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One 3D fractional-order chaotic systemwith only one locally asymptotically stable equilibrium is reported. To verify the chaoticity,
the maximum Lyapunov exponent (MAXLE) with respect to the fractional-order and chaotic attractors are obtained by numerical
calculation for this system. Furthermore, by linear scalar controller consisting of a single state variable, one control scheme for
stabilization of the 3D fractional-order chaotic system is suggested. The numerical simulations show the feasibility of the control
scheme.

1. Introduction

Fractional-order calculus is an old branch of mathematics,
which can be dated back to the 17th century [1, 2]. Now, it is
well-known that many real-world physical systems [1–4] can
be more accurately described by fractional-order differential
equations, for example, dielectric polarization, viscoelastic-
ity, electrode-electrolyte polarization, electromagnetic waves,
diffusion-wave, superdiffusion, heat conduction. Meanwhile,
chaotic behavior has been found in many fractional-order
systems like the fractional-order brushless DCmotor chaotic
system [5, 6], the fractional-order gyroscopes chaotic system
[7], the fractional-order microelectromechanical chaotic sys-
tem [8], the fractional-order electronic circuits [9, 10], and so
forth [11–16].

Recently, a simple three-dimensional autonomous
chaotic system [17] with only one stable node-focus equilib-
rium has been reported by Wang and Chen. Due to the
impossibility of existence of homoclinic orbit and the unique
stable node-focus equilibrium in this striking chaotic system,
the well-known Si’lnikov criterions are not applicable.
To verify the chaoticity in this system, Wang and Chen
[17] calculated the largest Lyapunov exponent, fractional
dimension, and continuous broad frequency spectrum by

numerical calculation. Huan et al. presented a rigorous
computer-assisted verification of horseshoe chaos by virtue
of topological horseshoe theory [18]. Up to now, some integer
order chaotic systems with stable node-focus equilibrium
have been presented. To the best of our knowledge, many
previous fractional-order chaotic systems like the fractional-
order Lorenz chaotic system [19], the fractional-order Chen
chaotic system [20], the fractional-order Lu chaotic system
[21], the fractional-order brushless DCmotor chaotic system
[5, 6], the fractional-order gyroscopes chaotic system [7], the
fractional-order microelectromechanical chaotic system [8],
and so forth [9–14, 22, 23] have unstable equilibrium. There
are seldom results on fractional-order chaotic systems with
stable equilibrium. Hence, the finding of fractional-order
chaotic systems with stable equilibrium is still an open
problem.

Motivated by the above discussions, a three-dimensional
autonomous fractional-order chaotic system with only one
locally asymptotically stable equilibrium is proposed in this
paper. The argument of all eigenvalues at equilibrium point
satisfies |arg(𝜆𝑖)| ≥ 0.5𝜋 (𝑖 = 1, 2, 3). Up to now, to the best
of our knowledge, there are few results about the fractional-
order chaotic systems with stable equilibrium. To verify
the chaoticity in this fractional-order system, the maximum
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Lyapunov exponent and chaotic attractors are yielded by
numerical calculation. Furthermore, one control scheme for
stabilization of this fractional-order chaotic system is sug-
gested via linear scalar controller consisting of a single state
variable.Thenumerical simulations show the feasibility of the
control scheme. The organization of this paper is as follows:
in Section 2, a new fractional-order chaotic system with
only one stable equilibrium is presented, and the maximum
Lyapunov exponent and chaotic attractors are obtained. In
Section 3, in order to stabilize this fractional-order chaotic
system, one control scheme is suggested via linear scalar
controller consisting of a single state variable.The conclusion
is finally drawn in Section 4.

