
Research Article
F-DDIA: A Framework for Detecting Data Injection Attacks in
Nonlinear Cyber-Physical Systems

Jingxuan Wang,1 Lucas C. K. Hui,1 S. M. Yiu,1 Gang Zhou,2 and Ruoqing Zhang1

1Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
2Peking University, Beijing, China

Correspondence should be addressed to Jingxuan Wang; hongkongwangjingxuan@gmail.com

Received 10 April 2017; Accepted 7 June 2017; Published 10 August 2017

Academic Editor: Leo Y. Zhang

Copyright © 2017 Jingxuan Wang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data injection attacks in a cyber-physical system aim at manipulating a number of measurements to alter the estimated real-time
system states. Many researchers recently focus on how to detect such attacks. However, most of the detection methods do not work
well for the nonlinear systems. In this paper, we present a compressive sampling methodology to identify the attack, which allows
determining howmany and whichmeasurement signals are launched.The sparsity feature is used. Generally, our methodology can
be applied to both linear and nonlinear systems.The experimental testing, which includes realistic load patterns from NYISO with
various attack scenarios in the IEEE 14-bus system, confirms that our detector performs remarkably well.

1. Introduction

A cyber-physical system (CPS) is a dynamical system, which
integrates the computational components (i.e., real-time
operations) with its physical components (i.e., hardware
facilities). Examples of CPS can be large-scale distributed
systems, such as smart grid, transportation networks, railway
control system, and medical monitoring. The design of CPS
involves various of disciplines, such as control engineering,
software engineering, and mechanics and networks. Partic-
ularly, control engineering is a communication network for
transmitting sensor data (measurements) so that the system
operator can in real-time monitor the production process.
Among the control disciplines, a scheme called bad data
detector (BDD) is applied to detect whether there exists a
disruption of sensor data caused by the genetic malfunction
or malicious attacks. The classical BDD technique is to
utilize the “residual principle,” which calculates the difference
between the observed readings and the computed readings
based on the estimated system states. When an attack is
injected into the system, BDD will remove those readings
(collected from the sensors), of which residuals are larger
than a threshold.

As the increased vulnerabilities proposed by the recent
discoveries of system malware, concerns about the security

of CPS are arising. In 2011, a malware, known as Stuxnet
[1], successfully penetrated the networks of Iran’s uranium
enrichment infrastructure via programmable logic con-
trollers. From this instance, we can see that it is possible
for an attacker to introduce errors on physical readings.
Inspired by this attacking strategy, a class of attacks named
data injection attacks are proposed in recent years, which
can affect the system control algorithms and thus lead to
abnormal operations [2, 3]. Hence, sufficient attention should
be paid to the detection techniques against this attack, which
is easy to be implemented by strong adversaries who are quite
knowledgeable about the targeted systems.

To fight against this attack, existing works focus on
the detection of data injection attacks and the protection
of nonlinear measurements [4, 5]. Detectors utilizing the
sparsity and low rank of the system topology are proposed
in [6–8]. Greedy and game theory methods have been used
for optimizing the placement of devices [9], to lower the pos-
sibility of the construction of data injection attacks. Applying
the machine learning techniques to conduct the classification
is proposed in [10]. They propose a “first difference aware”
machine learning (FDML) classifier to detect the cyber
attacks. A graph theory-based algorithm is proposed in [11] to
determine which measurement signals an attacker will alter.
However, we notice that all detection models except [11, 12]
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are conducted in a constrained setting, by assuming that the
functions from system states tomeasurements are linear.This
assumption is too stringent to fit for some nonlinear systems,
for example, alternative current (AC) model in power grids.

This paper investigates an alternative approach to detect
data injection attacks in the nonlinear system. We propose a
detector framework named F-DDIA to reconstruct the initial
states of the plant from the corrupted observations, which
formulates an error correction problem. In particular, we
notice that, due to the property of data injection attacks,
only a small fraction of the observations are supposed to be
attacked at a given time instance.Thus, we formulate the error
correction problem as a sparse optimization problem which
can be solved with the general ℓ1-minimization program
technique. In this paper, we apply Douglas-Rachford tech-
niques [13] among minimization techniques. Furthermore,
we employ the “divide-and-conquer” principle to construct
a compressive sensing model of a linear subspace, which is
interesting in the general mathematical settings.

To validate and illustrate our algorithm, we use real-
world CPS power grids as a case study. In particular, we use
the data injection attacks model proposed in [2], where the
attacks are directed by injecting false data into the sensors.
Simulations based on IEEE 14-bus test systems validate the
effectiveness of our methodology. The results show that the
proposed algorithm can efficiently identify the data injection
attacks (i.e., with high precision and recall values) and recover
the initial system states (i.e., with small average phase error).

The rest of this paper is organized as follows. Section 2
presents the system model in a nonlinear system, including
preliminaries related to a broad class of attacks. Section 3
states the problem and derives a theoretical justification of
the efficacy of the security algorithm in a general cyber-
physical systemmodel. Section 4 analyzes the performance of
the proposed approach through simulations. Section 5 gives
concluding remarks.

2. Preliminaries

2.1. System Model and Bad Data Detector. A cyber-physical
system is usually described by the following widely adopted
discrete-time nonlinear dynamical model:𝑥 [𝑘 + 1] = 𝛿 (𝑥 [𝑘]) + 𝐵𝑢 [𝑘] + 𝑤 [𝑘] , (1a)𝑧 [𝑘] = ℎ (𝑥 [𝑘]) + 𝑒 [𝑘] , (1b)

where at time 𝑘 ∈ I ≜ {0, . . . , 𝑇 − 1}: 𝑥[𝑘] ∈ R𝑛 is the system
state; 𝑢[𝑘] ∈ R𝑙 is the bounded input vector; 𝑎[𝑘] ∈ R𝑚 is
the measurement vector (data collected by the sensors);𝑤[𝑘]
denotes the state noise (i.e., Gaussian with known statistics);
and V[𝑘] denotes measurement errors. Here the matrix 𝐵 is a
constant matrix, 𝛿 : R𝑛 → R𝑛 denotes the state transition
function and ℎ : R𝑛 → R𝑚 denotes the topology of the
system, which are the nonlinear functions with respect to
the states. The process of estimating system states from the
measurements is called state estimation.

