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The installation capacity of wind and solar photovoltaic power is continually increasing, which makes renewable energy grid
connection and power generation an important link of China’s power structure optimization. A virtual power plant (VPP) is an
important way to help distributed energy resource grid connection and promote renewable energy industry development. To study
the economic scheduling problem of various distributed energy resources and the profit distribution problem of VPP alliance, this
study builds a separate operation scheduling model for individual VPP and a joint operation scheduling model for VPP alliance, as
well as the profit distribution model. The case study verifies the feasibility and effectiveness of the proposed model. The sensitivity
analysis provides information about VPP decision-making in accordance with the policy environment development trend.

1. Introduction

With the increasing pressure of energy shortage and envi-
ronmental pollution, renewable energy is strongly supported
by the government of China. By the end of 2016, in China,
wind power’s total installed capacity had reached 169 million
kW, ranking the first in the world [1, 2]. Because of the high
transmission cost and backup service quality requirement,
distributed generation (DG) has better flexibility than large-
scale centralized power generation. Distributed wind power
and distributed solar photovoltaic power are two types
of renewable DG, with the most mature technology and
maximum commercial value in China, and have a broad
prospect for development [3]. However, wind and solar
photovoltaic power generation are significantly influenced by
environmental and climatic factors, whichmakes their output
strongly volatile and uncertain and has a large influence on
power grid scheduling and operation [4, 5]. The research
conducted on this problem has mainly focused on power
system day-ahead scheduling with wind and solar photo-
voltaic power grid connection [6, 7] and ancillary service
(AS) decision [8, 9].

A virtual power plant (VPP) is widely studied for solving
distributed renewable energy grid connection problems [10–
13]. A VPP can be regarded as a power resource coordi-
nation management system that combines and optimizes
the energy storage system (ESS), controllable load, electric
vehicle, and other distributed energy resources (DERs) based
on advanced information and communication technology.
It acts as a special plant that participates in power market
and power grid operation [14], helps DERs realize grid
connection, and improves power grid renewable energy
consumption ability. Thus, a VPP is an effective system for
improving energy efficiency andpromoting renewable energy
development.

The existing literature on VPPs has been categorized into
10 types in [15]. The literature that is closely related to the
theme of this paper can be categorized into the following four
types:

(1) Scheduling problems associated with the objective
function and solution: For a VPP, the main purpose
of schedule optimization is tomaximize its profit.The
specific objective function and constraint changewith
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the VPP structure and different DER generation char-
acteristics [16–18]. The corresponding solutions for
the models are based on linear [19, 20] or nonlinear
programing [16, 21], mixed integer programming [22,
23], dynamic programming [24], and decision theory
[25–27]. Multiobjective problems and the methods
for solving them have also been studied [28, 29]. Most
of the scheduling optimization research deals with
day-ahead (24 h) scheduling problems to verify the
effectiveness of the proposed models and the pro-
motion effect on energy efficiency [30]. Some bilevel
day- and hour-ahead short-term (ultrashort-term)
research [6, 31] pursuits higher scheduling accuracy
and reduces system peak-valley shifting and backup
service requirement. Long-term researchmainly aims
to find the optimal ESS capacity configuration and
operation scheme [32, 33].

(2) Scheduling problems associated with power genera-
tion forecast and uncertainty simulation: For a VPP,
uncertainty originates from power generation, load
demand, and load price [15]. In the power gener-
ation section, some models have been proposed to
reduce wind and solar [29, 34, 35] power generation
forecasting error. Stochastic formulation [28, 29] has
also been used to simulate power generation. Other
literature deals with load forecasting [36, 37] and
market price forecasting [38, 39].

(3) Scheduling problems associated with demand re-
sponse (DR): DR can be categorized into two types:
price-based demand response (PBDR) and incentive-
based demand response (IBDR) [15]. PBDR mainly
includes time-of-use (TOU) [40], real-time pricing,
and critical peak pricing [41]. IBDR [28, 29, 42]
mainly includes direct load control and interrupt-
ible load (IL) [18, 43]; emergency demand response,
capacity market, and demand bidding; and AS.

(4) Scheduling problems associated with cooperation
and profit distribution: The related research mainly
focuses on the cooperation and joint scheduling
of DER-based VPPs with the distribution network
[24]. The coordination control of VPPs based on a
multiple-agent system has been widely studied [44,
45]. Reference [46] studied the VPP cooperation
profit distribution problem based on the conditional
value at risk and stochastic dominance constraints.

According to the above literature review, the optimization
scheduling problem of a VPP has been intensively stud-
ied. The optimization model varies in objective function,
constraints, solutions, and DR types. However, VPP joint
scheduling and profit distribution problems have been rarely
studied. This study considers the influence of government
policies on systemprofitwhen building the objective function
and builds an operation optimizationmodel for VPP alliance.
Currently, TOU and IL are the two DR types most widely
implemented in China. DR, including TOU and IL, is applied
in the model, and the Shapley value method is chosen to
distribute profit to each VPP alliance member according to

their marginal contribution. The main contributions of this
paper are summarized as follows:

(1) The optimization models for VPP operation are
proposed, with the objective function of maximizing
system profit. In the objective function, this paper
takes government subsidy policies into consideration,
to discuss its influence on VPP profit.

(2) This paper studies VPP alliance operation and profit
distribution problems. A profit distribution method
based on the Shapley value theory is proposed, where
the profit is distributed among the VPPs according
to their contribution to system profit, and the solving
steps are introduced.

(3) Two case studies with six operation scenarios are con-
ducted to verify the feasibility and effectiveness of the
proposed scheduling model. The profit comparison
shows the effectiveness of the proposed profit distri-
bution method, and the sensitivity analysis discusses
the influence of TOU price and government subsidy
policies on VPP alliance profit.

