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Possible modification in the velocity distribution in the nonresonant reaction rates leads to an extended reaction rate probability
integral. The closed form representation for these thermonuclear functions is used to obtain the stellar luminosity and neutrino
emission rates. The composite parameter C that determines the standard nuclear reaction rate through the Maxwell-Boltzmann
energy distribution is extended to C∗ by the extended reaction rates through a more general distribution than the Maxwell-
Boltzmann distribution. The new distribution is obtained by the pathway model introduced by Mathai (2005). Simple analytic
models considered by various authors are utilized for evaluating stellar luminosity and neutrino emission rates and are obtained
in generalized special functions such as Meijer’s G-function and Fox’s H-function. The standard and extended nonresonant
thermonuclear functions are compared by plotting them. Behaviour of the new energy distribution, which is more general than the
Maxwell-Boltzmann, is also studied.

1. Introduction

The mystery behind the distant universe is explored so far
by the understanding of the sun, the star near to us. It is
the only star whose mass, radius, and luminosity are fairly
accurately known. The structural change in the sun is due
to the central thermonuclear reactor in it. Solar nuclear
energy generation and solar neutrino emission are governed
by chains of nuclear reactions in the gravitationally stabilized
solar fusion reactor [1, 2]. Qualitative calculations of specific
reaction rates require a large amount of experimental inputs
and theoretical assumptions. By using the theories from
nuclear physics and kinetic theory of gases one can determine
the reaction rate for low-energy nonresonant thermonuclear
reactions in nondegenerate plasma [3]. The formalization
of the calculation of the reaction rate of interacting articles
under cosmological or stellar conditions was presented by
many authors [4, 5]. For the most common case, a nuclear
reaction in which a particle of type 1 strikes a particle of type
2 producing a nucleus 3 and a new particle 4 is symbolically
represented as

1 + 2 󳨀→ 3 + 4 + 𝐸
12
, (1)

where 𝐸
12

is the energy release given by 𝐸
12

= (𝑚
1
+ 𝑚
2
−

𝑚
3
− 𝑚
4
)𝑐
2, where 𝑚

𝑖
, 𝑖 = 1, 2, 3, 4 denote the masses of

the particles and 𝑐 denotes the velocity of light. The reaction
rate 𝑟

12
of the interacting particles 1 and 2 is obtained by

averaging the reaction cross section over the normalized
density function of the relative velocity of the particles [5–7].
Let 𝑛
1
and 𝑛

2
denote the number densities of the particles 1

and 2, respectively, and let 𝜎(V) be the reaction cross section
where V is the relative velocity of the particles and 𝑓(V) is the
normalized velocity density; then the reaction rate 𝑟

12
is given
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1
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∫

∞

0

𝜎 (𝐸) (
2𝐸

𝜇
)

1/2

𝑓 (𝐸) d𝐸,

(2)

where 𝛿
12

is the Kronecker delta which is introduced to
avoid double counting in the reaction if particles 1 and 2
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are identical. ⟨𝜎V⟩
12
is the thermally averaged product which

is in fact the probability per unit time that two particles
1 and 2 confined to a unit volume will react with each
other. 𝜇 is the reduced mass of the particles given by 𝜇 =

(𝑚
1
𝑚
2
)/(𝑚
1
+ 𝑚
2
). 𝐸 = 𝜇V2/2 is the kinetic energy of

the particles in the centre of mass system. From literature
[4, 5, 7] it may be noted that all the analytic expressions for
astrophysically relevant nuclear reaction rates underline the
hypothesis that the distribution of the relative velocities of the
reacting particles always remains Maxwell-Boltzmann for a
nonrelativistic nondegenerate plasma of nuclei in thermody-
namic equilibrium. The Maxwell-Boltzmann relative kinetic
energy distribution can be written as

𝑓MBD (𝐸) d𝐸 = 2𝜋(
1

𝜋𝑘𝑇
)

3/2

exp(− 𝐸

𝑘𝑇
)√𝐸d𝐸, (3)

where 𝑘 is the Boltzmann constant and 𝑇 is the temperature.
Substituting (3) in (2) we get

𝑟
12
= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
(
8

𝜋𝜇
)

1/2

(
1

𝑘𝑇
)

3/2

× ∫

∞

0

𝐸𝜎 (𝐸) exp(− 𝐸

𝑘𝑇
) d𝐸.

(4)

The thermonuclear fusion depends on three physical vari-
ables, the temperature 𝑇, the Gamow energy 𝐸

𝐺
, and the

nuclear fusion factor 𝑆(𝐸). If two nuclei of charges 𝑍
1
𝑒 and

𝑍
2
𝑒 collide at low energies below the Coulomb barrier, then

the Gamow energy 𝐸
𝐺
is given by [8, 9]

𝐸
𝐺
= 2𝜇(𝜋𝛼𝑍

1
𝑍
2
𝑐)
2

, (5)

where 𝛼 is the electromagnetic fine structure constant given
by

𝛼 =
𝑒
2

ℏ𝑐
, (6)

where 𝑒 is the quantum of electric charge, ℏ is Planck’s
quantum of action, and 𝛼 is approximately 1/137 [9] for
our universe. Thus the Gamow factor, which is determined
by the electromagnetic force, and the nuclear fusion factor
𝑆(𝐸) set the nuclear reaction cross section at low energies for
nonresonant charged particles as [7, 10]

𝜎 (𝐸) =
𝑆 (𝐸)

𝐸
exp[−(

𝐸
𝐺

𝐸
)

1/2

] , (7)

and 𝑆(𝐸) is the cross section factor which is often found to be
constant or a slowly varying function of energy over a limited
range of energy given by [4, 5]

𝑆 (𝐸) ≈ 𝑆 (0) +
d𝑆 (0)
d𝐸

𝐸 +
1

2

d2𝑆 (0)
d𝐸2

𝐸
2

=

2

∑

]=0

𝑆
(])
(0)

]!
𝐸
]
.

(8)

Substituting (7) and (8) in (4) we obtain

𝑟
12
= (1 −
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)

1/2
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1
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× ∫

∞
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𝐸
] exp[− 𝐸

𝑘𝑇
− (

𝐸
𝐺

𝐸
)

1/2

] d𝐸.

(9)

This is the nonresonant reaction rate probability integral in
the Maxwell-Boltzmann case. The closed form evaluation of
this integral can be seen in a series of papers by Mathai
and Haubold; see, for example, Haubold and Mathai [6, 11],
Mathai and Haubold [5], and so forth. The main aim of the
present work is to extend the reaction rate probability integral
given in (9) by replacing the Maxwell-Boltzmann energy
distribution by a more general energy distribution called the
pathway energy distribution obtained by using the pathway
model of Mathai introduced in 2005.