In traditional weighted least squares (WLS) state esti-
mation, the system states are valid only if the measurement

residual vector 𝑟[𝑘] is less than a threshold [14],𝑟 [𝑘] = ‖𝑧 [𝑘] − ℎ (𝑥 [𝑘])‖ℓ2 , (2)

where 𝑥[𝑘] is the estimated system state after the process
of state estimation. Specifically, the presence of bad mea-
surements is inferred if 𝐽𝑟[𝑘] > 𝜏, where 𝜏 is a chosen
identification threshold. Upon detection of bad data, two
kinds of methods, named the largest normalized residual test
(𝑟max
𝑁 ) and hypothesis testing identification (HTI) method,

are widely used to identify whether the measurements con-
tain bad data.

2.2. Data Injection Attack. Data injection attacks are com-
monly known as false data injection attacks [2], data framing
attacks [3, 15], in the sense of the following definition.

Definition 1. A vector 𝑎[𝑘] is called a (𝜅,𝑚)-data injection
attack if there exists an index set 𝑖 ∈ A, whereA is the set of
manipulated measurements and A ⊂ P ≜ {1, . . . , 𝑚}, such
that

(i) ‖𝑎[𝑘]‖ℓ0 ≤ 𝜅;
(ii) 𝑎𝑖[𝑘] = 0, ∀𝑖 ∈ P \A;
(iii) 𝑎𝑖[𝑘] ̸= 0, ∀𝑖 ∈ A.

To implement this class of attack, it requires the attacker
to have the knowledge of either the measurements informa-
tion (𝑧) or the topology configuration (ℎ(⋅)). Specifically, data
injection attack can be written in the form of𝑧 [𝑘] = 𝑧 [𝑘] + 𝑎 [𝑘] = ℎ (𝑥 [𝑘]) + 𝑎 [𝑘] , (3)

where 𝑎[𝑘] is the injected false measurement data. There are
manyways to generate this type of attacks. For example, if ℎ(⋅)
is available to the attacker, the attack 𝑎 can be constructed in
the following form (namely, false data injection attack in a
linear system): 𝑎 = 𝐻𝑐, (4)

where 𝑐 is the error injected on the system state and 𝐻 =𝜕ℎ(𝑥)/𝜕𝑥 is the Jacobian matrix. However, to implement this
attack, the attacker needs to take control of at least 𝜅 sensors,
where 𝜅 ≤ 𝑚.

2.3. Measurement Dynamics. We can use the polynomial
regression approach to fit the measurement dynamics,𝑧 [𝑘 + 1] = 𝛿 (𝑥 [𝑘]) + 𝐵𝑢 [𝑘] + 𝑤 [𝑘] = 𝛿󸀠 (𝑧 [𝑘]) , (5)

where 𝛿󸀠 : R𝑚 → R𝑚 denotes the dynamics of the mea-
surements. Furthermore, we define 𝑧𝑖[𝑘] as the 𝑖th corrupted
measurement at time 𝑘. That is, a polynomial regression
model, which expresses the dynamics of the 𝑖thmeasurement
can be given as follows:𝛿󸀠𝑖 (𝑧𝑖 [𝑘]) = 𝛾𝑖,1 (𝑧𝑖 [𝑘])𝑙 + ⋅ ⋅ ⋅ + 𝛾𝑖,𝑙 (𝑧𝑖 [𝑘]) + 𝛾𝑖,𝑙+1, (6)
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where 𝑙 is called the degree of the polynomial and 𝑖 ∈ P.
We denote 𝛾𝑖 = (𝛾𝑖,1, . . . , 𝛾𝑖,𝑙+1) ∈ R𝑙+1. As 𝛿󸀠𝑖 (𝑧𝑖[𝑘]) can be
expressed in matrix form in terms of a response vector 𝑧𝑖[𝑘]
and a parameter vector 𝛾𝑖,𝑗, where 1 ≤ 𝑗 ≤ 𝑙+1, we can rewrite𝑧𝑖[𝑘 + 1] as a system of linear equations:

𝑧𝑖 [𝑘 + 1] = 𝑋( 𝛾𝑖,1...𝛾𝑖,𝑙+1), (7)

where 𝑋 = ((𝑧𝑖[𝑘])𝑙 ⋅ ⋅ ⋅ 𝑧𝑖[𝑘] 1) ∈ R𝑙+1. Thus, the dynam-
ical matrix 𝛾 can be estimated as𝛾𝑖 = (𝑋𝑇𝑋)−1𝑋𝑇𝑧𝑖 [𝑘 + 1] (𝑖 ∈ P) . (8)

3. Our Methodologies

In this section, we formulate the detection problem as an
error correction problem. We will further describe and
explain why we can use ℓ1-norm minimization technique
(including Douglas-Rachford) to solve the detection prob-
lem.

3.1. Sparse Optimization Problem Formulation. In this paper,
we consider the scenario that an attacker is limited to the
resources of 𝜅 sensors and possesses the knowledge of system
topology ℎ, as well as the historical measurements 𝑍 =(𝑧[0]; . . . ; 𝑧[𝑇−1]) ∈ R𝑚𝑇. Denote𝑍 = (𝑧[0]; . . . ; 𝑧[𝑇−1]) ∈
R𝑚𝑇 as the initial measurements (without attacks) in time
base.The obtained temporal observations𝑍 can be expressed
as 𝑍 = 𝑍 +A, (9)

where A = (𝑎[0]; . . . ; 𝑎[𝑇 − 1]) ∈ R𝑚𝑇. Remark that, due to
the property of data injection attacks, only a small fraction
of the observations are supposed to be attacked at a given
time instance. Hence, noticing the sparsity of vector A, the
detection problem can be converted to

minimize
A

‖A‖ℓ0
subject to 𝑍 = 𝑍 +A,‖𝑎 [𝑘]‖ℓ0 ≤ 𝜅, 𝑘 ∈ I, (10)

where 𝜅 is the maximum number of the meters that can be
compromised. Under certain conditions which are explained
above, we will focus on the problem of recovering the sparse
vector A from 𝑍. And we denote the optimal solution of
problem (10) as A∗.

