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This paper focuses on the problems of static output feedback control and𝐻
∞
controller design for discrete-time switched systems.

Based on piecewise quadratic Lyapunov functions and a new linearization method, new sufficient conditions for system stability
and 𝐻

∞
controller design are obtained. Then, an improved path-following algorithm is built to solve the problems. Finally, the

merits and effectiveness of the proposed method are shown by two numerical examples.

1. Introduction

Recently, there has been an increasing interest in the study of
switched systems because a wide class of nonlinear systems
are naturally written as switched systems [1]. Moreover, many
other types of nonlinear systems can also be modeled as
switched systems approximately [2]. Switched systems are a
particular class of hybrid systemswhich are bounded together
by a switching rule. Such systems can be used to describe a
wide range of physical and engineering systems in practice
[3].

There are a large number of literatures about the stability
analysis and design of switched systems during the last
few years [4–9]. For discrete-time systems, several sufficient
conditions have been presented based on different Lyapunov
functions [6, 7, 10, 11], which are different in the conservative
level and in the numerical difficulties. Previous work has con-
centrated on the output feedback controller design methods
for switched systems based on piecewise quadratic Lyapunov
function [12, 13]. Lyapunov-based controller synthesis is
formulated as a biconvex optimization problem which is
nonconvex, NP-hard, and very expensive to solve globally
[14]. Although there exist some results in solving this problem
that the corresponding conditions can be determined by
checking a set of linear matrix inequalities (LMIs) [12, 13],
most of them are very restrictive.

Path-following method, which is an effective method for
solving the biconvex optimization problem, was proposed
by Hassibi et al. [15] and employed to solve mixed 𝐻2/𝐻∞
control [16, 17] and other control problems [18]. An improved
path-following method [19] has enhanced the convergence
and the performance of the algorithm. As a step-by-step
method, implying linearization approach at its key step,
it gradually shows enormous potential in solving control
problems.

In this paper, the problem of static output feedback (SOF)
control for discrete-time switched systems is studied. Based
on piecewise quadratic Lyapunov functions [12, 13] and a new
linearization method [19], the piecewise quadratic stability
conditions are linearized around some points. As a result,
less conservative conditions for system stability are derived.
The problems of𝐻

∞
control design can be readily treated as

well. Then, based on an improved path-following method, an
iterative algorithm is built. Finally, two examples are given to
show the merits and effectiveness of our work.

This paper is organized as follows. Section 2 is the
problem formulation and preliminaries. Section 3 gives the
SOF controller design for switched systems. Section 4 extends
the method to 𝐻

∞
SOF control. Section 5 provides two

numerical examples to show the merits and effectiveness of
the results and Section 6 concludes this paper.
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Notation. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space;
the superscripts −1 and 𝑇 denote the matrix inverse and
transpose, respectively; 𝑋 > 0 (𝑋 ≥ 0) means that 𝑋 is
positive definite (positive semi-definite); ‖ ⋅ ‖ is the spectral
norm; the star ∗ denotes the symmetric term in a matrix;
𝑙(𝑋, 𝑌) = 𝑋𝑌 + 𝑋

𝑇

𝑌
𝑇.

2. Problem Formulation and Preliminaries

Consider the discrete-time switched system:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) ,

for 𝑥 ∈ 𝑆
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

(1)

where 𝑥(𝑘) ∈ 𝑅𝑛, 𝑢(𝑘) ∈ 𝑅𝑚, and 𝑦(𝑘) ∈ 𝑅𝑝 are the state, the
control input, and themeasured output, respectively; 𝑆

𝑖
⊆ 𝑅
𝑛,

𝑖 = 1, 2, . . . , 𝑙, denotes a partition of the output space into a
number of closed polyhedral regions. For future use, define
a set Ω to represent all possible switches from one region to
itself or another region; that is

Ω = {(𝑖, 𝑗) : 𝑖, 𝑗 = 1, 2, . . . , 𝑙, s.t. 𝑥 (𝑘) ∈ 𝑆
𝑖
, 𝑥 (𝑘 + 1)

∈ 𝑆
𝑗
} .

(2)

The set Ω can be determined by the reachability analysis for
mixed logical dynamical systems. The system is allowed to
switch arbitrarily between subsystems.

We study the problem of designing a static output
feedback controller:

𝑢 (𝑘) = 𝐹
𝑖
𝑦 (𝑘) , 𝑖 = 1, 2, . . . , 𝑙, (3)

where 𝐹
𝑖
∈ 𝑅
𝑚×𝑝 such that the closed-loop switched system

𝑥 (𝑘 + 1) = (𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) 𝑥 (𝑘) , 𝑖 = 1, 2, . . . , 𝑙 (4)

is stable.
The following lemmas give the stability condition of

closed-loop systems (4) and the new linearization method
proposed in [19].