2. A New Fractional-Order Chaotic Systems
with Only One Stable Equilibrium

In this paper, the 𝑞-order Caputo derivative for function 𝑦(𝑡)
is defined as follows:

𝐶

0𝐷𝑞𝑡𝑦 (𝑡) = 1
Γ (𝑛 − 𝑞) ∫

𝑡

0

[𝑑
𝑛𝑦 (𝜏)
𝑑𝜏𝑛 ] (𝑡 − 𝜏)𝑛−𝑞−1 𝑑𝜏, (1)

where 𝑛 − 1 ≤ 𝑞 < 𝑛 ∈ 𝑍+ and Γ(𝑛 − 𝑞) = ∫+∞
0

𝑡𝑛−𝑞−1𝑒−𝑡𝑑𝑡 is
the Gamma function.

Now, we consider the following 3D nonlinear fractional-
order system:

𝐶
0𝐷𝑞𝑡𝑥1 (𝑡) = (𝑥2 (𝑡) + 1

16) 𝑥3 (𝑡) ,
𝐶
0𝐷𝑞𝑡𝑥2 (𝑡) = 𝑥21 (𝑡) + 0.5𝑥1 (𝑡) − 𝑥2 (𝑡) ,
𝐶
0𝐷𝑞𝑡𝑥3 (𝑡) = −2𝑥1 (𝑡)

(2)

and, here, the fractional-order is 0 < 𝑞 < 1.
First, let us recall the stability theorem for nonlinear

commensurate fractional-order systems.

Lemma 1 (see [24, 25]). Consider the following fractional-
order nonlinear system:

𝐶
0𝐷𝑞𝑡𝑥 (𝑡) = 𝑔 (𝑥 (𝑡)) , (3)

where 0 < 𝑞 < 1 is fractional-order, 𝑥(𝑡) ∈ 𝑅𝑛 are state
variables, and 𝑔 : 𝑅𝑛 → 𝑅𝑛 is a nonlinear continuous vector
function. The equilibrium point 𝑥 (i.e., 𝑔(𝑥) = 0) in nonlinear
fractional-order system (3) is locally asymptotically stable if
|arg(𝜆𝑖(𝐽))| > 0.5𝜋𝑞 (𝑖 = 1, 2, . . . , 𝑛). Here, 𝐽 is the Jacobian
matrix of𝑔(𝑥(𝑡)) at equilibriumpoint𝑥 and𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑛)
are the eigenvalues of matrix 𝐽.

Now, we can obtain that system (2) has only one equi-
librium point; that is, (𝑥1, 𝑥2, 𝑥3) = (0, 0, 0). Meanwhile, we
can yield the eigenvalues of Jacobian matrix at equilibrium
point as follows: 𝜆1 = −1, and 𝜆± = ±0.25√2𝑖. So, we can
obtain |arg(𝜆𝑖)| ≥ 0.5𝜋 > 0.5𝜋𝑞 (𝑖 = 1, 2, 3). According
to the lemma, the equilibrium point (𝑥1, 𝑥2, 𝑥3) = (0, 0, 0)
is locally asymptotically stable. Therefore, the equilibrium in
system (2) is asymptotically stable.

Next, we discuss the numerical solution for system (2).
Based on [20], we set ℎ = 𝑇/𝑁 and 𝑡𝑛 = 𝑛ℎ (𝑛 = 0, 1,
2, . . . , 𝑁) and let initial condition be (𝑥1(0), 𝑥2(0), 𝑥3(0)). So,
the fractional-order system (2) can be discretized as follows:

𝑥1 (𝑛 + 1) = 𝑥1 (0) + ℎ𝑞
Γ (𝑞 + 2)

{
{
{
[𝑥𝑝2 (𝑛 + 1) + 1

16]

⋅ 𝑥𝑝3 (𝑛 + 1) +
𝑛

∑
𝑗=0

𝛼1,𝑗,𝑛+1 [𝑥2 (𝑗) + 1
16] 𝑥3 (𝑗)

}
}
}
,

𝑥2 (𝑛 + 1) = 𝑥2 (0) + ℎ𝑞
Γ (𝑞 + 2)

{
{
{
[(𝑥𝑝1 (𝑛 + 1))2

+ 0.5𝑥𝑝1 (𝑛 + 1) − 𝑥𝑝2 (𝑛 + 1)]