3.2. Subproblem Formulation. In the rest of this paper, we
define the matrices A = [A1, . . . ,A𝑇𝑚+𝑚], 𝑍 = [𝑍1, . . . ,𝑍𝑇𝑚+𝑚], and 𝑍 = [𝑍1, . . . , 𝑍𝑇𝑚+𝑚]. We further define the

matrices 𝐸,𝑊, and𝑊 in the following forms:

𝐸 = [[[[[
𝐸𝑇1...𝐸𝑇𝑚

]]]]] = [[[[[
A1 A𝑚+1 . . . A𝑇𝑚+1... ... d

...
A𝑚 A2𝑚 . . . A𝑇𝑚+𝑚

]]]]] ∈ R
𝑚×𝑇;

𝑊 = [[[[[
𝑊𝑇1...𝑊𝑇𝑚

]]]]] = [[[[[
𝑍1 𝑍𝑚+1 . . . 𝑍𝑇𝑚+1... ... d

...𝑍𝑚 𝑍2𝑚 . . . 𝑍𝑇𝑚+𝑚
]]]]] ∈ R

𝑚×𝑇;
𝑊 = [[[[[[

𝑊𝑇1...𝑊𝑇𝑚
]]]]]] = [[[[[

𝑍1 𝑍𝑚+1 . . . 𝑍𝑇𝑚+1... ... d
...𝑍𝑚 𝑍2𝑚 . . . 𝑍𝑇𝑚+𝑚

]]]]] ∈ R
𝑚×𝑇.

(11)

We can further obtain the following formulation among 𝐸𝑖 ∈
R𝑇,𝑊𝑖 ∈ R𝑇, and𝑊𝑖 ∈ R𝑇:𝑊𝑖 = 𝑊𝑖 + 𝐸𝑖 (𝑖 ∈ P) ,

‖A‖ℓ0 = 𝑚𝑇∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩A𝑗󵄩󵄩󵄩󵄩󵄩ℓ0 = 𝑚∑
𝑖=1

󵄩󵄩󵄩󵄩𝐸𝑖󵄩󵄩󵄩󵄩ℓ0 = ‖𝐸‖ℓ0 . (12)

We denote by col𝑘∈I(𝐸) ∈ R𝑚 the columns of the matrix𝐸. Hence, problem (10) is equivalent to

minimize
𝐸

‖𝐸‖ℓ0
subject to 𝑊 = 𝑊 + 𝐸,󵄩󵄩󵄩󵄩col𝑘 (𝐸)󵄩󵄩󵄩󵄩ℓ0 ≤ 𝜅, 𝑘 ∈ I. (13)

Note that ‖𝐸‖ℓ0 = ∑𝑚𝑖=1 ‖𝐸𝑖‖ℓ0 ; we can further solve problem
(13) by seeking for the locally optimal choice for each 𝐸∗𝑖 with
the hope of finding a globally optimal solution (𝐸∗):

minimize
𝐸𝑖

󵄩󵄩󵄩󵄩𝐸𝑖󵄩󵄩󵄩󵄩ℓ0
subject to 𝑊𝑖 = 𝑊𝑖 + 𝐸𝑖,(𝑖 ∈ P) . (14)

The solution of this subproblem (14) will be given in
Section 3.4. After solving 𝑚 above optimization problems,
the optimal solution 𝐸∗ will be checked by the following
constraints:𝑓 (col𝑘 (𝐸∗)) = sgn (𝜅 − 󵄩󵄩󵄩󵄩col𝑘 (𝐸∗)󵄩󵄩󵄩󵄩ℓ0) . (15)

For any 𝑘 ∈ I, if 𝑓(col𝑘(𝐸∗)) = 1, there exists the attack;
otherwise, there does not exist any data injection attack.

3.3. Solving Subproblem by ℓ1-Minimization. Recall that the
dynamical coefficients (𝛾1, . . . , 𝛾𝑚) are obtained (by polyno-
mially fitting in Section 2.3). In view of adversary,𝑊𝑖 can be
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rewritten as

𝑊𝑖 = (((
(

𝑧𝑖 [0]𝑧𝑖 [1]𝑧𝑖 [2]...𝑧𝑖 [𝑇 − 1]
)))
)

= (((
(

𝑧𝑖 [0] + 𝑎𝑖 [0]𝑧𝑖 [1] + 𝑎𝑖 [1]𝑧𝑖 [2] + 𝑎𝑖 [2]...𝑧𝑖 [𝑇 − 1] + 𝑎𝑖 [𝑇 − 1]
)))
)

= ((((
(

1𝛾𝑖,𝑙(𝛾𝑖,𝑙)2...(𝛾𝑖,𝑙)𝑇−1
))))
)

𝑧𝑖 [0]

+ [[[[[[[[[[[

1𝛾𝑖,𝑙 1(𝛾𝑖,𝑙)2 𝛾𝑖,𝑙 1... ... d(𝛾𝑖,𝑙)𝑇−1 . . . 𝛾𝑖,𝑙 1
]]]]]]]]]]]
𝐸𝑖

+(((
(

0𝑔𝑖 (𝑧 [0])𝑔𝑖 (𝑧 [1]) + 𝛾𝑖,𝑙𝑔𝑖 (𝑧 [0])...𝑔𝑖 (𝑧 [𝑇 − 1]) + 𝛾𝑖,𝑙𝑔𝑖 (𝑧 [𝑇 − 2]) + ⋅ ⋅ ⋅
)))
)

.

(16)

Then we use the notation 𝑊̃𝑖 as follows:𝑊̃𝑖 = 𝑊𝑖
−(((
(

0𝑔𝑖 (𝑧 [0])𝑔𝑖 (𝑧 [1]) + 𝛾𝑖,𝑙𝑔𝑖 (𝑧 [0])...𝑔𝑖 (𝑧 [𝑇 − 1]) + 𝛾𝑖,𝑙𝑔𝑖 (𝑧 [𝑇 − 2]) + ⋅ ⋅ ⋅
)))
)= Γ𝑖𝑧𝑖 [0] + Ψ𝑖𝐸𝑖,

(17)

where the matrices Γ𝑖 ∈ R𝑇 and Ψ𝑖 ∈ R𝑇×𝑇 are

Γ𝑖 = ((((
(

1𝛾𝑖,𝑙(𝛾𝑖,𝑙)2...(𝛾𝑖,𝑙)𝑇−1
))))
)

,

Ψ𝑖 =
[[[[[[[[[[[

1𝛾𝑖,𝑙 1(𝛾𝑖,𝑙)2 𝛾𝑖,𝑙... ... d(𝛾𝑖,𝑙)𝑇−1 . . . 1
]]]]]]]]]]]
.