The rest of this paper is structured as follows. Section 2
introduces the structure of a wind-solar-ESS VPP system
considering IL response, which is subject of this paper. And
then operation models of wind power, solar photovoltaic
power, energy storage system, and interruptible load are
introduced, as the basis of building scheduling model of both
separate operation and joint operation. Based on Section 2, 3
and 4 build corresponding scheduling optimization models
for VPP and VPPs alliance. Section 3 builds a separate
scheduling model for the VPP considering IL, which sets
maximizing VPP profit as the objective function and consid-
ers grid transaction income, reserve cost, load supply income,
government subsidies, and IL cost. The model constraints
include both operation constraints of VPP components and
real-time power balance constraint. Section 4 presents a
joint scheduling model built for VPPs alliance. A profit
distribution model is built according to the Shapley value
method in Section 4. The solution for the proposed model is
also introduced in this section. Section 5 presents a case study
conducted to verify the proposed models and analyzes the
scheduling results of separate operation and joint operation,
as well as the profit distribution result.The sensitivity analysis
in Section 5 changes the government subsidy prices on
renewable energy and TOU price to show their influence on
total profit. Section 6 concludes this study.

2. Modeling for VPP Components

Figure 1 shows the structure of a VPP system with a control
center, which contains a distributed wind power plant, solar
photovoltaic power, an ESS, a load, and an IL.The solid line in
the figure indicates the power flow, while the dashed-dotted
line indicates the capital flow and information flow.

In this structure, the VPP control center can exchange the
pretreatment information with distributed wind power gen-
eration, distributed solar photovoltaic power generation, ESS
charge/discharge, load, distribution network, and electricity



Mathematical Problems in Engineering 3

Solar
photo
voltaic

Wind
power

Load

Interruptible load

energy 
storage 
system

Distribution
network

Electricity
market

VPP control
center

Government

Power flow
Capital flow and information flow

P０６

PＦＩ；＞

C＝ＩＨ

P％３３ F％３３

P７００

F７００

FPV F６００

FＦＩ；＞ 
ＦＩ；＞

F＃／． 
＝ＩＨ

G６００ 
＄％２

R６００ 
＇２）＄

(t)

Figure 1: Operation model of VPP with a control center.

market, and a stable and economical operation of the VPP
can be achieved by controlling the output of the DERs.

The VPP control center collects the incomes, pays for
the costs, and allocates the profit to wind power, solar
photovoltaic power, ESS, and IL. As shown in Figure 1, this
paper assumes that the initial investment of the facilities in
a VPP is fixed, the electricity price between the grid and
VPP system is a TOU price, the electricity price between the
VPP system and internal load is fixed, and the IL price and
government subsidies on renewable energy power generation
are fixed. According to the figure, the VPP systemmust make
maximumuse of the ESS charge/discharge and IL flexibility to
adjust the VPP output and weaken the impact of uncertainty.

2.1. Wind Power and Solar Photovoltaic Output Simulation
Model. This paper uses the scene simulation and reduction
method to simulate the uncertainty of wind power and solar
photovoltaic output [33]. The output prediction correction
function of wind power and solar photovoltaic power gen-
eration is expresses as

𝑔𝑡 = 𝑔𝑓𝑡 + 𝜉𝑡. (1)

We then use the interval method to simulate wind power and
solar photovoltaic output. The output distribution is divided
into multiple intervals, and the point value of an interval is
chosen to be the expected value of the interval. When the
number of partitions is large enough, the predicted output
value is regarded the same as the real value.

The output power is set to exist in three states—high,
medium, and low—and 𝑧𝑜 = 1, 2, 3 indicates the three

output states. Assuming that the probability of state z is𝑝𝑧𝑡 , the output power combination of each scenario is 𝐴 ={𝑔𝑧𝑡 |} 𝑡 = 1, 2, . . . , 𝑇, where T is the set length of a scene.
Assuming the output scene probability to be 𝑝 = ∏𝑡∈𝑇𝑝𝑧𝑡 ,
the wind power and solar photovoltaic power output scene is
obtained.

To simplify the calculation, the number of wind power
and solar photovoltaic output scenes needs to be reduced. In
this paper, minimizing the Kantorovich distance between the
initial and reduced scenes is set as the reduction objective. Let
us assume that 𝑃 = [𝜉𝑚𝑛]𝑇×𝑁 indicates the initial scene set,
whereN is the number of initial scenes. 𝜉𝑚𝑡 is the initial scene
m at t time, and the probability of 𝜉𝑚𝑡 is 𝑝𝑚. 𝑄 = [𝜉𝑚𝑡]𝑇×�̃�
is the scene set. Then, the Kantorovich distance between the
initial scene set P and reduced scene set Q is calculated as

𝐷𝐾 (𝑃, 𝑄) = inf [
[
𝑁∑
𝑚=1

�̃�∑
𝑛=1

𝜂𝑚𝑛𝑐𝑇 (𝜉𝑚𝑡, 𝜉𝑛𝑡) : 𝜂𝑚𝑛

≥ 0, 𝑁∑
𝑚=1

𝜂𝑚𝑛 = 𝑞𝑛, �̃�∑
𝑛=1

𝜂𝑚𝑛 = 𝑝𝑚, ∀𝑚, ∀𝑛]
]
,

𝑐𝑇 (𝜉𝑚𝑡, 𝜉𝑛𝑡) = 𝑇∑
𝑡=1

𝜉𝑚𝑡 − 𝜉𝑛𝑡 .

