥1𝑒1 − 𝑒21̇𝑒3 = 𝐹3 (𝑋, 𝑒) = −𝑒1 − 𝑐𝑒3̇𝑒4 = 𝐹4 (𝑋, 𝑒) = −𝑑 (𝑒1𝑥2 + 𝑒2𝑥1 + 𝑒1𝑒2) − 𝑘𝑒4.
(21)
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Figure 6: Time course of 𝑥, 𝑦, 𝑧, 𝑤 of system (1) with similar initial values.

Remark 4. Since system (9) is hyperchaotic, there exist four
positive constants: 𝑙𝑖, 𝑖 = 1, 2, 3, 4, such that

𝑒𝑖𝐹𝑖 (𝑋, 𝑒) ≤ 𝑙𝑖𝑒2𝑖 , 𝑖 = 1, 2, 3, 4. (22)

Consider system (21). Obviously, if 𝑒1 = 0, then the
following subsystem

̇𝑒2 = −𝑏𝑒2̇𝑒3 = −𝑐𝑒3̇𝑒4 = −𝑑𝑒2𝑥1 − 𝑘𝑒4 (23)

is GAS with respect to origin.
Thus, the designed controller is given as

𝑢 = (𝑢1𝑢2𝑢3𝑢4) = (𝑘2𝑒1000 ), (24)

and the controlled error system is described aṡ𝑒1 = 𝐹1 (𝑋, 𝑒) + 𝑢1= −𝑎𝑒1 + 𝑥1𝑒2 + 𝑥2𝑒1 + 𝑒1𝑒2 + 𝑒3 + 𝑒4 + 𝑘2𝑒2̇𝑒2 = 𝐹2 (𝑋, 𝑒) + 𝑢2 = −𝑏𝑒2 − 2𝑥1𝑒1 − 𝑒21̇𝑒3 = 𝐹3 (𝑋, 𝑒) + 𝑢3 = −𝑒1 − 𝑐𝑒3̇𝑒4 = 𝐹4 (𝑋, 𝑒) + 𝑢4 = −𝑑 (𝑒1𝑥2 + 𝑒2𝑥1 + 𝑒1𝑒2) − 𝑘𝑒4,
(25)

where the dynamic gain 𝑘2 is evolved by the following law:𝑘̇2 = −𝛾𝑒21, (26)

where 𝛾 > 0 which is chosen in advance.
Similarly, systems (25) and (26) are called the auxiliary

system, and a candidate Lyapunov function is presented as
follows: 𝑉 (𝑒, 𝑘2) = 12𝑒𝑇𝑒 + 12𝛾 (𝑘2 + 𝐿2)2 , (27)

where 𝐿2 > 𝑀2sup
𝑒
1
̸=0

𝑒𝑇𝑒𝑒21 , 𝑀2 = 4max
𝑖=1

𝑙𝑖. (28)

Next, a conclusion is obtained.
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Figure 7: The figure shows that the orbit 𝑋(𝑡) of the system (14)
converges to (0, 5, 0, 0)𝑇 as 𝑡 → ∞.

Theorem 5. For any initial values, the orbits 𝑒(𝑡) of the error
system (25) converge to origin as 𝑡 → ∞, that is, master system
(9) synchronizes slave system (20) by the above controller (24).

Proof. The time derivative of 𝑉 with respect to the auxiliary
system is given as follows:

𝑉̇ = 𝑒𝑇 ̇𝑒 + 1𝛾 (𝑘2 + 𝐿2) 𝑘̇2
= 𝑒1 (𝐹1 (𝑋, 𝑒) + 𝑘2𝑒1) + 4∑

𝑖=2

𝑒𝑖𝐹𝑖 (𝑋, 𝑒)
− (𝑘2 + 𝐿2) 𝑒21 = 4∑

𝑖=1

𝑒𝑖𝐹𝑖 (𝑋, 𝑒) − 𝐿2𝑒21≤ 𝑀2𝑒𝑇𝑒 − 𝐿2𝑒21 < 0.
(29)

Thus the result is obtained, which completes the proof.