(18)

In this paper, We have an approximation 𝑔𝑖(𝑧[𝑘]) ≐𝑔𝑖(𝑧[𝑘]). The reason we take this approximation is that the
difference of 𝑧[𝑘] and 𝑧[𝑘] is𝑔𝑖 (𝑧 [𝑘]) − 𝑔𝑖 (𝑧 [𝑘]) = 𝛾𝑖,1𝑧𝑖 [𝑘]𝑙 + ⋅ ⋅ ⋅ + 𝛾𝑖,𝑙−1𝑧𝑖 [𝑘]2− 𝛾𝑖,1𝑧𝑖 [𝑘]𝑙 − ⋅ ⋅ ⋅− 𝛾𝑖,𝑙−1𝑧𝑖 [𝑘]2 . (19)

For example, 𝑔𝑖(𝑧[𝑘])−𝑔𝑖(𝑧[𝑘]) = 𝛾𝑖,1𝑎𝑖[𝑘](1+𝑎𝑖[𝑘])when 𝑙 =2. Since the values of 𝛾𝑖,1 are small (𝑖 = 1, . . . , 𝑚), 𝑔𝑖(𝑧[𝑘]) ≐𝑔𝑖(𝑧[𝑘]). We have done experiments about this fact, and the
experimental result supports our approximation claim.Then,𝑊̃𝑖 in (17) can be updated as𝑊̃𝑖≐ 𝑊𝑖

−(((
(

0𝑔𝑖 (𝑧 [0])𝑔𝑖 (𝑧 [1]) + 𝛾𝑖,𝑙𝑔𝑖 (𝑧 [0])...𝑔𝑖 (𝑦 [𝑇 − 1]) + 𝛾𝑖,𝑙𝑔𝑖 (𝑧 [𝑇 − 2]) + ⋅ ⋅ ⋅
)))
)

. (20)

We can further take the QR decomposition of Γ𝑖 ∈ R𝑇 [16]:

Γ𝑖 = 𝑆(𝑅10 ) = [𝑆𝑖1 𝑆𝑖2] (𝑅10 ) , (21)

where 𝑆 ∈ R𝑇×𝑇, 𝑆𝑖1 ∈ R𝑇, 𝑆𝑖2 ∈ R𝑇×(𝑇−1), 𝑅𝑖1 ∈ R1, and[𝑆𝑖1 𝑆𝑖2] is orthogonal. Before multiplying (17) by [𝑆𝑖1 𝑆𝑖2]𝑇,
we can have[𝑆𝑇𝑖1𝑆𝑇𝑖2] 𝑊̃𝑖 = (𝑅𝑖10 ) 𝑧𝑖 [0] + [𝑆𝑇𝑖1𝑆𝑇𝑖1]Ψ𝑖𝐸𝑖. (22)
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By using the second block row, we can solve the following
problem to obtain the sparse solution 𝐸, instead of A:𝑆𝑇𝑖2𝑊̃𝑖 = 𝑆𝑇𝑖2Ψ𝑖𝐸𝑖 (𝑖 ∈ P) . (23)
Hence, the problem is reduced to reconstruct a sparse vector𝐸𝑖 from the observations 𝑆𝑇𝑖2𝑊̃𝑖. Problem (14) is equivalent to
the following problem:

minimize
𝐸𝑖

󵄩󵄩󵄩󵄩𝐸𝑖󵄩󵄩󵄩󵄩ℓ0
subject to 𝑆𝑇𝑖2Ψ𝑖𝐸𝑖 = 𝑆𝑇𝑖2𝑊̃𝑖, (24)

where 𝐸𝑖 ∈ R𝑇. As is discussed above, solving problem (24) is
in general NP-hard since it requires searches over all subsets
of columns of 𝑆𝑇𝑖2Ψ𝑖, a procedure which has exponential
complexity. To overcome this problem, a frequently discussed
approach considers a similar program in the ℓ1-norm:

minimize
𝐸𝑖

󵄩󵄩󵄩󵄩𝐸𝑖󵄩󵄩󵄩󵄩ℓ1
subject to 𝑆𝑇𝑖2Ψ𝑖𝐸𝑖 = 𝑆𝑇𝑖2𝑊̃𝑖. (25)

This operation is common and can be found in [13, 17, 18].
Throughout this paper, we consider Douglas-Rachford split-
ting algorithm [13] in the context of above ℓ1-minimization.

3.4. Theoretical Guarantee. In this paper, we are also inter-
ested in studying the theoretical conditions under which
obtaining the solution of the problem is guaranteed. It is
well known that an inverse problem of finding the solution
to the compressive sensing problem involves mathematical
questions on the existence, uniqueness, and stability of the
solution. On the other hand, the equivalence of the solution
between (13) and (25) is not very clear and proof may be
needed. We therefore consider two questions for a given𝑆𝑇𝑖2Ψ𝑖 and signal 𝑆𝑇𝑖2𝑊̃𝑖 (𝑖 ∈ P): (i) uniqueness: under which
conditions a possible sparsest solution is necessarily unique
to problem (13)/(25)? and (ii) equivalence: under which
conditions a sparse solution to problem (13) is also equivalent
to the solution of problem (25)?

3.4.1. Uniqueness. As is described in Section 3.3, solving
problem (24) requires exhaustive searches over all subsets of
columns of 𝑆𝑇𝑖2Ψ𝑖. Actually, it is a combinatorial procedure
in nature and has exponential complexity. Inspired by [7,
17], Theorem 3 provides a sufficient condition for a unique
solution to problem (24). It guarantees obtaining a unique
sparse vector (i.e., 𝐸) from the corrupted observations (i.e.,𝑍) for the ℓ0 minimization. We denote by row𝑖∈P(𝐸) ∈ R𝑇

the rows of the matrix 𝐸. Before giving the theorem, we need
to first introduce the following definition [17].

Definition 2 (see [17, Definition 1.1]). Let 𝑆𝑇𝑖2Ψ𝑖 be the matrix
with the finite collection of vectors col(𝑆𝑇𝑖2Ψ𝑖)𝑘∈I ∈ R𝑚 as
columns. For every integer 1 ≤ ] ≤ |I|, we define the ]-
restricted isometry constants 𝜌] to be the smallest quantity
such that 𝑆𝑇𝑖2Ψ𝑖 obeys(1 − 𝜌]) 󵄩󵄩󵄩󵄩𝐸𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩𝑆𝑇𝑖2Ψ𝑖𝐸𝑖󵄩󵄩󵄩󵄩󵄩2 ≤ (1 + 𝜌]) 󵄩󵄩󵄩󵄩𝐸𝑖󵄩󵄩󵄩󵄩2 , (26)

for all real coefficients 𝐸𝑖∈P.