The paper is organized as follows. In the next section we
discuss a more general energy distribution than theMaxwell-
Boltzmann distribution and obtain the extended reaction
rate probability integral in the nonresonant case. We take
advantage of the closed form representation of the extended
thermonuclear reaction rate for finding the luminosity and
the neutrino emission rate of the nonlinear stellar model
under consideration in Section 3. Section 4 is devoted to
finding the desired connection between stellar structure
parameters and the neutrino emission of the stellar model by
using the closed form analytic representation of the extended
reaction rates. A comparison of the Maxwell-Boltzmann
energy distribution with the pathway energy distribution
is done with the help of graphs in Section 5. Also we try
to discriminate the standard and extended reaction rates.
Concluding remarks are included in Section 6.

2. Extended Nonresonant Thermonuclear
Reaction Rate and Its Closed Forms

In recent years, possible deviations of the velocity distribution
of the plasma particles from the Maxwell-Boltzmann in
connection with the production of neutrinos in the gravi-
tationally stabilized solar fusion reactor have been pointed
out [2, 10, 12–15]. It was initiated by Tsallis, the originator of
nonextensive statistical mechanics [16–18], who has used 𝑞-
exponential function as the fundamental distribution instead
of the Maxwell-Boltzmann distribution. An initial attempt
to extend the standard theories of reaction rates to Tsallis
statistics was done by many authors; seeMathai and Haubold
[19] and Saxena et al. [20]. In 2005, Mathai introduced the
pathway model by which even more general distributions
can be incorporated in the theory of reaction rates [19, 21].
Initially, pathwaymodel was introduced for thematrix variate
case to cover many of the matrix variate statistical densities.
The scalar case is a particular one there. Later, Mathai, his
coworkers, and others found connection of pathway model
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with the information theory, the fractional calculus, the
Mittag-Leffler functions, and so forth. The pathway model
can be effectively used in any situation in which we need
to switch between three different functional forms, namely,
generalized type-1 beta form, generalized type-2 beta form,
and generalized gamma form, using the pathway parameter
𝑞. In practical purpose of fitting experimental data, pathway
model can be utilized to switch between different parametric
families with thicker or thinner tail. The pathway model for
the real scalar case can be explained as follows:

𝑓
1
(𝑥) = 𝑐

1
𝑥
𝛾−1

[1 − 𝑎 (1 − 𝑞) 𝑥
𝛿

]
1/(1−𝑞)

,

𝑎 > 0, 𝛿 > 0, 1 − 𝑎 (1 − 𝑞) 𝑥
𝛿

> 0, 𝛾 > 0, 𝑞 < 1,

(10)

is the generalized type-1 beta form of the pathway model.
This is a model with right tail cut-off for 𝑞 < 1. The Tsallis
statistics for 𝑞 < 1 can be obtained from thismodel by putting
𝛾 = 1 [16–18]. Other cases available are the regular type-1
beta density, the Pareto density, the power function, and the
triangular and related models [22]. The generalized type-2
beta form of the pathway model is given by

𝑓
2
(𝑥) = 𝑐

2
𝑥
𝛾−1

[1 + 𝑎 (𝑞 − 1) 𝑥
𝛿

]
−1/(𝑞−1)

,

0 < 𝑥 < ∞, 𝑞 > 1, 𝑎 > 0, 𝛾 > 0, 𝛿 > 0.

(11)

Here also for 𝛾 = 1 we get the Tsallis statistics for 𝑞 > 1 [16–
18]. Other standard distributions coming from this model are
regular type-2 beta density, 𝐹-distribution, the Lévy model,
and related models [22]. When 𝑞 → 1, 𝑓

1
(𝑥) and 𝑓

2
(𝑥) will

reduce to the generalized gamma form of the pathway model
given by

𝑓
3
(𝑥) = 𝑐

3
𝑥
𝛾−1e−𝑎𝑥

𝛿

, 𝑥 > 0. (12)

This model covers generalized gamma, gamma, exponen-
tial, chi-square, the Weibull, the Maxwell-Boltzmann, the
Rayleigh, and related densities. 𝑐

1
, 𝑐
2
, and 𝑐

3
defined in (10),

(11), and (12), respectively, are the normalizing constants if we
consider statistical densities.

By a suitable modification of the Maxwell-Boltzmann
distribution given in (3) through the pathway model, we get
a more general energy distribution called the pathway energy
distribution given by the density

𝑓PD (𝐸) d𝐸 =
2𝜋(𝑞 − 1)

3/2

(𝜋𝑘𝑇)
3/2

Γ (1/ (𝑞 − 1))

Γ (1/ (𝑞 − 1) − 3/2)

× √𝐸[1 + (𝑞 − 1)
𝐸

𝑘𝑇
]

−1/(𝑞−1)

d𝐸,

(13)

for 𝑞 > 1, 1/(𝑞−1)−3/2 > 0.TheMaxwell-Boltzmann energy
distribution can be retrieved from (13) by taking 𝑞 → 1.
Thus the reaction rate probability integral given in (4) can be

modified by using (13) and we get the extended reaction rate
as

𝑟
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= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
(
8

𝜋𝜇
)

1/2

(
𝑞 − 1
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)
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×
Γ (1/ (𝑞 − 1))

Γ (1/ (𝑞 − 1) − 3/2)

2

∑

]=0

𝑆
(])
(0)

]!

× ∫

∞

0

𝐸
]
[1 + (𝑞 − 1)

𝐸

𝑘𝑇
]

−1/(𝑞−1)

× exp[−(
𝐸
𝐺

𝐸
)

1/2

] d𝐸

(14)

for 𝑞 > 1, 1/(𝑞 − 1) − 3/2 > 0. Substituting 𝑦 = 𝐸/𝑘𝑇 and 𝑥 =
(𝐸
𝐺
/𝑘𝑇)
1/2 we obtain the above integral in amore convenient

form as follows:

𝑟
12
= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
(
8

𝜋𝜇
)

1/2

(𝑞 − 1)
3/2

×
Γ (1/ (𝑞 − 1))

Γ (1/ (𝑞 − 1) − 3/2)

2

∑

]=0
(
1

𝑘𝑇
)

−]+(1/2)
𝑆
(])
(0)

]!

× ∫

∞

0

𝑦
]
[1 + (𝑞 − 1) 𝑦]

−1/(𝑞−1)e−𝑥𝑦
−1/2

d𝑦,

(15)

for 𝑞 > 1, 1/(𝑞 − 1) − 3/2 > 0. Here we consider the integral
to be evaluated as

𝐼
1𝑞
= ∫

∞

0

𝑦
]
[1 + (𝑞 − 1) 𝑦]

−1/(𝑞−1)

× e−𝑥𝑦
−1/2

d𝑦.