+
𝑛

∑
𝑗=0

𝛼2,𝑗,𝑛+1 [(𝑥1 (𝑗))2 + 0.5𝑥1 (𝑗) − 𝑥2 (𝑗)]}}
}
,

𝑥3 (𝑛 + 1) = 𝑥3 (0) + ℎ𝑞
Γ (𝑞 + 2)

{
{
{
[−2𝑥𝑝1 (𝑛 + 1)]

+
𝑛

∑
𝑗=0

𝛼3,𝑗,𝑛+1 [−2𝑥1 (𝑗)]}}
}
,

(4)

Where

𝑥𝑝1 (𝑛 + 1) = 𝑥1 (0) + 1
Γ (𝑞)

𝑛

∑
𝑗=0

𝑏1,𝑗,𝑛+1 [𝑥2 (𝑗) + 1
16] 𝑥3 (𝑗) ,

𝑥𝑝2 (𝑛 + 1)

= 𝑥2 (0) + 1
Γ (𝑞)

𝑛

∑
𝑗=0

𝑏2,𝑗,𝑛+1 [(𝑥1 (𝑗))2 + 0.5𝑥1 (𝑗) − 𝑥2 (𝑗)] ,

𝑥𝑝3 (𝑛 + 1) = 𝑥3 (0) + 1
Γ (𝑞)

𝑛

∑
𝑗=0

𝑏3,𝑗,𝑛+1 [−2𝑥1 (𝑗)] ,

𝛼𝑖,𝑗,𝑛+1

=
{{{{
{{{{
{

𝑛𝑞+1 − (𝑛 − 𝑞) (𝑛 + 1)𝑞 , 𝑗 = 0,
(𝑛 − 𝑗 + 2)𝑞+1 + (𝑛 − 𝑗)𝑞+1 − 2 (𝑛 − 𝑗 + 1)𝑞+1 , 1 ≤ 𝑗 ≤ 𝑛,
1, 𝑗 = 𝑛 + 1,

(𝑖 = 1, 2, 3)
𝑏𝑖,𝑗,𝑛+1 = ℎ𝑞

𝑞 [(𝑛 − 𝑗 + 1)𝑞 − (𝑛 − 𝑗)𝑞] , 0 ≤ 𝑗 ≤ 𝑛.

(5)

The error of this approximation is described as
𝑥𝑖 (𝑡𝑛) − 𝑥𝑖 (𝑛) = 𝑜 (ℎ𝑝)

(𝑖 = 1, 2, 3) , 𝑝 = min (2, 1 + 𝑞) . (6)

Now, some results are obtained by numerical calculation.
Let 𝑞 = 0.96; Figures 1(a) and 1(b) show the results with initial
condition (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−1.2, 1, 1).
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Figure 1: A chaotic attractor in system (2) for 𝑞 = 0.96.
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Figure 2: The maximum Lyapunov exponent (MAXLE) varies as
fractional-order 𝑞.

The results in Figure 1 indicate that system (2) has
a chaotic attractor if initial conditions are chosen as
(𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−1.2, 1, 1).

To verify the chaoticity in system (2), we choose the initial
conditions as (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−1.2, 1, 1) and calculate
the maximum Lyapunov exponent (MAXLE) of system (2)
with respect to the fractional-order 𝑞 by numerical calcu-
lation. We obtain that the maximum Lyapunov exponent
(MAXLE) is larger than zero for 0.958 ≤ 𝑞 ≤ 1. Figure 2
shows the maximum Lyapunov exponent (MAXLE) varies
as fractional-order 𝑞. So, the chaotic attractor is emerged in
system (2) for 0.958 ≤ 𝑞 ≤ 1.

For example, the MAXLE is 0.0022 when 𝑞 = 0.958, and
its chaotic attractor is shown as Figures 3(a) and 3(b), while
theMAXLE is 0.0946 when 𝑞 = 0.96, and its chaotic attractor
is shown as Figure 1.