The number 𝜌] measures how close the vectors
row𝑖(𝑆𝑇𝑖2Ψ𝑖) are to behave. In particular, for ] = 1, we
can have1 − 𝜌1 ≤ 󵄩󵄩󵄩󵄩󵄩row𝑖 (𝑆𝑇𝑖2Ψ𝑖)󵄩󵄩󵄩󵄩󵄩2 ≤ 1 + 𝜌1, for ∀𝑖 ∈ P. (27)

To see the relevance of 𝜌] to the error recovery problem,
we consider the following theorem.

Theorem3. In a cyber-physical system, let 𝑆𝑖2, 𝑊̃𝑖,Ψ𝑖, ], 𝜅, and
I be specified as above. A sparse solution 𝐸 can be uniquely
recovered from solving the optimization problem (13), if 𝜌2] <1, and ‖col𝑘∈I(𝐸)‖ℓ0 ≤ 𝜅.
Proof. Wefirst prove that if 𝜌2] < 1, there exists a unique𝐸𝑖 to
problem (24). Suppose for the sake of contradiction that the
solution is not unique; then there exist two solutions 𝐸opt1 ̸=𝐸opt2. Thus, there exists at least one variable 𝑖 (1 ≤ 𝑖 ≤ 𝑚)
such that 𝑆𝑇𝑖2Ψ𝑖row𝑖 (𝐸opt1) = 𝑆𝑇𝑖2𝑊̃𝑖,𝑆𝑇𝑖2Ψ𝑖row𝑖 (𝐸opt2) = 𝑆𝑇𝑖2𝑊̃𝑖, (28)

where ‖row𝑖(𝐸opt1)‖ℓ0 = ‖row𝑖(𝐸opt2)‖ℓ0 = ]. Then we can
have 𝑆𝑇𝑖2Ψ𝑖 (row𝑖 (𝐸opt1) − row𝑖 (𝐸opt2)) = 0. (29)

By construction row𝑖(𝐸opt1) − row𝑖(𝐸opt2) is of size less than
or equal to 2]. Applying (27) and the hypothesis 𝜌2] < 1, we
conclude that ‖row𝑖(𝐸opt1) − row𝑖(𝐸opt2)‖2 = 0, contradicting
the hypothesis that row𝑖(𝐸opt1) and row𝑖(𝐸opt2) are distinct.

Then we prove that 𝐸 is unique to problem (13). Given
the proof that 𝐸𝑖, or equivalently row𝑖(𝐸), can be uniquely
obtained by solving problem (24) and 𝐸 = [𝐸1; . . . ; 𝐸𝑚], we
conclude that 𝐸 is unique to the following problem:

minimize
𝐸

‖𝐸‖ℓ0
subject to 𝑊 = 𝑊 + 𝐸. (30)

And given the condition that ‖col(𝐸)𝑘∈I‖ℓ0 ≤ 𝜅, we can
conclude that 𝐸 is also unique to problem (13).

In the literature, a lot of efforts have been made to
determine how sparse the desired corrected error must be for
equivalence to hold. As we consider to use ℓ1-minimization
instead of ℓ0 (to obtain the desired error), the conditions in
the above lemma may not be guaranteed. Thus, Theorem 4
gives a general condition, which guarantees a unique solution𝐸𝑖 for ℓ1-minimization problem.

Theorem 4. In a cyber-physical system, let 𝑆𝑖2, 𝑊̃𝑖, and Ψ𝑖
be specified as above. A sparse solution 𝐸 can be uniquely
recovered from solving the optimization problem

minimize
𝐸

‖𝐸‖ℓ1
subject to 𝑊 = 𝑊 + 𝐸,󵄩󵄩󵄩󵄩col (𝐸)𝑘󵄩󵄩󵄩󵄩ℓ1 ≤ 𝜅, 𝑘 ∈ I, (31)
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if, for all 𝐸∗ ̸= 𝐸, we have ‖(𝐸−𝐸∗)𝐽‖ℓ1 −‖(𝐸−𝐸∗)𝐽‖ℓ1 < 0 and‖col(𝐸)𝑘∈I‖ℓ0 ≤ 𝜅, where 𝐽 and 𝐽 are the support of vectors 𝐸
and 𝐸∗ − 𝐸, respectively.
Proof. We prove that given any 𝐸opt1 ̸= 𝐸opt2 and ‖(𝐸opt2 −𝐸opt1)𝐽‖ℓ1 − ‖(𝐸opt2 − 𝐸opt1)𝐽‖ℓ1 < 0 and ‖col𝑘(𝐸)‖ℓ0 ≤𝜅 (𝑘 ∈ I), we can always uniquely recover 𝐸∗ from
(31). Suppose for the sake of contradiction that the solution
is not unique; then there exist two instinct solutions that𝐸opt1 ̸= 𝐸opt2 but ‖𝐸opt1‖ℓ1 = ‖𝐸opt2‖ℓ1 . We use the vectors
Aopt1 = [row1(𝐸opt1); . . . ; row𝑚(𝐸opt1)] ∈ R𝑚𝑇 and Aopt2 =[row1(𝐸opt2); . . . ; row𝑚(𝐸opt2)] ∈ R𝑚𝑇 instead of 𝐸opt1 and𝐸opt2, respectively.󵄩󵄩󵄩󵄩󵄩Aopt1󵄩󵄩󵄩󵄩󵄩ℓ1 = 󵄩󵄩󵄩󵄩󵄩𝑍 − 𝑍opt1󵄩󵄩󵄩󵄩󵄩ℓ1 = 󵄩󵄩󵄩󵄩󵄩𝑍opt1 + A

opt1 − 𝑍opt2󵄩󵄩󵄩󵄩󵄩ℓ1= 󵄩󵄩󵄩󵄩󵄩󵄩(Aopt2 − 𝑍opt1 + 𝑍opt2)
𝐽

󵄩󵄩󵄩󵄩󵄩󵄩ℓ1+ 󵄩󵄩󵄩󵄩󵄩󵄩(𝑍opt1 − 𝑍opt2)
𝐽

󵄩󵄩󵄩󵄩󵄩󵄩ℓ1≥ 󵄩󵄩󵄩󵄩󵄩Aopt2
𝐽

󵄩󵄩󵄩󵄩󵄩ℓ1 − 󵄩󵄩󵄩󵄩󵄩󵄩(𝑍opt1 − 𝑍opt2)
𝐽

󵄩󵄩󵄩󵄩󵄩󵄩ℓ1+ 󵄩󵄩󵄩󵄩󵄩󵄩(𝑍opt1 − 𝑍opt2)
𝐽

󵄩󵄩󵄩󵄩󵄩󵄩ℓ1= 󵄩󵄩󵄩󵄩󵄩Aopt2
𝐽

󵄩󵄩󵄩󵄩󵄩ℓ1 − 󵄩󵄩󵄩󵄩󵄩󵄩(Aopt2 − A
opt1)
𝐽

󵄩󵄩󵄩󵄩󵄩󵄩ℓ1+ 󵄩󵄩󵄩󵄩󵄩󵄩(Aopt2 −A
opt1)
𝐽

󵄩󵄩󵄩󵄩󵄩󵄩ℓ1 > 󵄩󵄩󵄩󵄩󵄩Aopt2
𝐽

󵄩󵄩󵄩󵄩󵄩ℓ1= 󵄩󵄩󵄩󵄩󵄩Aopt2󵄩󵄩󵄩󵄩󵄩ℓ1 ,

(32)