Similarly, numerical simulation is carried out with the
following initial conditions: 𝑥1(0) = 1, 𝑥2(0) = 2, 𝑥3(0) =−4, 𝑥4(0) = −1, 𝑦1(0) = −2, 𝑦2(0) = −1, 𝑦3(0) =1, 𝑦4(0) = 1, and 𝑘1(0) = −1, 𝛾 = 1. Figure 8 shows that
the complete synchronization of two hyperchaotic finance
systemswith different initial conditions being achieved by the
above controller (24).

4.3. Coexistence of Antisynchronization and Complete Syn-
chronization in the TwoHyperchaotic Finance Systems. In this
section, the coexistence of antisynchronization and complete
synchronization in the two hyperchaotic finance systems
is investigated, and some new results are obtained in the
following.
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Figure 8:The figure shows that the states, 𝑥1, 𝑥2, 𝑥3, 𝑥4, synchro-
nize the states, 𝑦1, 𝑦2, 𝑦3, 𝑦4, respectively.

According to the results in [26], we should set𝐸1 = 𝑦1 + 𝑥1,𝑒2 = 𝑦2 − 𝑥2,𝐸3 = 𝑦3 + 𝑥3,𝐸4 = 𝑦4 + 𝑥4.
(30)

Then, the uncontrolled (i.e., 𝑢 = 0) combination (including
the sum 𝐸 and the error 𝑒2) system is described as follows:𝐸̇1 = 𝐺1 (𝑋, 𝐸, 𝑒2)= −𝑎𝐸1 + 𝐸3 + 𝐸1𝑒2 + 𝑥2𝐸1 − 𝑥1𝑒2 + 𝐸4̇𝑒2 = 𝐺2 (𝑋, 𝐸, 𝑒2) = −𝑏𝑒2 − 𝐸21 + 2𝑥1𝐸1𝐸̇3 = 𝐺3 (𝑋, 𝐸, 𝑒2) = −𝐸1 − 𝑐𝐸3𝐸̇3 = 𝐺4 (𝑋, 𝐸, 𝑒2) = −𝑑 (𝐸1𝑒2 + 𝑥2𝐸1 − 𝑥1𝑒2) − 𝑘𝐸4,

(31)

where 𝐸 = (𝐸1, 𝐸3, 𝐸4)𝑇.
Remark 6. Since system (9) is hyperchaotic, there exist four
positive constants: 𝑛𝑖, 𝑖 = 1, 2, 3, 4 satisfying𝐸𝑖𝐺𝑖 (𝑋, 𝐸, 𝑒2) ≤ 𝑛𝑖𝐸2𝑖 ,𝑖 = 1, 3, 4, 𝑒2𝐺2 (𝑋, 𝐸, 𝑒2) ≤ 𝑛2𝑒22. (32)

Consider the combination system (31). Obviously, if 𝐸1 =0, then the following subsysteṁ𝑒2 = −𝑏𝑒2𝐸̇3 = −𝐸1 − 𝑐𝐸3𝐸̇4 = −2𝑥1𝑑𝑒2 − 𝑘𝐸4 (33)

is GAS with respect to origin.
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Therefore, the designed controller is expressed as

𝑢 = (𝑢1𝑢2𝑢3𝑢4) = (𝑘3𝐸1000 ), (34)

and the controlled combination system is presented as fol-
lows:𝐸̇1 = 𝐺1 (𝑋, 𝐸, 𝑒2)= −𝑎𝐸1 + 𝐸3 + 𝐸1𝑒2 + 𝑥2𝐸1 − 𝑥1𝑒2 + 𝐸4 + 𝑘3𝐸1̇𝑒2 = 𝐺2 (𝑋, 𝐸, 𝑒2) = −𝑏𝑒2 − 𝐸21 + 2𝑥1𝐸1𝐸̇3 = 𝐺3 (𝑋, 𝐸, 𝑒2) = −𝐸1 − 𝑐𝐸3𝐸̇3 = 𝐺4 (𝑋, 𝐸, 𝑒2) = −𝑑 (𝐸1𝑒2 + 𝑥2𝐸1 − 𝑥1𝑒2) − 𝑘𝐸4,