(16)

The integral can be evaluated by the techniques in applied
analysis and can be obtained in closed form via Meijer’s 𝐺-
function as [2, 23, 24]

𝐼
1𝑞
=

(𝜋)
−1/2

(𝑞 − 1)
]+1
Γ (1/ (𝑞 − 1))

× 𝐺
3,1

1,3
(
(𝑞 − 1) 𝑥

2

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)+]

0,1/2,]+1
)

(17)

which yields the nonresonant reaction rate probability inte-
gral in the extended case as

𝑟
12
= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
(
8

𝜇
)

1/2

𝜋
−1

Γ (1/ (𝑞 − 1) − 3/2)

×

2

∑

]=0
(
𝑞 − 1

𝑘𝑇
)

−]+(1/2)
𝑆
(])
(0)

]!

× 𝐺
3,1

1,3
[
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)+]

0,1/2,]+1
] .

(18)



4 Journal of Astrophysics

Meijer’s 𝐺-function and its properties can be seen in Mathai
and Saxena [25] and Mathai [26]. We can obtain series
expansions of the 𝐺-function given in (18) by combining the
theories of residue calculus and generalized special functions;
see Kumar and Haubold [24] for series expansions for all
possible values of ]. In many cases the nuclear factor 𝑆(])(0)
is approximately constant across the fusion window. Taking
𝑆
(])
(0) = 0 for ] = 1 and ] = 2 and taking 𝑆0(0) = 𝑆(0), we

obtain the extended reaction rate probability integral as

𝑟
12
= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
[
8 (𝑞 − 1)

𝜇𝑘𝑇
]

1/2

𝜋
−1

Γ (1/ (𝑞 − 1) − 3/2)

× 𝑆 (0) 𝐺
3,1

1,3
[
(𝑞 − 1)𝐸

𝐺

4𝑘𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1

] .

(19)

The series representation for (19) can be obtained as

𝑟
12
= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
[
8 (𝑞 − 1)

𝜇𝑘𝑇
]

1/2

𝜋
−1

Γ (1/ (𝑞 − 1) − 3/2)

× 𝑆 (0) {√𝜋Γ (1/ (𝑞 − 1) − 1)

− 2𝜋Γ(
1

𝑞 − 1
−
1

2
) [

(𝑞 − 1)𝐸
𝐺

4𝑘𝑇
]

1/2

×
1
𝐹
2
(

1

𝑞 − 1
−
1

2
;
3

2
,
1

2
; −
(𝑞 − 1)𝐸

𝐺

4𝑘𝑇
)

+ (
2√𝜋 (𝑞 − 1) 𝐸

𝐺

4𝑘𝑇
)

×

∞

∑

𝑟=0

(
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇
)

𝑟

×[𝐴
𝑟
− ln(

(𝑞 − 1) 𝐸
𝐺

4𝑘𝑇
)]𝐵
𝑟
} ,

(20)

where

𝐴
𝑟
= Ψ(−

1

2
− 𝑟) + Ψ(

1

𝑞 − 1
+ 𝑟)

+ Ψ (1 + 𝑟) + Ψ (2 + 𝑟) ,

𝐵
𝑟
=
(−1)
𝑟

Γ (1/ (𝑞 − 1) + 𝑟)

(3/2)
𝑟
𝑟! (1 + 𝑟)!

.

(21)

See the Appendix for detailed evaluation. As 𝑞 → 1 in (19),
then, by using Stirling’s formula for gamma functions given
by

Γ (𝑧 + 𝑎) ≈ (2𝜋)
1/2

𝑧
𝑧+𝑎−1/2e−𝑧,

|𝑧| 󳨀→ ∞, 𝑎 is bounded,
(22)

we get the reaction rate probability integral in the Maxwell-
Boltzmann case as

𝑟
12
= (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2
(
8

𝜋𝜇
)

1/2

(
1

𝑘𝑇
)

3/2

𝑆 (0)

× ∫

∞

0

exp[− 𝐸

𝑘𝑇
− (

𝐸
𝐺

𝐸
)

1/2

] d𝐸

(23)

= (1 −
1

2
𝛿
12
) 𝑛
1
𝑛
2
(

8

𝜇𝑘𝑇
)

1/2

𝑆 (0) 𝜋
−1

× 𝐺
3,0

0,3
[
𝐸
𝐺

4𝑘𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

0,1/2,1

]

(24)

which is obtained in a series of papers by Mathai and
Haubold; see, for example, Mathai and Haubold [5]. The
integral in (23) is dominated by theminimumvalue of𝐸/𝑘𝑇+
(𝐸
𝐺
/𝐸)
1/2

= 𝑔(𝐸) (say). The minimum value of the function
𝑔(𝐸), say 𝐸

0
, can be determined as

d
d𝐸

[
𝐸

𝑘𝑇
+ (

𝐸
𝐺

𝐸
)

1/2

]

𝐸=𝐸0

=
1

𝑘𝑇
−
1

2
𝐸
1/2

𝐺
𝐸
−3/2

0
= 0 󳨐⇒ 𝐸

0
= 𝐸
1/2

𝐺
(
𝑘𝑇

2
)

3/2

(25)

and the function

𝑔 (𝐸
0
) = 3(

𝐸
𝐺

4𝑘𝑇
)

1/3

= 3Θ, (26)

where Θ = (𝐸
𝐺
/4𝑘𝑇)

1/3. Now by using the Laplace method
[27, 28] we can obtain an approximate value for (23) as

𝑟
12
≈ (1 −

1

2
𝛿
12
) 𝑛
1
𝑛
2

8𝑆 (0)Θ
2 exp (−3Θ)

√3𝜋𝜇𝛼𝑍
1
𝑍
2
𝑐

. (27)

In the next section we will obtain the mass, pressure, and
temperature for the case of analytic stellar models character-
ized by density distribution and corresponding temperature
distribution suggested by Haubold and Mathai [11].

3. Closed Forms of the Integral over the Stellar
Nuclear Energy Generation Rate

Let us consider the density distribution 󰜚(𝑟) considered by
Haubold and Mathai [6, 11] and Mathai and Haubold [5] in
the form

󰜚 (𝑟) = 󰜚
𝑐
[1 − (

𝑟

𝑅
)

𝛿

] , 𝛿 > 0, (28)

where 󰜚
𝑐
is the central density of the star, 𝑟 is an arbitrary

distance from the center, and 𝑅 is the solar radius. This
density function is capable of producing different density
distributions by choosing the free parameter 𝛿. Now we
determine the quantities𝑀(𝑟), 𝑃(𝑟), and 𝑇(𝑟), the mass, the
pressure, and the temperature at 𝑟.
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By the equation of the mass conservation

d𝑀(𝑟)

d𝑟
= 4𝜋𝑟

2

󰜚 (𝑟) (29)

we get

𝑀(𝑟) = 4𝜋󰜚
𝑐
∫

𝑟

0

𝑡
2

[1 − (
𝑡

𝑅
)

𝛿

] d𝑡

=
4𝜋

3
󰜚
𝑐
𝑟
3

[1 −
3

𝛿 + 3
(
𝑟

𝑅
)

𝛿

] .