(2)

Assuming that the initial scene set P is reduced to scene
setQ, with J being the deleted scene set, then theKantorovich
distance between P and Q is expressed as
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𝐷𝐾 (𝑃, 𝑄) = ∑
𝑚∈𝐽

𝑝𝑚min
𝑛∉𝐽

𝑐𝑇 (𝜉𝑚𝑡, 𝜉𝑛𝑡) . (3)

To calculate the probability 𝑞𝑛 of scene 𝜉𝑛𝑡 (𝑛 ∉ 𝐽), we
consider the probability of 𝜉𝑛𝑡 to be equal to the summation
of the probability of this scene in the initial set and that of
the recently deleted scene in the initial scene set. The deleted
scene probability 𝑞𝑛 can be calculated as

𝑞𝑛 = 𝑝𝑛 + ∑
𝑚∈𝐽(𝑛)

𝑝𝑛,
𝐽 (𝑛) = {𝑚 ∈ 𝐽 : 𝑛 = 𝑛 (𝑚)} ,
𝑛 (𝑚) ∈ arg min

𝑚∈𝐽(𝑛)
𝑐𝑇 (𝜉𝑚𝑡, 𝜉𝑛𝑡) , ∀𝑚 ∈ 𝐽.

(4)

Assuming D to be the number of scenes that need to be
deleted, the scenario reduction can be obtained as

min [∑
𝑚∈𝐽

𝑝𝑚min
𝑛∉𝐽

𝑐𝑇 (𝜉𝑚𝑡, 𝜉𝑛𝑡) : 𝐽 ⊂ {1, 2, . . . , �̃�} , 𝐷 = 𝑁 − �̃�] . (5)

The settings of the deleted scene number influence the
reduction result. To obtain a reasonable deleted scene num-
ber, this paper uses the maximum scene reduction strategy.
The scenes that are not far from o in the Kantorovich distance
are considered as the reference scenes:

∑
𝑚∈𝐽

𝑝𝑚min
𝑛∉𝐽

𝑐𝑇 (𝜉𝑚𝑡, 𝜉𝑛𝑡) ≤ 𝑜. (6)

Equation (6) requires that the similarity between the
reserved scene set and the initial scene set is within the
required range.

2.2. ESS OperationModel. Themost important feature of ESS
operation is the state of charge (SOC) of the battery. SOC is
calculated as

𝐶SOC,𝑡 = 𝐶SOC,𝑡−1 + 𝜇𝑡−1𝑃𝐶𝑡−1𝜂𝐶 − (1 − 𝜇𝑡−1) 𝑃𝐷𝑡−1𝜂𝐷. (7)

To ensure the service life of ESS, SOC and charge/
discharge power should be restricted within a certain range.
Then, the constraints of SOC and charge/discharge are
described as

0 < 𝐶SOC,min ≤ 𝐶SOC,𝑡 ≤ 𝐶SOC,max < 1,
0 ≤ 

𝑃𝐶𝑡 − 𝑃𝐶𝑡−1Δ𝑡
 ≤ 𝑅𝐶𝑡 ,

0 ≤ 
𝑃𝐷𝑡 − 𝑃𝐷𝑡−1Δ𝑡

 ≤ 𝑅𝐷𝑡 ,
0 ≤ 𝑃𝐶𝑡−1 ≤ 𝑃𝐶max,
0 ≤ 𝑃𝐷𝑡−1 ≤ 𝑃𝐷max.

(8)

2.3. IL Model. IL is another controllable resource that works
with ESS to adjust the system output and help the VPP
system in achieving an economic and stable operation. IL
is agreed upon before VPP system scheduling through the
IL contract. IL response is based on the contract, which has
relatively weaker controllability than ESS operation. And it

is hard to optimize ESS operation and IL response at the
same time. Therefore, to make full use of ESS adjustability,
this paper gives priority to the ESS operation strategy and
makes IL response strategy based on ESS operation strategy.
The incentive means of IL are compensation fee. During
peak load periods, IL can stop electricity consumption to
reduce the VPP’s internal load demand. The VPP control
center then pays for the corresponding unused electricity at
IL price. Therefore, IL is a type of peak-avoidance measure
and is not considered when (generally in valley load periods)
the IL customer makes up for the corresponding power
consumption. The main content of IL includes contract
validity, advance notice time, load interruption duration, load
interruption capacity, and compensation fee [26]. Ignoring
the influence of advance notice time, the IL in a VPP system,
k, at time t is expressed as

𝑃con,𝑡 = 𝐼∑
𝑖=1

𝜇con
𝑖,𝑡 ⋅ 𝑐con𝑖,𝑡 . (9)

Simultaneously, IL scheduling should meet the IL con-
straints, interruption continuous-time constraints, and the
total interruptible time in the contract period constraints:

𝜇con
𝑖,𝑡 ⋅ 𝑐con𝑖,𝑡 ≤ 𝑐con𝑖 ,

𝜇con
𝑗,𝑖 ⋅ 𝜇con

𝑗+1,𝑖 ≤ 1,
𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑟, 𝑘 = 1, 2, . . . , 𝑟con𝑖 − 1,

𝜇con
𝑗,𝑖 ⋅ 𝜇con

𝑗+𝑟con𝑖 ,𝑖
= 0,

𝜇con
𝑗,𝑖 = 1,

𝜇con
𝑗−1,𝑖 = 0,
24∑
𝑡=1

𝜇con
𝑖,𝑡 ≤ 𝑇con

𝑖 .