contradicting the hypothesis that Aopt1 ̸= Aopt2. Therefore,
we conclude that row𝑖(𝐸) is unique to problem (25). Equiva-
lently, 𝐸 is unique to the following problem:

minimize
𝐸

‖𝐸‖ℓ1
subject to 𝑊 = 𝑊 + 𝐸. (33)

Furthermore, given the condition that ‖col(𝐸)𝑘∈I‖ℓ0 ≤ 𝜅, we
conclude that 𝐸 is unique to problem (31).

In conclusion,Theorems 3 and 4 show that the hypothesis
of our theorem holds provided that the sparse error can be
uniquely corrected. Naturally, if the assumption does not
hold, then neither does (13) or (31).

3.4.2. Equivalence. Next, wewill discuss the conditions under
which it is theoretically possible to use ℓ1-minimization
to obtain the sparse solution 𝐸 (or A) instead of ℓ0-
minimization. We derive an algorithm for precisely verifyingℓ0-ℓ1 equivalence. We can use the following definition and
proposition proposed in [19].

Definition 5 (see [19, Definition 2]). We define SK𝑑(𝐵1) as
the collection of all 𝑑-dimensional faces of the ℓ1-ball 𝐵:

SK𝑑 (𝐵1) ≐ {𝜇 ∈ R
𝑚𝑇 : 󵄩󵄩󵄩󵄩𝜇󵄩󵄩󵄩󵄩ℓ1 = 1, 󵄩󵄩󵄩󵄩𝜇󵄩󵄩󵄩󵄩ℓ0 ≤ 𝑑 + 1} , (34)

where 𝐵1 ≐ {𝜇 ∈ R𝑚𝑇 : ‖𝜇‖ℓ1 ≤ 1}.

Proposition 6 (see [19, Proposition 3]). In a cyber-physical
system, let 𝑆𝑖2, 𝑊̃𝑖, and Ψ𝑖 be specified as above. For every 𝐸𝑖 ∈
R𝑇 and 𝑆𝑇𝑖2𝑊̃ ∈ R𝑇−1, the following implication holds:󵄩󵄩󵄩󵄩󵄩𝑆𝑇𝑖2𝑊̃ − 𝑆𝑇𝑖2Ψ𝑖𝐸∗𝑖 󵄩󵄩󵄩󵄩󵄩ℓ0 ≤ 12C𝑖 󳨐⇒ 𝐸∗𝑖= argmin

𝐸𝑖

󵄩󵄩󵄩󵄩󵄩𝑆𝑇𝑖2𝑊̃ − 𝑆𝑇𝑖2Ψ𝑖𝐸𝑖󵄩󵄩󵄩󵄩󵄩ℓ1 , (35)

if and only if ∀𝜇 ∈ SKC𝑖−1
(𝐵1), ∀𝑆𝑇𝑊̃ ∈ R𝑇 \ 0 and ‖𝜇 +𝑆𝑇𝑖2Ψ𝑖𝑆𝑇𝑊̃‖ℓ1 > 1, where C𝑖 = (number of columns of 𝑆𝑇𝑖2Ψ𝑖

that are linearly independent).
Proof. See Proposition 3 in [19].

Note that implication (35) is the condition that we want
to verify. As we need to deal with high-dimensional matrices
(e.g., 𝐸 ∈ R𝑚×𝑇), we need to give asymptotic guarantees
of equivalence, which is described in Proposition 6. In our
experiments, it is confirmed that we can benefit from this
equivalence, even when the matrices are in high dimensions.

4. Experimental Results

4.1. Case Study: Power Network. We employ a real-world
power grid system as the test system we used. A state-space
control model in a smart grid consists of buses connected
to transmission lines. We use the IEEE 14-bus system as the
test system [20]. Moreover, we use the real load data in year
2016 fromNewYork Independent SystemOperator (NYISO).
The NYISO load data include the 11 regions (namely, A-H).
Similar to [12], the following procedures are used to estimate
5-minute system state (𝑥) using load pattern from NYISO.

(1) Link each load bus of IEEE 14-bus system to one
region of NYISO using the following matrix:

(2 3 4 5 6 9 10 11 12 13 14
F C I B G K E H J D A

) . (36)

The first row of the matrix is the bus number of
IEEE 14-bus system and the second row represents the
corresponding NYISO region index.

(2) Normalize the load data collected from NYISO to
the initial real and reactive load of the corresponding
IEEE 14-bus system. Due to lack of reactive load
information in NYISO database, we use the direct
current (DC) power flow model to estimate system
states.This condition can be relaxedwhen the reactive
load data is available.

(3) Add the normalized load data on the IEEE 14-bus
system.

(4) Estimate the system state (𝑥) from the solution of
power flow analysis for benchmarking purpose. In
this paper, we apply Newton-Raphson algorithm for
estimating 𝑥.
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Table 1: Regression coefficients for the predicting at 11:55 pm, Jun
30, 2016. 𝛾1 𝛾2 𝛾3
Zone A −7.12 × 10−6 1.02 −14.62
Zone B −2.66 × 10−6 1.01 −2.47
Zone C −1.63 × 10−5 1.05 −41.82
Zone D −1.5 × 10−3 2.39 −314.79
Zone E −2.14 × 10−5 1.03 −12.99
Zone F −8.72 × 10−6 1.02 −16.77
Zone G −4.03 × 10−6 1.01 −3.64
Zone H −6.22 × 10−5 1.04 −4.19
Zone I −2.67 × 10−5 1.04 −13.75
Zone J −1.76 × 10−6 1.02 −474.37
Zone K −1.27 × 10−6 1.01 −18.61

Similar to [12], we estimate 𝑇 operating points of the
system state (𝑥) by adding the normalized 5-minute load data
on the MATPOWER IEEE 14-bus case file [21]. In this paper,
we use one-day NYISO data as the testing set. Thus, on one
day, there will be 288 operating points. So, we set 𝑇 = 288
to construct the F-DDIA method. Second, we prepare the
attacked samples as follows. We let the parameter 𝜅 range
from 1 to 𝑚 = 54 in the IEEE 14-bus test system. For
each 𝜅, we simulate 𝜅-specific meters to attempt the attack
construction (𝑎 = 𝐻𝑐) with a randomly injected error 𝑐.Thus,
at most, a total of 6564 labeled samples, which includes 6017
attack samples and 547 initial samples (without attacks), are
prepared.