(30)

From (30), we get the central density as

󰜚
𝑐
=
3 (𝛿 + 3)

4𝜋𝛿

𝑀 (𝑅)

𝑅
3

. (31)

If an element of a matter at a distance 𝑟 from the center of
a spherical system is in hydrostatic equilibrium, then setting
the sum of the radial forces acting on it to zero we obtain

d𝑃 (𝑟)
d𝑟

= −
𝐺󰜚 (𝑟)𝑀 (𝑟)

𝑟
2

, (32)

where 𝐺 is the gravitational constant. Assuming that the
pressure at the center of the sun is 𝑃

𝑐
and at the surface is

zero, we get

𝑃 (𝑟) = 𝑃
𝑐
− 𝐺∫

𝑟

0

𝑀(𝑡) 󰜚 (𝑡)

𝑡
2

d𝑡

=
4𝜋

3
𝐺󰜚
2

𝑐
𝑅
2

[𝜉 −
1

2
(
𝑟

𝑅
)

2

+
𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
(
𝑟

𝑅
)

𝛿+2

−
3

2 (𝛿 + 1) (𝛿 + 3)
(
𝑟

𝑅
)

2𝛿+2

] .

(33)

Using the boundary conditions 𝑃(𝑅) = 0, we get 𝑃
𝑐
=

(4𝜋/3)𝐺𝜉󰜚
2

𝑐
𝑅
2, where

𝜉 =
1

2
−

𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
+

3

2 (𝛿 + 1) (𝛿 + 3)
. (34)

By the kinetic theory of gases, for a perfect gas, the pressure
is given by

𝑃 (𝑟) =
𝑘𝑁
𝐴

𝜇
󰜚 (𝑟) 𝑇 (𝑟) . (35)

For the temperature of interest for stellar models, we neglect
the negligible radiation pressure from the total pressure and
obtain from (35) the following:

𝑇 (𝑟) =
𝜇

𝑘𝑁
𝐴

𝑃 (𝑟)

󰜚 (𝑟)

=
4𝜋

3𝑘𝑁
𝐴

𝐺𝜇󰜚
𝑐
𝑅
2

[1 − (𝑟/𝑅)
𝛿

]

× [𝜉 −
1

2
(
𝑟

𝑅
)

2

+
𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
(
𝑟

𝑅
)

𝛿+2

−
3

2 (𝛿 + 1) (𝛿 + 3)
(
𝑟

𝑅
)

2𝛿+2

] .

(36)

The central temperature 𝑇
𝑐
= (4/𝑘𝑁

𝐴
)𝐺𝜇𝜉(𝑀(𝑅)/𝑅), where

𝜉 is as defined in (34).
Thus we have obtained the mass, the pressure, and the

temperature throughout the nonlinear stellar model with the
density distribution defined in (28). Next our aim is to obtain
analytical results for stellar luminosity and neutrino emission
rates for various stellar models.

4. Stellar Luminosity and Neutrino
Emission Rate

The energy conservation equation states that the net increase
in the rate of energy flux coming out of a spherical shell from
the inside is the same as the energy produced within the shell
[29]. If we denote 𝐿

𝑟
= 𝐿(𝑟) as the energy flux through the

sphere of radius 𝑟, then we have

d𝐿
𝑟

d𝑟
= 4𝜋𝑟

2

󰜚 (𝑟) 𝜀 (𝑟) , (37)

where 𝜀(𝑟) is the energy produced per second by nuclear
reactions in each gram of stellar matter. 𝜀(𝑟) depends on the
chemical composition in each gram of stellar matter. Here
usually 𝐿

𝑟
is a constant but will be equal to 𝐿 at the surface of

the star. We assume here that the star is chemically homoge-
neous (that is a star where chemical composition throughout
is a constant). Also we assume the energy generation rate
𝜀(𝑟) for one particular nuclear reaction. Now if we denote
𝑟
12
(󰜚(𝑟), 𝑇(𝑟)) as the extended nonresonant thermonuclear

reaction rate for the particles 1 and 2 defined by (19), then
we will consider the energy generation rate 𝜀

12
(𝑟) and it can

be written in terms of the extended reaction rates via

𝜀
12
(𝑟) =

1

󰜚 (𝑟)
C
∗

󰜚
2

𝐺
3,1

1,3
[
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1

] , (38)

where

C
∗

=
𝐸
12
𝑟
12
(󰜚 (𝑟) , 𝑇 (𝑟))

󰜚
2
𝐺
3,1

1,3
[(𝑞 − 1) 𝐸

𝐺
/4𝑘𝑇

󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1
]

(39)

in which 𝐸
12

is the amount of energy given off in a single
reaction. It is to be noted that, by using the asymptotic
behaviour of 𝐺3,1

1,3
((𝑞 − 1)𝐸

𝐺
/4𝑘𝑇) [26] and as 𝑞 → 1,

C∗ → C, the composite parameter considered by [9], which
is defined as

C =
𝐸
12
𝑟
12

󰜚
2
Θ
2

exp (3Θ) (40)

for our universeC ≈ 2 × 10
4 for proton-proton fusion under

typical stellar conditions [9].Then from (37) we have the total
luminosity of the star by integration as follows:

𝐿 (𝑅) = ∫

𝑅

0

4𝜋𝑟
2

󰜚 (𝑟) 𝜀 (𝑟) d𝑟. (41)

If we are considering only one specific reaction defined as in
(1), then we have

𝐿
12
(𝑅) = ∫

𝑅

0

4𝜋𝑟
2

󰜚 (𝑟) 𝜀
12
(𝑟) d𝑟, (42)
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where the energy generation rate is defined in (38) and 󰜚(𝑟)
is a suitable density distribution explaining the sun. Writing
(42) in terms of 𝑟

12
(󰜚(𝑟), 𝑇(𝑟)) we get

𝐿
12
(𝑅) = ∫

𝑅

0

4𝜋𝑟
2

C
∗

󰜚
2

𝐺
3,1

1,3
[
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1

] d𝑟

= ∫

𝑅

0

4𝜋𝑟
2

𝐸
12
𝑟
12
(󰜚 (𝑟) , 𝑇 (𝑟)) d𝑟.

(43)

The number density 𝑛
𝑖
of a particle 𝑖, for a gas ofmean density

󰜚(𝑟), can be expressed as

𝑛
𝑖
(𝑟) = 󰜚 (𝑟)𝑁

𝐴

𝑋
𝑖

𝐴
𝑖

, (44)

where 𝑁
𝐴
stands for Avagadro’s constant, 𝐴

𝑖
is the atomic

mass of particle 𝑖 in atomic mass units, and 𝑋
𝑖
is the mass

fraction of particle 𝑖 such that ∑
𝑖
𝑋
𝑖

= 1. Substituting
𝑟
12
(󰜚(𝑟), 𝑇(𝑟)) from (19) and using (44) we have

𝐿
12
(𝑅)

= ∫

𝑅

0

4𝜋𝑟
2

𝐸
12
(1 −

1

2
𝛿
12
)𝑁
2

𝐴
󰜚
2

(𝑟)
𝑋
1
𝑋
2

𝐴
1
𝐴
2

[
8 (𝑞 − 1)

𝜇𝑘𝑇 (𝑟)
]

1/2

×
𝜋
−1

Γ (1/ (𝑞 − 1) − 3/2)
𝑆 (0) 𝐺

3,1

1,3

× [

[

(𝑞 − 1) 𝜋
2

𝜇

2𝑘𝑇 (𝑟)
(
𝑍
1
𝑍
2
𝑒
2

ℏ
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1

]

]

d𝑟.