(10)

3. Separate Operation Scheduling Model for
VPP Considering IL

3.1. OptimizationObjective andConstraints. Assume the total
time length is 𝑇. This paper assumes that the wind power,
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solar power, and ESS correspond to the power resource type
V = 1, 2, 3. The economic factors of a VPP include the
government subsidies, reserve cost, power sale income from
the power grid, power sale income from the load, IL cost,
and power purchase cost to the power grid. The separate
scheduling of the VPP sets maximizing the total profit as the
optimization objective:

𝑓pro
𝑘

= max
𝑆𝑘∑
𝑠=1

𝜑𝑘,𝑠 𝑇


∑
𝑡=1

(𝑅pro
𝑘,gov,𝑡 − 𝑅pro

𝑘,rev,𝑡 + 𝑅pro
𝑘,grid,𝑡

+ 𝑅pro
𝑘,load,𝑡 − 𝑅pro

𝑘,con,𝑡)Δ𝑡,
(11)

𝑅pro
𝑘,gov,𝑡 =

𝑉∑
𝑖=V

𝜆𝑘,V𝑃𝑘,𝑠,V𝑡, (12)

𝑅pro
𝑘,rev,𝑡 = 𝜆+𝑓 (Δ𝑃𝑘,𝑠,𝑡) + 𝜆−𝑓 (−Δ𝑃𝑘,𝑠,𝑡) , (13)

𝑓 (𝑥) = {{{
𝑥 𝑥 ≥ 0,
0 𝑥 < 0, (14)

𝑅pro
𝑘,grid,𝑡 = 𝜆TOU [ 𝐼∑

𝑖=1

𝑃𝑘,𝑠,V𝑡 − (𝑃load,𝑘,𝑡 − 𝑃con,𝑘,𝑡)] , (15)

𝑅pro
𝑘,load,𝑡 = 𝜆load𝑃load,𝑡, (16)

𝑅pro
𝑘,con,𝑡 =

𝐽∑
𝑗=1

𝑇con𝑗∑
𝑡=1

𝜇con
𝑗,𝑡 ⋅ 𝑐con𝑗,𝑡 ⋅ 𝜆con, (17)

Δ𝑃𝑘,𝑠,𝑡 = 𝑃0𝑘,𝑡 − 𝑉∑
V=1

𝑃𝑘,𝑠,V𝑡 − (𝑃load,𝑘,𝑡 − 𝑃con,𝑘,𝑡) . (18)

Equations (12), (13), (15), (16), and (17) calculate the
government subsidy, reserve cost, transaction income, power
supply income, and IL cost, and (18) calculates the VPP
output deviation.

The VPP operation should meet the constraints of each
component, namely, (1)–(10), as well as the power balance
constraint:

𝑉∑
V=1

𝑃𝑘,𝑠,V𝑡 − 𝑃𝑘,grid,𝑡 = 𝑃load,𝑘,𝑡 − 𝑃con,𝑘,𝑡. (19)

3.2. VPP Separate Operation Scheduling Model. According
to Section 3.1, the VPP separate operation sets maximiz-
ing the total profit as the optimization objective and the
operation constraints of each component and the power
balance constraint as the optimization constraints.Therefore,
the VPP separate operation model can be described as
follows:

max 𝑓pro
𝑘

s.t. equation (1) – (10)
equation (19).

(20)

4. Joint Operation Scheduling
Optimization and Profit Distribution
Model for VPP Alliance

4.1. VPP Joint Scheduling Optimization Model. For VPP
alliance, maximizing the total profit is set as the optimization
objective:

max 𝐹 = max
𝑆ℎ∑
𝑠=1

𝜑𝑧.𝑠 𝑇


∑
𝑡=1

(𝑅𝑧gov,𝑡 − 𝑅𝑧rev,𝑡 + 𝑅𝑧grid,𝑡 + 𝑅𝑧load,𝑡 − 𝑅𝑧con,𝑡) Δ𝑡 −min (max𝑃grid
𝑧 −min𝑃grid

𝑧 ) . (21)

The power balance constraint can now be expressed as
𝐼∑
𝑖=1

𝑃𝑧𝑠,𝑖𝑡 − 𝑃𝑧grid,𝑡 = 𝑃𝑧load,𝑡 − 𝑃𝑧con,𝑡. (22)

The calculation methods of the above economic factors
are based on the same principle as that of the separate
scheduling mode ((12)–(18)). Then, the joint scheduling
mode can be expressed as:

max 𝐹
s.t. equation (1) – (10)

equation (22) .
(23)

The proposed models could be solved by mixed integer
nonlinear programming method and the simplified solution
has been described in the existing literature [6].

4.2. Profit Distribution Based on Shapley Value. The Shapley
value was proposed by Shapley LS in 1953 and is used to
solve the profit distribution problem in multiparty coop-
eration. Let us assume that several entities are involved in
an economic activity and that each type of cooperation
portfolio gains some profit. If the entities’ economic activity
is nonconfrontational, the increase in the number of entities
that participates in the cooperation would not reduce the
total alliance profit. In addition, the total profit reaches
the maximum when all entities join the alliance. Then, the
Shapley value method provides a profit distribution scheme
for the alliance according to the marginal contribution of the
members’ entry to the total profit. Then, the average profit
distribution phenomenon is effectively circumvented and the
members gain their profit according to their value to the
alliance. For an alliance member, the bigger the contribution
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to the alliance is, the more the profit distributed from the
alliance is.

The cooperation among VPPs meets the above assump-
tions of the Shapley value. Multiple VPPs’ joint scheduling
profit is not less than the summation of their individual
operation profits. Therefore, this paper applies the Shapley
valuemethod to theVPP alliance profit distribution problem.
The contribution value of each VPP is a weighted value of
several alliance portfolios probability and VPP profit in the
portfolios.