4.2. Parameters in Load Fitting. According to Section 2.3, the𝛾 in (6) is the parameter of themeasurement (load) dynamical
model for power grid system. We estimate 𝛾 by polynomial
regression using data traces of 𝑧[𝑘 + 1] − 𝑧[𝑘]. The historical
load data in NYISO and attack samples prepared in previous
session are used to construct the matrix 𝛾 (i.e., polynomial
regression in order of 𝑙) in (6).Themeasurement dynamics at
each time 𝑘 are estimated by the data of 24 hours prior to the
time. For example, if we want to estimate the load dynamics
at 0:05 am Jun 30, Zone F, the load data samples (which may
contain attacks) during 0:05 am, Jun 29–0:00 am, Jun 30 are
used.

We are concerned about what the regression order 𝑙
is appropriate for fitting the dynamics of the system. The
experimental results show that 𝑙 = 2 is a suitable regression
order. As the increase of 𝑙 will improve the load fitting
accuracy at the cost of computation time, we will use 𝑙 = 2
in the rest of our experiments. Table 1 gives the regression
results for predicting the dynamical model by using the load
data on Jun 30, 2016.

Specifically, we take Zone F for an example; Figure 1
shows a quadratic polynomial fit of load in Zone F with 95%
confidence bounds (the 95% interval indicates that we have
a 95% chance that a new observation will fall within the
bounds.). We collect the hourly data to fit the model, where
the blue “+” represents the actual hourly load, and the green
curve describes the fitting model.

Actual load
Fit load

Upper confidence bound
Lower confidence bound
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Figure 1: The quadratic polynomial fit of the load data in Zone F
with 95% confidence bounds on Jun 30, 2016, when 𝑙 = 2.
4.3. Performance Matrices. When A is calculated by our
detector, we set the following rule to identify whether the
system is attacked:

D𝑖 [𝑘] = {{{1 󵄨󵄨󵄨󵄨A𝑖+11𝑘󵄨󵄨󵄨󵄨 ≥ 𝜎ob × 󵄨󵄨󵄨󵄨󵄨𝑍𝑖+11𝑘󵄨󵄨󵄨󵄨󵄨0 otherwise, (37)

where 𝜎ob is the observation threshold when detecting data
injection attacks. The parameter 𝜎ob will be discussed later in
this section. We denote the user-defined thresholdD𝑖[𝑘] = 1
when 𝑧𝑖[𝑘] is identified as attacked.Then,we identifywhether𝑧[𝑘] is attacked by aggregating the values of D𝑖[𝑘] (𝑖 ∈ P).
We predict 𝑧[𝑘] as attacked (denoted as Label[𝑘] = 1) if the
sum of D𝑖[𝑘] is larger than the all-users-defined threshold
N𝑎, and secure (denoted as Label[𝑘] = 0) otherwise:

Label [𝑘] = {{{{{1 𝑚∑
𝑖=1

D𝑖 [𝑘] > N𝑎0 otherwise. (38)

In smart grid networks, the major concern is not only
the detection of attack cases but also that of the secure
cases. In other words, after following the rule (38), we need
to be careful of the samples with high precision and recall
performance in order to avoid false alarms. Therefore, we
utilize precision and recallmetrics, which are commonly used
for classification tasks [10]. Specifically, as Table 2 defines,
we denote CA as the number of attacked samples, which
we identified as attacked, WA as the number of secure
samples, which we identified as attacked, CS as the number
of secure samples, which we identified as secure, and WS
as the number of attacked samples, which we identified as
secure.
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(b) 𝜎ob = 0.03
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Figure 2: Precision of attacked samples for the IEEE 14-bus system.

Table 2: Denotations for defining evaluation metrics.

Attacked Secure
Classified as attacked CA WA
Classified as secure WS CS

In addition, the performance of the proposed detector can
be measured by the precision and recall metrics:𝑃𝑎 = CA

CA +WA
,

𝑅𝑎 = CA
CA +WS

,
𝑃𝑠 = CS

CS +WS
,

𝑅𝑠 = CS
WA + CS

,
(39)

where 𝑃𝑎 (𝑃𝑠) and 𝑅𝑎 (𝑅𝑠) indicate the precision and recall
values for the class attacked (secure), respectively. Precision

values give information about the decision performance of
the algorithms among identified class. And recall values
measure the degree of attack retrieval.

4.4. Performance on Detecting Attacks. We first analyze the
performance of the proposed algorithm against the attacks,
which aremade from a set of false data injection attacks when𝜅 = 1. In the experiments, we observe that the selection of
threshold parameter 𝜎ob does affect the precision and recall
performances. Table 3 shows the comparison for different𝜎ob values. 𝑃𝑎 and 𝑅𝑠 increase as 𝜎ob increases and remain100% when 𝜎ob ≥ 0.04. In addition, 𝑅𝑎 and 𝑃𝑠 decrease as𝜎ob increases. Note that the precision value at 𝜎ob = 0.01 is7.14% and the recall value at 𝜎ob > 0.06 is lower than 50%
for class attacked. Thus, the optimal 𝜎ob value should be in
range [0.02, 0.06]. Note that the performance at 𝜎ob = 0.05 is
quite similar to that at 𝜎ob = 0.06; thus we do not draw the
performance at 𝜎ob = 0.06 in Figures 2, 3, 4, and 5 to avoid
unreadability.

The performance of different 𝜎ob values for identifying
attacked samples is compared in Figures 2 and 3, where
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Figure 3: Recall of attacked samples for the IEEE 14-bus system.