(45)

If we divide the “internal luminosity” 𝐿
12
(𝑅
⊙
) by the amount

of energy 𝐸
12
, then we get the total number of particles per

second𝑁
12
liberated in the reaction given by (1) as follows:

𝑁
12
=
𝐿
12
(𝑅)

𝐸
12

= 4 (1 −
1

2
𝛿
12
)𝑁
2

𝐴

𝑋
1
𝑋
2

𝐴
1
𝐴
2

[
8(𝑞 − 1)

𝜇𝑘
]

1/2

×
1

Γ (1/ (𝑞 − 1) − 3/2)
𝑆 (0)

× ∫

𝑅

0

𝑟
2

󰜚
2

(𝑟)

[𝑇 (𝑟)]
1/2

𝐺
3,1

1,3

[

[

(𝑞 − 1) 𝜋
2

𝜇

2𝑘𝑇 (𝑟)

× (
𝑍
1
𝑍
2
𝑒
2

ℏ
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1

]

]

d𝑟

= 4 (1 −
1

2
𝛿
12
)𝑁
2

𝐴

𝑋
1
𝑋
2

𝐴
1
𝐴
2

[
8(𝑞 − 1)

𝜇𝑘
]

1/2

×
1

Γ (1/ (𝑞 − 1) − 3/2)
𝑆 (0)

1

2𝜋𝑖

× ∫

𝐿

Γ (𝑠) Γ (
1

2
+ 𝑠) Γ (1 + 𝑠)

× Γ(
1

𝑞 − 1
− 1 − 𝑠)[

(𝑞 − 1) 𝜋
2

𝜇

2𝑘
(
𝑍
1
𝑍
2
e2

ℏ
)

2

]

−𝑠

× ∫

𝑅

0

𝑟
2

󰜚
2

(𝑟) [𝑇 (𝑟)]
−1/2+𝑠d𝑟 d𝑠.

(46)

For the density distribution defined in (28) introduced by
Haubold and Mathai [5, 6] and the corresponding temper-
ature distribution (36), we get

∫

𝑅

0

𝑟
2

󰜚
2

(𝑟) [𝑇 (𝑟)]
−1/2+𝑠d𝑟

= [
4𝜋𝐺𝜇

3𝑘𝑁
𝐴

󰜚
𝑐
𝑅
2

]

𝑠−1/2

󰜚
2

𝑐

× ∫

𝑅

0

𝑟
2

[1 − (
𝑟

𝑅
)

𝛿

]

5/2−𝑠

× [−
1

2
(
𝑟

𝑅
)

2

+
𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
(
𝑟

𝑅
)

𝛿+2

−
3

2 (𝛿 + 1) (𝛿 + 3)
(
𝑟

𝑅
)

2𝛿+2

]

𝑠−1/2

d𝑟,

(47)

where 𝜉 is as defined in (34). If we put a substitution 𝑟 = 𝑥𝑅,
then we get

∫

𝑅

0

𝑟
2

󰜚
2

(𝑟) [𝑇 (𝑟)]
−1/2+𝑠d𝑟

= [
4𝜋𝐺𝜇

3𝑘𝑁
𝐴

󰜚
𝑐
𝑅
2

]

𝑠−1/2

󰜚
2

𝑐
𝑅
3

× ∫

1

0

𝑥
2

[1 − 𝑥
𝛿

]
5/2−𝑠

× [𝜉 −
1

2
𝑥
2

+
𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
𝑥
𝛿+2

−
3

2(𝛿 + 1)(𝛿 + 3)
𝑥
2𝛿+2

]

𝑠−1/2

d𝑥.

(48)
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Putting 𝑥𝛿 = 𝑦 and simplifying we obtain

∫

𝑅

0

𝑟
2

󰜚
2

(𝑟) [𝑇 (𝑟)]
−1/2+𝑠d𝑟

= [
4𝜋𝐺𝜇𝜉

3𝑘𝑁
𝐴

󰜚
𝑐
𝑅
2

]

𝑠−1/2

󰜚
2

𝑐
𝑅
3

𝛿

× ∫

1

0

𝑦
3/𝛿−1

[1 − 𝑦]
5/2−𝑠

[1 − 𝑢 (𝑦)]
𝑠−1/2d𝑦,

(49)

where 𝑢(𝑦) is defined as

𝑢 (𝑦) =
𝑦
2/𝛿

𝜉
[
1

2
−

𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
𝑦 +

3

2 (𝛿 + 1) (𝛿 + 3)
𝑦
2

] .

(50)

As 𝑦 → 0, 𝑢(𝑦) → 0, and 𝑦 → 1, 𝑢(𝑦) → 1. If we take

V (𝑦) =
1

2
−

𝛿 + 6

(𝛿 + 2) (𝛿 + 3)
𝑦 +

3

2 (𝛿 + 1) (𝛿 + 3)
𝑦
2

, (51)

we have V(0) = 1/2. The minimum value of V(𝑦) is at 𝑦 =

(𝛿 + 1)(𝛿 + 6)/3(𝛿 + 2) and the value is 1/2 − 1/6((𝛿 + 6)2(𝛿 +
1)/(𝛿 + 3)(𝛿 + 2)

2

). Thus the minimum value is nonnegative
since (𝛿 + 6)2(𝛿 + 1) /(𝛿 + 3)(𝛿 + 2)2 decreases steadily from
3 to 1 for all 𝛿 > 0. Therefore V(𝑦) ≤ 0. Since 𝜉 > 0, for all
𝛿 > 0, 𝑢(𝑦) ≤ 0 for all 𝛿 > 0, 𝜉 > 0. Thus [1 − 𝑢(𝑦)]𝑠−1/2 ≤ 0.
Hence 0 < 𝑢(𝑦) < 1 for 0 < 𝑦 < 1 and for 𝛿 > 0. Thus by
using the binomial expansion we obtain

[1 − 𝑢 (𝑦)]
𝑠−1/2

=

∞

∑

𝑚=0

(1/2 − 𝑠)
𝑚

𝑚!
[𝑢 (𝑦)]

𝑚

, (52)

where (1/2 − 𝑠)
𝑚
is the Pochhammer symbol defined for 𝑎 ∈

C by

(𝑎)
0
= 1,

(𝑎)
𝑚
=

{

{

{

𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑚 − 1) ,

Γ (𝑎 + 𝑚)