Let us assume that 𝑍 = {1, 2, . . . , ℎ} is the set of VPPs and
that, for eachmember in𝑍, there is a real value function V(𝑧),
where V(𝑧)meets

V (⌀) = 0,
V (𝑧1 ∪ 𝑧2) ≥ V (𝑧1) + V (𝑧2) , 𝑧1 ∩ 𝑧2 = ⌀. (24)

Then, [𝑍, V] is a cooperation measure of h VPPs. V is
the characteristic function and, in this model, equals the
objective function value.𝑥𝑙 is the income of member 𝑙 (𝑙 ∈ 𝑍) gained from the
cooperation portfolio with maximum profit. Then, under
the cooperation profit 𝑍, the profit distribution is 𝑥 =(𝑥1, 𝑥2, . . . , 𝑥ℎ). This cooperation must meet the following
constraints:

𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥ℎ = V (𝑍) , (25)

𝑥𝑙 ≥ V (𝑙) , 𝑙 = 1, 2, . . . , ℎ, (26)

where (25) indicates the relation between distributed profits
and total profit and (26) indicates that the distributed profit
should not be less than the original profit of the alliance
member.

The profit 𝜑𝑙(V) that member l gains under𝑍 cooperation
profit can be calculated as

𝜑𝑙 (V) = ∑
𝑧∈𝑍𝑙

𝑤 (|𝑧|) [V (𝑧) − V (𝑍𝑙 )] ,
𝑙 = 1, 2, . . . , ℎ,

𝑤 (|𝑧|) = (ℎ − |𝑧|)! (|𝑧| − 1)!ℎ! .
(27)

4.3. Model Solving. The steps for solving the scheduling
model and profit distribution model are drawn in Figure 2
and are listed as follows:

(1) Generate wind power and solar photovoltaic power
output scenes.

(2) Perform scene reduction based on Kantorovich dis-
tance to obtain typical output scenes.

(3) Input the VPP parameters and obtain the VPP set Z.
(4) For each VPP in Z, calculate its separate operation

schedulingmodel and alliance joint schedulingmodel
except for this VPP. Repeat this step until all possible
alliance types are considered.

(5) Allocate the total profit based on the Shapley value
method.

Table 1: Interruptible load capacity and the maximum continuous
time of the three VPPs.

VPP IL
V1 #1, 200Kw, 3 h; #2, 200Kw, 1 h; #3, 150Kw, 2 h; #4, 100Kw, 3 h
V2 #5, 200Kw, 1 h; #6, 250Kw, 6 h; #7, 200Kw, 2 h
V3 #8, 300Kw, 3 h; #9, 100Kw, 3 h

5. Case Study

5.1. Case Set. To analyze the influence of joint scheduling,
this paper uses the following two case studies to simulate and
analyze the operation results.

Case 1 (separate operation case). The VPP control center
optimizes the wind power, solar power, and ESS output to
reduce the power purchase cost and increase the power sale
income separately.

Case 2 (operation in alliance). The VPPs form alliances and
set maximizing the total profit as the optimization objective.
The alliance can be formed between twoVPPs or among three
or more VPPs. The total profit would be distributed to the
alliance participants according to the Shapley value method.

5.2. Basic Data. An IEEE 33-point system is chosen as the
simulation system. The daily internal load of the VPP is
simulated based on a typical daily load curve [6]. Three
VPPs are considered the study subject, which contain wind
power of 1.5, 3.5, and 1.5MW; solar photovoltaic power of
2.5, 3.5, and 3.5MW; and ESS power of 3, 3, and 4MWh.
Hereinafter, the threeVPPs are represented asV1, V2, andV3.
According to the wind and solar power output forecast and
scene reduction method, 20 typical scenes of the three VPPs
are obtained as the basic data. The IL capacity and maximum
continuous time are listed in Table 1, and other parameters are
listed in Table 2, where the symbol “C” refers to the storage
capacity of ESS.

5.3. Scheduling Results.

Case 3 (separate scheduling result). Choosing V1 as a rep-
resentative of the separate scheduling result and feature
of the three VPPs, the output in 24 h of V1 is drawn in
Figure 3 and the ESS charge/discharge and IL situations
are drawn in Figure 4. According to Figure 1, the wind
and solar photovoltaic power mainly produce output from
0:00–16:00, especially during 7:00–16:00; in contrast, the
renewable power output from 16:00–23:00 is relatively small.
The adjustable output, namely, ESS discharge and IL, is called
at 7:00–10:00 and 16:00–20:00, where ESS discharge is called
in both float load period and peak load and IL is called in the
peak load period (10:00 and 18:00–20:00).

The “grid” in Figure 1 indicates the power provided by
the distributed power grid; when its value is greater than
zero, V1 purchases electricity from the distributed power grid
and, otherwise, sells electricity to the distributed power grid.
In the separate scheduling case, V1 can meet the internal
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photovoltaic power output scenes

Scene reduction based on Kantorovich 
distance

Input parameters of each VPP and form
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Solve the optimization scheduling model
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Figure 2: Model solving steps.

Table 2: Parameters of the energy storage system, electricity price, and government subsidies.