(35)

where the dynamic gain 𝑘3 is evolved by the following law:𝑘̇3 = −𝛾𝐸21, (36)

where 𝛾 > 0 which is chosen in advance.
Similarly, systems (35) and (36) are called the auxiliary

system, and a candidate Lyapunov function is introduced as
follows:𝑉 (𝐸, 𝑒2, 𝑘3) = 12 (𝑒22 + 𝐸𝑇𝐸) + 12𝛾 (𝑘3 + 𝐿3)2 , (37)

where 𝐿3 > 𝑀3sup
𝐸
1
̸=0

𝑒22 + 𝐸𝑇𝐸𝐸21 , 𝑀3 = 4max
𝑖=1

𝑛𝑖. (38)

Next, a conclusion is presented as follows.

Theorem 7. For any initial values, the orbits (𝐸(𝑡), 𝑒2(𝑡))𝑇 of
the combination system (35) converge to origin as 𝑡 → ∞,
which implies that the coexistence of antisynchronization and
complete synchronization in the two new hyperchaotic finance
systems is achieved by the above controller (34), that is, states𝑥1, 𝑥3, 𝑥4 antisynchronize states 𝑦1, 𝑦3, 𝑦4, while rest state𝑥2 synchronizes state 𝑦2, respectively.
Proof. The time derivative of 𝑉 with respect to the auxiliary
system is given as follows:𝑉̇ = 𝐸𝑇𝐸̇ + 𝑒2 ̇𝑒2 + 1𝛾 (𝑘3 + 𝐿3) 𝑘̇3

= 4∑
𝑖=1, ̸=2

𝐸𝑖𝐺𝑖 (𝑋, 𝐸, 𝑒2) + 𝑒2𝐺2 (𝑋, 𝐸, 𝑒2) − 𝐿3𝐸21≤ 𝑀3 (𝐸𝑇𝐸 + 𝑒22) − 𝐿3𝐸21 < 0.
(39)

Thus the conclusion holds, which completes the proof.
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Figure 9: The figure shows that the orbits (𝐸(𝑡), 𝑒2(𝑡))𝑇 of the
combination system (35) converge to origin as 𝑡 → ∞.
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Figure 10: The figure shows that states 𝑥1, 𝑥3, 𝑥4 antisynchronize
states 𝑦1, 𝑦3, 𝑦4, while state 𝑥2 synchronizes state 𝑦2, respectively.

Similarly, numerical simulation is carried out with the
following initial conditions: 𝑥1(0) = 1, 𝑥2(0) = 2, 𝑥3(0) =−4, 𝑥4(0) = −1, 𝑦1(0) = −2, 𝑦2(0) = −1, 𝑦3(0) = 1, 𝑦4(0) =1, and 𝑘1(0) = −1, 𝛾 = 1. Figure 9 displays that the
orbits (𝐸(𝑡), 𝑒2(𝑡))𝑇 of the combination system (35) converge
to origin as 𝑡 → ∞, which implies that the coexistence of
antisynchronization and complete synchronization in the two
new hyperchaotic finance systems is achieved by the above
controller (34). Figure 10 shows that the states 𝑥1, 𝑥3, 𝑥4 anti-
synchronize the states 𝑦1, 𝑦3, 𝑦4, while state 𝑥2 synchronizes
state 𝑦2, respectively.
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5. Conclusions

In this paper, a new four-dimensional hyperchaotic finance
system has been introduced, based on which a new hyper-
chaos has been generated. This system has simple alge-
braic structure and can display complex characteristics:
chaotic, hyperchaotic, and quasiperiodic phenomena occur
alternately versus parameters. Then, the dynamic properties
including symmetry, dissipation, equilibrium point, Lya-
punov exponent, bifurcation diagram, and Poincaré sections
are studied. Furthermore, three control problems of such
system have been achieved by three single input controllers,
respectively. Compared to the existing ones, the designed
controllers in this paper are simpler. Finally, the validity and
the effectiveness of the obtained theoretical results have been
verified by the provided numerical simulations.
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