Table 3: Performance of proposed detector against multiperiod
attacks for IEEE 14-bus system, 𝜅 = 1.𝜎ob 𝑃𝑎 𝑅𝑎 𝑃𝑠 𝑅𝑠0.01 7.14% 100% 100% 95.47%
0.02 17.33% 83.87% 99.94% 98.61%
0.03 44.64% 80.65% 99.93% 99.65%
0.04 100% 70.97% 99.90% 100%
0.05 100% 64.52% 99.88% 100%
0.06 100% 63.64% 99.87% 100%
0.07 100% 41.67% 99.80% 100%
0.08 100% 45.45% 99.81% 100%
0.09 100% 41.67% 99.80% 100%
0.10 100% 38.10% 99.78% 100%
0.20 100% 9.10% 99.68% 100%

𝜅/𝑚 ∈ [0, 1]. We observe that 𝑃𝑎 increases and 𝑅𝑎 decreases
when 𝜎ob increases. The precision value of attacked class is
approximately 100% when 𝜎ob = 0.04 and 𝜎ob = 0.05. The
recall value of the attacked class increases with rising 𝜅/𝑚

values and is approximately 100% when 𝜅/𝑚 is larger than54.55%. Although the proposed algorithm at 𝜎ob = 0.02
and 𝜎ob = 0.03 may correctly detect the attacked samples as𝜅/𝑚 increases, the secure variables are incorrectly labeled as
attacked and therefore give more false alarms.

Meanwhile, the performance of identifying secure sam-
ples is compared in Figures 4 and 5. Both values (precision
and recall) of the secure class are high (i.e., near 100%).
Summing up, the above experimental results show that if we
choose the parameter 𝜎ob ∈ [0.04, 0.06], our methodology
can efficiently detect the data injection attacks.

4.5. Performance on Recovering System States. In this part, we
compare the performances of our detector and the residual-
based approach with the performance of recovering the
initial systems states. We first introduce how we evaluate
the performances of an algorithm. In IEEE 14-bus system,
the state vector 𝑥 will have 14 bus voltage magnitudes and13 phase angles, where the phase angle of one reference
bus is set as the reference. If the system is observable
[14], the state vector 𝑥 can be represented as follows:
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Figure 4: Precision of secure samples for the IEEE 14-bus system.

𝑥 = (𝑉1, 𝑉2, . . . , 𝑉14, 𝜃2, 𝜃3, . . . , 𝜃13)𝑇, where 𝑉𝑖, 𝜃𝑖 is voltage
magnitude and voltage angle at bus 𝑖. Therefore, the average
absolute phase error for bus 𝑖, denoted as 𝜁𝜃𝑖[𝑘], can be
described as follows:𝜁𝜃𝑖[𝑘] = 1𝜗 𝜗∑

𝑗=1

𝜁
𝜃
𝑗

𝑖
[𝑘]

= 1𝜗 𝜗∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜃𝑗𝑖 [𝑘] − 𝜃𝑖 [𝑘]𝜃𝑖 [𝑘] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (40)

where 𝜗 is number of testing samples;𝜁
𝜃
𝑗

𝑖
[𝑘]

𝑖th is bus absolute phase error at time 𝑘 when
under the 𝑗th attack in the testing samples;𝜃𝑗𝑖 [𝑘] 𝑖th is bus recovered phase angle at time 𝑘 when
under the 𝑗th attack in the testing samples;𝜃𝑖[𝑘] 𝑖th is bus true phase angle at time 𝑘.

The proposed algorithm and residual-based algorithm
have been tested under various attack scenarios (i.e., 𝜅 =

1, 2, . . . , 11). Table 4 presents the results when 𝜅 = 1 and𝜅 = 11, respectively. We can first see the superiority of our
methodology, comparing with the residual-based algorithm.
For example, when 𝜅 = 11, the average phase error of our
proposed algorithm on bus 12 is 0.2886, whereas the error
is 4.2793 for the residual-based algorithm, which is 13 times
larger than our algorithm. Second, we can see that the average
phasor errors for 𝜅 = 1 are in general smaller than those
for 𝜅 = 11, which means that the performances of both
algorithms work better when 𝜅 is small. Third, we see that
the F-DDIA result of bus 11 (or bus 13) is quite different from
the that of bus 12 (or 14). We think the reason that causes this
phenomenon is because of the 𝜅 value. When 𝜅 = 1, the bus
indexes 11–14 are with little difference. To sum up, the reason
that causes this difference of the average absolute phase error
is complex, and thus the F-DDIA performance depends on a
series of parameters (i.e., 𝜅, 𝜎ob, etc.).
4.6. Comparison on Execution Time. In our experiments,
we find that the proposed approach is faster than other
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Figure 5: Recall of secure samples for the IEEE 14-bus system.

Table 4: 𝜁𝜃𝑖[𝑘] for IEEE 14-bus system when 𝜎ob = 0.05.
Bus index 𝜁𝜃𝑖[𝑘] (𝜅 = 1) 𝜁𝜃𝑖[𝑘] (𝜅 = 11)

Residual-based Our detector Residual-based Our detector
2 0.2388 0.0770 0.5855 0.1387
3 0.7420 0.3612 1.2131 0.1374
4 0.3274 0.0430 0.9988 0.2117
5 0.4026 0.1076 0.9927 0.2187
6 1.0687 0.3478 2.0091 0.7807
7 0.6875 0.0493 1.6335 0.4186
8 0.6875 0.0493 1.6335 0.4186
9 0.8095 0.0443 1.8286 0.4823
10 0.9589 0.1817 1.7800 0.7220
11 0.9869 0.2925 1.8136 1.6674
12 1.2767 0.4810 4.2793 0.2886
13 1.1997 0.4977 2.1074 1.1148
14 1.0374 0.2894 1.6876 0.3817
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works.The residual-based fault detector takes around 50min
(0.043 s per sample), while the proposed approach only takes12min (0.011 s per sample). The 12min of our approach
includes load dynamics fitting and Douglas-Rachford iter-
ations process. The main computation burden for our pro-
posed approach is to proceed Douglas-Rachford iterations
for basis pursuit process. In general, we do not consider the
state estimation process. This is why our proposed approach
is faster than the other one.

5. Conclusions

The paper examines the problem of detecting data injection
attacks in smart grid networks. We propose a detection
framework named F-DDIA, which can recover the initial
system state, as well as the real measurement readings. Due
to the sparse nature of data injection attacks, ℓ1minimization
technique (including Douglas-Rachford) can be applied. The
validation of the proposed detecting algorithm is validated
using load data fromNYISO. Our detector works well in both
linear and nonlinear systems.
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