Γ (𝑎)
,

𝑚 = 1, 2, . . . , 𝑎 ̸= 0

(53)

whenever Γ(𝑎) exists. Taking 𝛿 = 2 we get 𝜉 = 1/5 and

[1 − 𝑢 (𝑦)]
𝑠−1/2

= (1 − 𝑦)
2𝑠−1

(1 −
1

2
𝑦)

𝑠−1/2

. (54)

Then from (49) we obtain

∫

𝑅

0

𝑟
2

󰜚
2

(𝑟) [𝑇 (𝑟)]
−1/2+𝑠d𝑟

= [
4𝜋𝐺𝜇

15𝑘𝑁
𝐴

󰜚
𝑐
𝑅
2

]

𝑠−1/2

󰜚
2

𝑐
𝑅
3

2

× ∫

1

0

𝑦
3/2−1

[1 − 𝑦]
5/2+𝑠−1

(1 −
1

2
𝑦)

𝑠−1/2

d𝑦

= [
4𝜋𝐺𝜇

15𝑘𝑁
𝐴

󰜚
𝑐
𝑅
2

]

𝑠−1/2

󰜚
2

𝑐
𝑅
3

2

×

∞

∑

𝑚=0

(1/2 − 𝑠)
𝑚

𝑚!

1

2
𝑚

× ∫

1

0

𝑦
3/2+𝑚−1

[1 − 𝑦]
5/2+𝑠−1d𝑦.

(55)

By using beta integral and using (53) we obtain

∫

𝑅

0

𝑟
2

󰜚
2

(𝑟) [𝑇 (𝑟)]
−1/2+𝑠d𝑟

= [
4𝜋𝐺𝜇

15𝑘𝑁
𝐴

󰜚
𝑐
𝑅
2

]

𝑠−1/2

󰜚
2

𝑐
𝑅
3

2

×

∞

∑

𝑚=0

Γ (1/2 − 𝑠 + 𝑚)

𝑚!Γ (1/2 − 𝑠)

1

2
𝑚

Γ (3/2 + 𝑚) Γ (5/2 + 𝑠)

Γ (4 + 𝑠 + 𝑚)
.

(56)

Now from (46) we obtain the total number of particles per
second liberated in the reaction (1) as follows:

𝑁
12
=
2𝑁
2

𝐴
󰜚
2

𝑐
𝑅
2

𝜇
(1 −

1

2
𝛿
12
)
𝑋
1
𝑋
2

𝐴
1
𝐴
2

[
30 (𝑞 − 1)𝑁

𝐴

𝜋𝐺󰜚
𝑐

]

1/2

× 𝑆 (0)
1

Γ (1/ (𝑞 − 1) − 3/2)

×

∞

∑

𝑚=0

1

2
𝑚

Γ (3/2 + 𝑚)

𝑚!

1

2𝜋𝑖

× ∫

𝐿

Γ (𝑠) Γ (
1

2
+ 𝑠) Γ (1 + 𝑠) Γ (

5

2
+ 𝑠)

×
Γ (1/ (𝑞 − 1) − 1 − 𝑠) Γ (1/2 + 𝑚 − 𝑠)

Γ (1/2 − 𝑠) Γ (4 + 𝑚 + 𝑠)

× [
15𝜋 (𝑞 − 1)𝑁

𝐴

8𝐺󰜚
𝑐
𝑅
2

(
𝑍
1
𝑍
2
e2

ℏ
)

2

]

−𝑠

d𝑠
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𝑁
12
=
2𝑁
2

𝐴
󰜚
2

𝑐
𝑅
2

𝜇
(1 −

1

2
𝛿
12
)
𝑋
1
𝑋
2

𝐴
1
𝐴
2

[
30 (𝑞 − 1)𝑁

𝐴

𝜋𝐺󰜚
𝑐

]

1/2

× 𝑆 (0)
1

Γ (1/ (𝑞 − 1) − 3/2)

×

∞

∑

𝑚=0

1

2
𝑚

Γ (3/2 + 𝑚)

𝑚!

× 𝐺
4,2

3,5

[

[

15𝜋 (𝑞 − 1)𝑁
𝐴

8𝐺󰜚
𝑐
𝑅
2

× (
𝑍
1
𝑍
2
e2

ℏ
)

2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1),1/2−𝑚,4+𝑚

0,1/2,1,5/2,1/2

]

]

.

(57)

For more details on𝐺-function and its properties see [25,
26]. Thus we have obtained the the total number of particles
per second liberated in the reaction (1) in terms of the density
distribution considered by Haubold and Mathai [6, 29].

5. Comparison of Pathway Energy Density and
the Maxwell-Boltzmann Energy Density

In Figure 1 it can be obtserved that, for the nuclei to react
at energy 𝐸, they have to borrow an energy 𝐸 from the
thermal environment. The probability of such an energy is
proportional to theMaxwell-Boltzmann energy exp[−𝐸/𝑘𝑇].
The fusion will take place when the nuclei penerate the
Coulomb barrier keeping them apart. The probability of
penetration is given by the factor exp[−(𝐸

𝐺
/𝐸)
1/2

]. The
product of these two factors illustrates that fusion mostly
occurs in the energy window given in the figure.

In Figure 2 the pathway energy density is plotted for 𝑞 =
0.7, 0.9, 1, 1.2, 1.4, respectively. For different values of 𝑞we get
different energy densities (curves (a), (b), (c), (d), and (e)).
The nonresonant cross section is also plotted. The product of
the pathway energy density and the nonresonant cross section
for different values of 𝑞, namely, 𝑞 = 0.7, 0.9, 1, 1.2, 1.4, is also
plotted. It is to be noted that as 𝑞 → 1 the pathway energy
density coincides with the Maxwell-Boltzmann energy den-
sity and also the fusion window for the Maxwell-Boltzmann
case in Figure 1.

The curves in the figure represent pathway density
[1 + (𝑞 − 1)(𝐸/𝑘𝑇)]

−1/(𝑞−1) for (a) 𝑞 = 0.7, (b) 𝑞 = 0.9,
(c) 𝑞 = 1, (d) 𝑞 = 1.2, and (e) 𝑞 = 1.4. (f) repre-
sents the nonresonant cross section exp[−(𝐸

𝐺
/𝐸)
1/2

]. The
product [1 + (𝑞 − 1)(𝐸/𝑘𝑇)]−1/(𝑞−1) exp[−(𝐸

𝐺
/𝐸)
1/2

] is also
represented for (g) 𝑞 = 0.7, (h) 𝑞 = 0.9, (i) 𝑞 = 1, (j) 𝑞 = 1.2,
and (k) 𝑞 = 1.4.