Parameter Value Parameter Value
Peak load time 10:00–11:00, 15:00–20:00 Wind subsidies 0.28 Yuan/Kw
Float load time 07:00–09:00, 12:00–14:00, 21:00–22:00 Solar subsidies 0.42 Yuan/Kw
Valley load time 01:00–06:00, 23:00–24:00 ESS subsidies 0.42 Yuan/Kw
Peak price 0.83 Yuan/Kw Initial and end ESS SOC 0.2
Float price 0.49 Yuan/Kw ESS maximum charge/discharge power 0.2 ∗ C
Valley price 0.17 Yuan/Kw Maximum ESS output climbing 0.1 ∗ C
Up reserve price 1.2 Yuan/Kw Maximum SOC 0.9
Down reserve price 0.5 Yuan/Kw Minimum SOC 0.1
Load price 0.49 Yuan/Kw Maximum abandoned wind rate 5%
IL price 0.60 Yuan/Kw Maximum abandoned solar rate 5%
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Figure 3: Changes of V1 output in 24 hours.
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Figure 4: V1’s ESS and IL state changes in separate scheduling case.

load demand and sell electricity to the distributed grid at
10:00 and during 12:00–14:00, while in other times, V1 cannot
meet the internal load demand and purchases electricity from
the distributed power grid. Although the TOU price during
15:00–20:00 is very high, the VPP system does not have
enough adjustability to reduce the electricity purchase cost.

ESS is restrained by SOC,maximumcharge and discharge
power, and the climbing constraints, so the adjustability is
limited. According to Figure 4, during peak load periods,
ESS is only called to discharge power during 16:00–18:00 and
charge power during the float load period, which is not an
ideal scenario. Most of the times, 24 h ESS canmeet the peak-
valley shifting requirement. Therefore, IL is called to adjust
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Figure 5: Changes of V1-V2-V3 alliance output in 24 hours.

the total output at 10:00 and during 17:00–20:00, which is
reasonable.

Therefore, combining Figures 1 and 2, in the separate
scheduling mode, the renewable power output is not enough
to meet the load during 15:00–9:00 and at 11:00, and because
of the TOU price, the VPP system must increase the power
output and decrease the electricity purchased from the
distributed power grid during peak load periods. However,
the adjustability of ESS and IL is limited and the scheduling
result is far from ideal.

The operation cost and income of the three VPPs in
the separate scheduling case are listed in Table 3, and the
operation profits of the three VPPs are calculated. Neither V1
nor V3 can gain profit from the grid transactions, and only
V2 gains a little profit from the grid transactions. However,
due to the uncertainty of the renewable output, V2 has the
largest renewable installation capacity and, correspondingly,
bears the maximum reserve cost. For adjustable power, ESS
is mostly called in V2, while V2 has the same ESS capacity as
that of V1. In general, in the separate scheduling mode, the
operation result of V2 is better than those of V1 and V3 and
the lack of adjustability significantly limits VPP profits.

Case 4 (joint scheduling case). In this case, the joint schedul-
ing involves cooperation between two VPPs and that among
three VPPs.This paper chooses the cooperation among three
VPPs as a representative of the operation characteristics and
compares it with the separate scheduling case. The output in
24 h of the VPP alliance is drawn in Figure 5, and the ESS
charge/discharge and IL situations are drawn in Figure 6.

According to Figure 5, the overall output changes signifi-
cantly when compared to the separate scheduling case, which
is reflected in the “grid” curve.TheVPP alliance canmeet the
internal load and sell electricity to the distributed power grid
during 9:00–16:00, which contains the first peak load period
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Table 3: Operation cost and income of three VPPs in separate scheduling case (Yuan).

VPP Load Grid transactions WPP subsidy PV subsidy ESS subsidy IL Reserve costs Profit
VPP1 28405 −10692 7013 5802 608 −433 −1352 29351
VPP2 33449 245 13943 8123 1435 −335 −1995 54865
VPP3 26250 −4424 7013 8122 699 −207 −1821 35632
Total 88104 −14871 27969 22047 2742 −975 −5168 119848
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Figure 6: VPP alliance’s ESS and IL state changes in separate
scheduling case.

and part of the second peak load period of the day. During
other times, the VPP alliance still purchases electricity from
the distributed power grid, but the purchase rate is obviously
reduced, especially during 15:00–20:00, which is the second
peak load period of the day.

In Figure 6, the SOCs in the initial and end times are the
same (0.2). ESS is mainly called to discharge power during
15:00–20:00 and IL is called at 10:00. Comparing Figures 4
and 6, the discharge is more concentrated in the peak load
periods and mainly in the valley load period, rather than
the float load period, which is much more ideal than that
in the separated scheduling case. This is because the joint
scheduling case provides ESS and IL with more room for
adjustment to help the system adjust the overall output.

5.4. Profit Distribution. There are five alliance types among
the three VPPs: separate operation (scenario #1), one-to-
one alliance (scenarios #2, #3, and #4), and overall alliance
(scenario #5). The profits of each VPP and VPP alliance are
listed in the first seven lines in Table 4.The profits distributed
to V1, V2, and V3 using the Shapley value method are listed
in the second-last line in Table 4, and their power generation
incomes, calculated using revenue and cost, are listed in the
last line.

In Table 4, VPPs in the separate operation scenario obtain
the least total profit and individual profit. The total profit in

24 h is 127 Yuan less than the second-least profit (in scenario
#3). The VPPs in the overall alliance obtain the largest total
profit and individual profit. The total profit of the overall
alliance is 5864Yuanmore than the second-largest total profit
alliance portfolio. The profits of individual VPPs increased
by 2516, 1414, and 3925 Yuan when compared to those in the
separate operation scenarios.

Comparing the second-last line and last line of Table 4,
the profit distributed by the Shapley value method is different
from that calculated using revenue and cost. This is because
V2 has the maximum wind installation capacity and, with
the help of ESS adjustability, can reduce the abandoned wind
and gain more revenue from customers and subsidy. This
result for V2 is more significant than those for V1 and V3.
For VPP alliance, the total profit originates from renewable
energy consumption and less power purchase in the peak load
period (with high TOU price). This profit growth is caused
by the common contribution of V1, V2, and V3. Hence, the
Shapley value method distributes the profit to the marginal
contribution of each VPP, which is much fairer than simply
calculating the revenue and cost of each VPP and ignoring
their contribution to the alliance.