3. Controlling Chaos via Linear
Scalar Controller Consisting of a Single
State Variable

Now, we discuss how to stabilize the fractional-order chaotic
system (2) via linear scalar controller consisting of a single

state variable. We suggest the following controlled fractional-
order system:

𝐶
0𝐷𝑞𝑡𝑥1 (𝑡) = (𝑥2 (𝑡) + 1

16) 𝑥3 (𝑡) + 𝐾𝑥2 (𝑡) ,
𝐶
0𝐷𝑞𝑡𝑥2 (𝑡) = 𝑥21 (𝑡) + 0.5𝑥1 (𝑡) − 𝑥2 (𝑡) ,
𝐶
0𝐷𝑞𝑡𝑥3 (𝑡) = −2𝑥1 (𝑡) .

(7)

Here 𝐾𝑥2(𝑡) is the linear scalar controller consisting of a
single state variable and𝐾 < 0 is control parameter.

The controlled fractional-order system (7) is stable if the
maximum Lyapunov exponent (MAXLE) of system (7) is
negative. So, we can choose suitable control parameter 𝐾
such that the MAXLE of system (7) is negative. Now, we can
calculate the MAXLE of system (7) by numerical calculation.
TheMAXLE of system (7) varying with respect to fractional-
order 𝑞 for control parameter𝐾 is shown in Figure 4, and here
the initial condition is (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−1.2, 1, 1).

The results in Figure 4 indicate that the controlled
fractional-order system (7) is stable if 𝐾 = −1, −2, −3, and
−4. It means that the fractional-order chaotic system (2) can
achieve stability via scalar controller consisting of a single
state variable 𝑥2(𝑡).

For example, let 𝑞 = 0.98 and 𝐾 = −1, and we can
obtainMAXLE = −0.2125. So, the controlled fractional-order
system (7) is stable. Figure 5 shows the simulative results. Let
𝑞 = 0.96 and 𝐾 = −2, and we have MAXLE = −0.1236. So,
the controlled fractional-order system (7) is stable. Figure 6
shows the simulative results. Let 𝑞 = 0.97 and 𝐾 = −3,
and we can obtain MAXLE = −0.0774. So, the controlled
fractional-order system (7) is stable. Figure 7 shows the
simulative results. Let 𝑞 = 0.99 and 𝐾 = −4, and we have
obtained MAXLE = −0.0805. So, the controlled fractional-
order system (7) is stable. Figure 8 shows the simulative
results. Here, the initial condition is (𝑥1(0), 𝑥2(0), 𝑥3(0)) =
(−1.2, 1, 1).
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Figure 3: A chaotic attractor in system (2) for 𝑞 = 0.958.
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Figure 4: TheMAXLE of system (7) varies as fractional-order 𝑞 for
some control parameters 𝐾.
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Figure 5: Stabilization of system (7) for 𝑞 = 0.98 and𝐾 = −1.
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Figure 6: Stabilization of system (7) for 𝑞 = 0.96 and𝐾 = −2.

4. Conclusions

One new fractional-order chaotic systemwith only one stable
equilibria point is reported in this paper. By numerical calcu-
lation, we yield the maximum Lyapunov exponent spectrum
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Figure 7: Stabilization of system (7) for 𝑞 = 0.97 and𝐾 = −3.
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Figure 8: Stabilization of system (7) for 𝑞 = 0.99 and 𝐾 = −4.

for this new fractional-order chaotic system, and the chaotic
attractor can been found when 0.958 ≤ 𝑞 ≤ 1. The chaotic
attractors for 𝑞 = 0.958 and 𝑞 = 0.96 are given. Meanwhile,
in order to stabilize this fractional-order chaotic system, one
control scheme is proposed via linear scalar controller con-
sisting of a single state variable. By calculating the maximum
Lyapunov exponent spectrum of the controlled system, we
find that the maximum Lyapunov exponent (MAXLE) of
system (7) is negative for suitable control parameter 𝐾. This
result means that the new fractional-order chaotic system
can achieve stability by the proposed control scheme. Some
simulation results are given to show the validity and feasibility
of our control scheme.
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