Figure 3(a) shows the pathway energy density defined in
(13) for 𝑞 = 1, 1.2, 1.3, 1.4 and Figure 3(b) shows theMaxwell-
Boltzmann energy density defined in (3). As 𝑞 → 1 the
pathway energy density reduces to the Maxwell-Boltzmann
energy density. The pathway energy density covers many
stable and unstable situations as the value of 𝑞 varies. If
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Figure 1: Schematic plot of the enrgy-dependent factors for the
reaction rate probability integral: the Maxwell-Boltzmann energy
density, nonresonant nuclear cross section, and the product of the
Maxwell-Boltzmann density and the nonresonant cross section.
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Figure 2: Schematic plot of the energy-dependent factors for the
extended reaction rate probability integral: pathway energy density,
nonresonant nuclear cross section, and the product of the pathway
density and the nonresonant cross section.

the Maxwell-Boltzmann density is the equilibrium situation,
many other nonequilibrium situations are covered by the
pathway energy density.
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Figure 3: (a) Pathway energy density for 𝑞 = 1, 1.2, 1.3, 1.4 and for 𝑘 = 1, 𝑇 = 100𝐾. (b) The Maxwell-Boltzmann energy density for
𝑘 = 1, 𝑇 = 100𝐾.

6. Concluding Remarks

In this paper we have modified the energy distribution
for a nonresonant reaction rate probability integral. The
composition parameter C considered by [9] is extended to
C∗ by the pathway energy density. Considering the analytic
density distributions developed by Haubold and Mathai [6,
29], they are used to obtain the stellar luminosity and the neu-
trino emission rates and are obtained in generalized special
functions such as Meijer’s 𝐺-function. The pathway energy
density considered here covers many density functions and
hence the extended reaction rate integral covers a wider class
of integral. Pathway energy density helps us to obtain various
fusion windows by giving different values to 𝑞, the pathway
parameter, which in turn leads to a new opening in the fusion
research. The graphs plotted here are by using Maple 14 in
Windows XP platform.

Appendix

Series Representation

The series representation for the right-hand side of (19) can
be obtained through the following procedure. Here we apply
residue calculus on the𝐺-function given in (19). Consider the
𝐺-function as follows:

𝐺
3,1

1,3
(
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−1/(𝑞−1)

0,1/2,1

)

=
1

2𝜋𝑖
∫

𝑐+𝑖∞

𝑐−𝑖∞

Γ (𝑠) Γ (
1

2
+ 𝑠) Γ (1 + 𝑠)

× Γ(
1

𝑞 − 1
− 1 − 𝑠)(

(𝑞 − 1) 𝐸
𝐺

4𝑘𝑇
)

−𝑠

d𝑠.

(A.1)

The right-hand side is the sum of the residues of the inte-
grand.The poles of the gammas in the integral representation
in (19) are as follows:

poles of Γ(𝑠) : 𝑠 = 0, −1, −2, . . .;

poles of Γ(1/2 + 𝑠) : 𝑠 = −1/2, −3/2, −5/2, . . .;

poles of Γ(1 + 𝑠) : 𝑠 = −1, −2, −3, . . ..

Here the poles of Γ(𝑠) and Γ(1 + 𝑠) will coincide with each
other at all points except at 𝑠 = 0. Note that the pole 𝑠 = 0 is
a pole of order 1, 𝑠 = −1/2, −3/2, −5/2, . . . are each of order 1,
and 𝑠 = −1, −2, −3, . . . are each of order 2. We know that

lim
𝑠→−𝑟

(𝑠 + 𝑟) Γ (𝑠) =
(−1)
𝑟

𝑟!
,

Γ (𝑎 − 𝑟) =
(−1)
𝑟

Γ (𝑎)

(1 − 𝑎)
𝑟

,

Γ (𝑎 + 𝑚) = Γ (𝑎) (𝑎)
𝑚

(A.2)
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when Γ(𝑎) is defined, 𝑟 = 0, 1, 2, . . . ; Γ(1/2) = 𝜋
1/2,

(𝑎)
𝑟
= {

𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑟 − 1) if 𝑟 ≥ 1, 𝑎 ̸= 0

1 if 𝑟 = 0.
(A.3)

The sum of the residues corresponding to the poles 𝑠 = 0 is
given by

𝑅
1
= √𝜋Γ(

1

𝑞 − 1
− 1) . (A.4)

The sum of the residues corresponding to the poles 𝑠 =

−1/2, −3/2, −5/2, . . . is

𝑅
2
=

∞

∑

𝑟=0

(−1)
𝑟

𝑟!
Γ (−

1

2
− 𝑟) Γ (

1

2
− 𝑟)

× Γ(
1

𝑞 − 1
−
1

2
+ 𝑟) [

(𝑞 − 1)𝐸
𝐺

4𝑘𝑇
]

−1/2+𝑟

= −2𝜋Γ(
1

𝑞 − 1
−
1

2
) [

(𝑞 − 1)𝐸
𝐺

4𝑘𝑇
]

1/2

×
1
𝐹
2
(

1

𝑞 − 1
−
1

2
;
3

2
,
1

2
; −
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇
) ,

(A.5)

where
1
𝐹
2
is the hypergeometric function defined by

1
𝐹
2
(𝑎; 𝑏, 𝑐; 𝑥) =

∞

∑

𝑟=0

(𝑎)
𝑟

(𝑏)
𝑟
(𝑐)
𝑟

𝑥
𝑟

𝑟!
. (A.6)

To obtain the sum of the residues corresponding to poles
𝑠 = −1, −2, −3, . . . of order 2, we proceed as follows:

𝑅
3

=

∞

∑

𝑟=0

lim
𝑠→−1−𝑟

𝜕
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]
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∞
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2

(2 + 𝑠 + 𝑟) Γ (1/2 + 𝑠)

× Γ (1/ (𝑞 − 1) − 1 − 𝑠))

× ((𝑠 + 𝑟)
2

(𝑠 + 𝑟 − 1)
2

⋅ ⋅ ⋅ (𝑠 + 1)
2
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−1

× (
(𝑞 − 1) 𝐸

𝐺
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∞
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Φ (𝑠) ,

(A.7)

where

Φ (𝑠) =
Γ
2

(2 + 𝑠 + 𝑟) Γ (1/2 + 𝑠) Γ (1/ (𝑞 − 1) − 1 − 𝑠)

(𝑠 + 𝑟)
2
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2
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(A.8)

We have

𝜕

𝜕𝑠
Φ (𝑠) = Φ (𝑠)

𝜕

𝜕𝑠
[ln [Φ (𝑠)]]

lnΦ (𝑠) = 2 ln [Γ (2 + 𝑠 + 𝑟)] + ln [Γ (1
2
+ 𝑠)]

+ ln [Γ( 1

𝑞 − 1
− 1 − 𝑠)] − 𝑠 ln(

(𝑞 − 1) 𝐸
𝐺

4𝑘𝑇
)

− 2 ln (𝑠 + 𝑟) − 2 ln (𝑠 + 𝑟 − 1) − ⋅ ⋅ ⋅

− 2 ln (𝑠 + 1) − ln (𝑠)

𝜕

𝜕𝑠
[ln [Φ (𝑠)]] = 2Ψ (2 + 𝑠 + 𝑟) + Ψ(

1

2
+ 𝑠)

+ Ψ(
1

𝑞 − 1
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− ln(
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇
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2
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2
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2
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2
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− ln(
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4𝑘𝑇
) ,

(A.9)

whereΨ(𝑧) is a Psi function or digamma function (seeMathai
[26]) and Ψ(1) = −𝛾, 𝛾 = 0.5772156649 . . . is Euler’s
constant. Now

lim
𝑠→−1−𝑟

Φ (𝑠) =
(−1)
1+𝑟

2√𝜋Γ (1/ (𝑞 − 1) + 𝑟)

(3/2)
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𝑟! (1 + 𝑟)!