Let us take V1 as an example for showing the profit
distribution process, as listed in Table 5. The values of
lines 2 and 3 in Table 5 are calculated based on those in
Table 4, where the V(𝑧\1) value in the third column equals
all profits of sets not containing V1 while V1 and V2 are
in cooperation. Therefore, the corresponding profit value
equals V3’s individual operation profit. Then, lines 3 to 6 are
calculated according to the Shapley value method, and the
weighted profit is calculated as the profit distributed to V1.

Combining the output result and adjustable power state
changes shown in Section 5.2, the joint scheduling and profit
distribution method based on the Shapley value can clearly
increase the profit of the alliance participants, which verifies
the validity of the model proposed by this paper.

5.5. Sensitivity Analysis. As shown in Table 3, this paper
chooses government subsidy policy and TOU price as the
variables and analyzes their influence on VPP alliance total
profit. The sensitivity analysis is based on the {V1,V2,V3}
alliance type, and the result is shown in Figure 7. According
to Figure 7, theWPP and PV subsidy prices have a significant
influence on the total profit of VPP alliance, peak load price
and float load price have an obvious influence on the total
profit of VPP alliance, and valley load and ESS subsidy
prices have relatively less influence on the total profit of VPP
alliance.

For government subsidy factors, wind power’s total instal-
lation power generation capacity is less than that of solar
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Table 4: Profits of each individual VPP and alliance and profit distribution result (Yuan).

Scenario number Alliance type VPP profits
V1 V2 V3 V1 + V3 V1 + V2 + V3

#1 {V1}, {V2}, {V3} 29351 54865 35632 - 119848
#2 {V1}, {V2,V3} 29351 91864 - 121215
#3 {V1,V2}, {V3} 84343 35632 - 119975
#4 {V1,V3}, {V2} - 54865 - 66974 121839
#5 {V1,V2,V3} 127703 - 127703
Distributed profit {V1,V2,V3} 31867 56279 39557 - 127703
Power generation income {V1,V2,V3} 30083 61844 35775 - 127703

Table 5: The profit distribution calculation progress of V1.

𝑧 V1 V1 ∪V2 V1 ∪V3 V1 ∪V2 ∪V3
V(𝑧) (Yuan) 29351 84343 66974 127703
V(𝑧\1) (Yuan) 0 35632 54865 91864
V(𝑧) − V(𝑧\1) (Yuan) 29351 48711 12109 35839
|𝑧| 1 2 2 3
𝑤|𝑧| 1/3 1/6 1/6 1/3
𝑤|𝑧|[V(𝑧) − V(𝑠\1)] (Yuan) 9784 8119 2018 11946
Weighted profit of V1
(Yuan) 31867
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Figure 7: Sensitivity analysis of government subsidy policy and
TOU price on VPP alliance total profit.

photovoltaic power, but its effective utilization hours are
muchmore than those of solar photovoltaic power.Therefore,
when the VPP system structure changes, the influences of
these two factors may change. Currently, because of the
rapid development of wind power industry and growing
wind power installation generation capacity, as well as wind
power consumption problems, the government is planning to
reduce wind power generation subsidy. Therefore, the VPPs

or VPP alliances’ total profit may decrease in the future
because of changes in the wind power subsidy policy. On
the other hand, solar photovoltaic and ESS industries are
still important supporting objects for government.The power
system reform and power market require much more ESS
capacity than the existing capacity to enable a safe and stable
operation of the power grid, which means the government
would vigorously support ESS.

The TOU price is now determined by the local gov-
ernment. However, with the power system reform carried
out, the TOU price for VPP can be determined by the
distributed network or the upper power grid in the future.
The development of the power market gives TOU price more
possibility of change. In addition, the case study shows the
applicability of our proposed model in providing reference
information for VPPs or VPP alliances in decision-making.

6. Conclusions

This study develops a separate operation scheduling model
for a VPP and a joint scheduling optimization and profit
distributionmodel for VPP alliance to study the collaborative
cooperation problem among VPPs. The model takes VPP
components, including wind power plant, solar photovoltaic,
ESS, and IL operation constraints, as well as power balance
constraint, into consideration and sets maximizing the total
profit as the optimization objective. The case study draws the
following conclusions:

(1) Both the separate operation model and joint schedul-
ing model can optimize the VPP output to the grid
to increase wind power usage efficiency, control the
peak-valley rate, and increase the total profit, which
verifies the feasibility and effectiveness of the model.

(2) The joint scheduling provides ESS and IL with more
room for adjustment to help the system optimize
the overall output and gain more profit. VPPs would
obtain not less profit from the cooperation operation
than their individual operation, which forms the base
of the collaboration among the VPPs.

(3) Using the Shapley value method to allocate the
alliance profit to individual VPPs can reflect individ-
ual contributions andmeet both individual rationality
and overall rationality, which is important implemen-
tation method of VPP alliance.
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(4) The subsidy policies may influence the total profit
significantly. The development of renewable energy,
ESS, and overall power structure would change the
government’s subsidy policies. Our proposed model
can provide reference information on profit change
for VPPs or VPP alliances in decision-making.

(5) With the policy support of the government policy in
China, VPPs can increase their total profit by coop-
erating in alliance and gain more profit distribution
according to their contribution. The proposed model
can provide a reasonable cooperation operation and
profit distribution scheme.

(6) The Shapley value in this paper focuses on operation
profit and ignores the operation risk changes of
VPPs. Thus, reasonable weight adjustment parame-
ters set based on the risk would make the distribution
method fairer.

Nomenclature

𝐴: Set of the output scenarios𝐶SOC,𝑡: The SOC of ESS at 𝑡 time
C𝑆𝑂𝐶,min: Minimum SOC
CSOC,max: Maximum SOC𝑐con𝑖,𝑡 : Interruptible capacity of customer 𝑖 at 𝑡

time𝑐con𝑖 : Interruptible capacity of customer 𝑖 signed
in the contract𝑔𝑓𝑡 : Predicted power output at 𝑡 timeℎ: Number of members in set 𝑍𝑖, 𝑗, 𝑟: Index of IL customers𝐽: The deleted scene set𝑘: Index of power plant𝑙: Index of alliance member𝑚, 𝑛: Index of power generation scene𝑛𝑧: Number of the members involved in profit
distribution�̃�: Scenes number after reduction𝑜: Scene reduction accuracy𝑝: The output scene probability𝑝𝑧𝑡 : Probability of scene 𝑧 at 𝑡 time𝑃: The initial scene set𝑃0𝑘,𝑡: The day-ahead declared total output of
virtual power plant 𝑘 at 𝑡 time𝑃𝑘,𝑠,V𝑡: The actual output of power resource V in
virtual power plant 𝑘 under scene 𝑠 at 𝑡
timeΔ𝑃𝑘,𝑠,𝑡: The deviation of the actual output from
the predicted value at 𝑡 time𝑃load,𝑘,𝑡: The internal load of virtual power plant 𝑘
at 𝑡 time𝑃con,𝑘,𝑡: The IL capacity of virtual power plant 𝑘 at𝑡 time𝑃𝑘,grid,𝑡: The power supplied by the power grid to
virtual power plant 𝑘 at 𝑡 time𝑃𝑧𝑠,𝑖𝑡: The power supplied by the power grid to
the VPP alliance at 𝑡 time

𝑃𝑧grid,𝑡: The total internal load of the VPP alliance
at 𝑡 time𝑃𝑧con,𝑡: The total IL capacity of the VPP alliance at𝑡 time𝑃𝐶max: The maximum charge power of ESS𝑃con,𝑡: Power output of IL at 𝑡 time𝑃𝐷max: The maximum discharge power of ESS𝑃𝐶𝑡−1: The charge power at 𝑡 − 1 time𝑃𝐷𝑡−1: The discharge power at 𝑡 − 1 time𝑝𝑚: Probability of scene 𝜉𝑚𝑡𝑄: The reduced scene set𝑅𝑧gov,𝑡: Government subsidy at 𝑡 time𝑅𝑧rev,𝑡: The reserve cost of the VPP alliance at 𝑡
time𝑅𝑧grid,𝑡: The transaction income of the VPP
alliance with the power grid at 𝑡 time𝑅𝑧load,𝑡: The load supply income of the VPP
alliance at 𝑡 time𝑅𝑧con,𝑡: The IL cost of the VPP alliance at 𝑡 time𝑅pro

𝑘,gov,𝑡: The total government subsidy to
renewable energy generation and energy
storage system discharge𝑅pro

𝑘,rev,𝑡: The reserve cost of VPP grid connection𝑅pro
𝑘,grid,𝑡: The VPP transaction income with the

power grid𝑅pro
𝑘,load,𝑡: VPP internal load supply income𝑅pro
𝑘,con,𝑡: The interruptible load cost𝑟con𝑖 : The maximum interruption continuous

time of customer 𝑖𝑟con,tot𝑖 : The maximum total interruption time in
the contract period of customer 𝑖𝑆𝑘: Power generation scene of plant 𝑘𝑠ℎ: Output scenes number of VPP alliance𝑠: Index of power plant generation scene𝑡: Index of time𝑇con

𝑖 : The maximum interruptible time in a day𝜇𝑡−1: The 0-1 variable of charge and discharge
state at 𝑡 − 1 time, when equals 1 means
ESS charges power at 𝑡 − 1 time, and when
equals 0 means ESS discharges power at𝑡 − 1 time𝜇con

𝑖,𝑡 : The 0-1 variable of interrupt state of
customer 𝑖 at 𝑡 time, when equals 1
customer 𝑖 interrupts its electricity
consumption with the agreed power in
contract at 𝑡 time

V: Power resource index𝑉: Number of power resource types
V(𝑍\𝑙): The profit of subset 𝑧 without member 𝑙𝑤(|𝑧|): Weighted coefficient of alliance 𝑍𝑥𝑘: The distributed profit to virtual power

plant 𝑘𝑧𝑜: Index of renewable energy output state𝑍: Set of VPP members|𝑧|: The number of alliance 𝑍𝑍𝑙: All subsets of 𝑍 that contains member 𝑙𝜆+/𝜆−: The up/down reserve price𝜆TOU: The TOU price
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𝜆load: The fixed power supply price between
VPP and its internal load𝜆con: Interruptible load price VPP pays to IL
customers𝜑𝑧.𝑠: The probability of scene 𝑠𝜑𝑘,𝑠: Probability of plant 𝑘 in scene 𝑠𝜉𝑡: The forecast error at 𝑡 time𝜉𝑚𝑡: Scene𝑚 at 𝑡 time𝜉𝑛𝑡: The deleted scene 𝑛 at 𝑡 time𝜂𝐶/𝜂𝐷: ESS energy conversion efficiency in
charge/discharge state𝜂𝑚𝑛: Probability parameter of scene𝑚 and 𝑛𝛿2𝑡 : The standard deviation of forecast error at𝑡 time.
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