× (
(𝑞 − 1) 𝐸

𝐺

4𝑘𝑇
)

1+𝑟

.

(A.10)
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Then by using (A.7), (A.9), and (A.10) we get

𝑅
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(A.11)

where

𝐴
𝑟
= Ψ(−

1

2
− 𝑟) + Ψ(

1

𝑞 − 1
+ 𝑟)

+ Ψ (1 + 𝑟) + Ψ (2 + 𝑟) ,

𝐵
𝑟
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(−1)
𝑟

Γ (1/ (𝑞 − 1) + 𝑟)

(3/2)
𝑟
𝑟! (1 + 𝑟)!

.

(A.12)

Thus from (A.4), (A.5), and (A.11) we get (20).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the Department of Sci-
ence and Technology, Government of India, New Delhi,
for the financial assistance for this work under Project no.
SR/S4/MS:287/05 and the Centre for Mathematical Sciences
for providing all facilities.

References

[1] R. Davis Jr., “Nobel Lecture: a half-century with solar neutri-
nos,” Reviews of Modern Physics, vol. 75, no. 3, pp. 985–994,
2003.

[2] H. J. Haubold and D. Kumar, “Extension of thermonuclear
functions through the pathway model including Maxwell-
Boltzmann and Tsallis distributions,” Astroparticle Physics, vol.
29, no. 1, pp. 70–76, 2008.

[3] H. J. Haubold and R. W. John, “On the evaluation of an integral
connected with the thermonuclear reaction rate in closed-
form,” Astronomische Nachrichten, vol. 299, no. 5, pp. 225–232,
1978.

[4] W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, “Ther-
monuclear rection rates,” Annual Review of Astronomy and
Astrophysics, vol. 5, pp. 525–570, 1967.

[5] A. M. Mathai and H. J. Haubold, Modern Problems in Nuclear
and Neutrino Astrophysics, Akademie, Berlin, Germany, 1988.

[6] H. J. Haubold and A. M. Mathai, “Analytic representations of
modified non-resonant thermonuclear reaction rates,” Journal
of Applied Mathematics and Physics, vol. 37, no. 5, pp. 685–695,
1986.

[7] W. A. Fowler, “Experimental and theoretical nuclear astro-
physics: the quest for the origin of the elements,” Reviews of
Modern Physics, vol. 56, no. 2, pp. 149–179, 1984.

[8] A. C. Phillips, The Physics of Stars, John Wiley & Sons,
Chichester, UK, 2nd edition, 1999.

[9] F. C. Adams, “Stars in other universes: stellar structure with
different fundamental constants,” Journal of Cosmology and
Astroparticle Physics, vol. 2008, no. 8, article 10, 2008.

[10] M. Coraddu, G. Kaniadakis, A. Lavagno, M. Lissia, G. Mezzo-
rani, and P. Quarati, “Thermal distributions in stellar plasmas,
nuclear reactions and solar neutrinos,” Brazilian Journal of
Physics, vol. 29, no. 1, pp. 153–168, 1999.

[11] H. J. Haubold and A. M. Mathai, “On nuclear reaction rate
theory,” Annalen der Physik, vol. 41, pp. 380–396, 1984.

[12] M. Coraddu, M. Lissia, G. Mezzorani, and P. Quarati, “Super-
Kamiokande hep neutrino best fit: a possible signal of non-
Maxwellian solar plasma,” Physica A: Statistical Mechanics and
Its Applications, vol. 326, no. 3-4, pp. 473–481, 2003.

[13] A. Lavagno and P. Quarati, “Classical and quantum non-
extensive statistics effects in nuclear many-body problems,”
Chaos, Solitons and Fractals, vol. 13, no. 3, pp. 569–580, 2002.

[14] A. Lavagno and P. Quarati, “Metastability of electron-nuclear
astrophysical plasmas: motivations, signals and conditions,”
Astrophysics and Space Science, vol. 305, no. 3, pp. 253–259,
2006.

[15] M. Lissia and P. Quarati, “Nuclear astrophysical plasmas: ion
distribution functions and fusion rates,” Europhysics News, vol.
36, no. 6, pp. 211–214, 2005.

[16] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statis-
tics,” Journal of Statistical Physics, vol. 52, no. 1-2, pp. 479–487,
1988.

[17] C. Tsallis, Introduction to Non-Extensive Statistical Mechanics,
Springer, New York, NY, USA, 2009.

[18] M. Gell-Mann and C. Tsallis, Eds., Nonextensive Entropy:
Interdisciplinary Applications, Oxford University Press, New
York, NY, USA, 2004.

[19] A. M. Mathai and H. J. Haubold, “Pathway model, superstatis-
tics, Tsallis statistics, and a generalized measure of entropy,”
Physica A: StatisticalMechanics and Its Applications, vol. 375, no.
1, pp. 110–122, 2007.

[20] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Astrophysical
thermonuclear functions for Boltzmann-Gibbs statistics and
Tsallis statistics,” Physica A: Statistical Mechanics and Its Appli-
cations, vol. 344, no. 3-4, pp. 649–656, 2004.

[21] A. M.Mathai, “A pathway tomatrix-variate gamma and normal
densities,” Linear Algebra and Its Applications, vol. 396, no. 1–3,
pp. 317–328, 2005.

[22] A. M. Mathai and H. J. Haubold, “On generalized distributions
and pathways,”Physics Letters A: General, Atomic and Solid State
Physics, vol. 372, no. 12, pp. 2109–2113, 2008.

[23] H. J. Haubold andD.Kumar, “Fusion yield: Guderleymodel and
Tsallis statistics,” Journal of Plasma Physics, vol. 77, no. 1, pp. 1–
14, 2011.

[24] D. Kumar and H. J. Haubold, “On extended thermonuclear
functions through pathwaymodel,”Advances in Space Research,
vol. 45, no. 5, pp. 698–708, 2010.



12 Journal of Astrophysics

[25] A. M. Mathai and R. K. Saxena, Generalized Hypergeometric
Functions with Applications in Statistics and Physical Sciences,
vol. 348 of Lecture Notes in Mathematics, Springer, New York,
NY, USA, 1973.

[26] A. M. Mathai, A Handbook of Generalized Special Functions for
Statistics and Physical Sciences, Clarendo Press, Oxford, UK,
1993.
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