Lemma 1 (see [12]). If there exist matrices 𝑃
𝑖
= 𝑃
𝑇

𝑖
> 0 (∀𝑖 =

1, 2, . . . , 𝑙), such that the positive definite function 𝑉(𝑥) =

𝑥
𝑇

𝑃
𝑖
𝑥 (∀𝑥 ∈ 𝑆

𝑖
), satisfies 𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘)) < 0, that

is,

(𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

𝑃
𝑗
(𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) − 𝑃
𝑖
< 0, ∀𝑖, 𝑗 ∈ Ω, (5)

then the closed-loop switched systems (4) are exponentially
stable.

Lemma 2 (see [19]). If there exists a fixed point (𝑀,𝑁) such
that the LMI

(

𝑙 (𝑀 + Δ𝐴,𝑁) + 𝑙 (𝑀, Δ𝑃) ∗

Δ𝐴
𝑇

+ Δ𝑃 −2𝐼
) < 0 (6)

holds for some (Δ𝐴, Δ𝑃), then the point (𝐴 = 𝑀 + Δ𝐴, 𝑃 =

𝑁 + Δ𝑃) is a feasible solution to the bilinear matrix inequality
(BMI)

𝑙 (𝐴, 𝑃) < 0. (7)

3. SOF Controller Design

In this section, based on a piecewise quadratic Lyapunov
function and the new linearization method, we will give new
sufficient conditions for solving this problem.

Theorem 3. If there exist points (𝐹
𝑖
(𝑘), 𝑃
𝑖
(𝑘)), 𝑖 = 1, 2, . . . , 𝑙,

such that the following inequalities:

(

−(𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) ∗ ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) ∗

𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

Δ𝑃
𝑗

−2𝐼
) < 0,

𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
> 0, ∀ (𝑖, 𝑗) ∈ Ω,

(8)

hold for some (Δ𝐹
𝑖
, Δ𝑃
𝑖
), where 𝐴

𝑐𝑖
(𝑘) = 𝐴

𝑖
+ 𝐵
𝑖
𝐹
𝑖
(𝑘)𝐶
𝑖
, then

the points (𝑃
𝑖
= 𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
, 𝐹
𝑖
= 𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) are feasible

solutions to inequalities (5).

Proof. By Schur complement, (5) are equivalent to

(
−𝑃
𝑖

(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

𝑃
𝑗

𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −𝑃

𝑗

) < 0. (9)

Write 𝐹
𝑖
= 𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
, 𝑃
𝑖
= 𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
, and 𝐴

𝑐𝑖
(𝑘) = 𝐴

𝑖
+

𝐵
𝑖
𝐹
𝑖
(𝑘)𝐶
𝑖
, where 𝐹

𝑖
(𝑘) and 𝑃

𝑖
(𝑘) are fixed matrices. The left

side of inequality (9) is expanded around (𝐹
𝑖
(𝑘), 𝑃
𝑖
(𝑘)) as

(

−𝑃
𝑖

(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

𝑃
𝑗

𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −𝑃

𝑗

)

= (

− (𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) (𝐴
𝑖
+ 𝐵
𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖
) − (𝑃

𝑗
(𝑘) + Δ𝑃

𝑗
)

)
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= (

− (𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)

)

+ 𝑙 ((𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
0)𝑇 , (0 Δ𝑃

𝑗
)) < 0;

(10)

that is

𝑙 ((𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
0)𝑇 , (0 Δ𝑃

𝑗
))

< (

𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
∗

− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) − 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
𝑃
𝑗
(𝑘) + Δ𝑃

𝑗

) .

(11)

Thus, by Lemma 2, inequalities (8) hold.

With Theorem 3, the nonlinear SOF optimization prob-
lem OP1

min 𝛼

subject to 𝑃
𝑖
> 0,

(
−𝑃
𝑖
− 𝛼𝑃
𝑖

(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

𝑃
𝑗

𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −𝑃

𝑗

) < 0

(12)

can be replaced by solving the following linear optimization
problem OP1:

min 𝛼

subject to 𝑃
𝑖
(𝑘) +Δ𝑃

𝑖
> 0,

(

𝛽𝑃
𝑖
(𝑘) Δ𝑃

𝑖

Δ𝑃
𝑖

𝛽𝑃
𝑖
(𝑘)

) > 0,

(

− (𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) − 𝛼𝑃

𝑖
(𝑘) ∗ ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) ∗

𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

Δ𝑃
𝑗

−2𝐼
) < 0.

(13)

Remark 4. In OP1, additional inequalities ( 𝛽𝑃𝑖(𝑘) Δ𝑃𝑖
Δ𝑃𝑖 𝛽𝑃𝑖(𝑘)

) > 0
are added. This inequalities are the variation of inequalities
‖Δ𝑃
𝑖
‖ < 𝛽‖𝑃

𝑖
(𝑘)‖. Due to our new linearization method,

the prescribed scalar 𝛽 should be small [19]. Otherwise, the
conservation will increase.

4. Extension to 𝐻
∞

Control

Consider the discrete-time switched system:

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑢 (𝑘) + 𝐵

𝑤𝑖
𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑧𝑖
𝑥 (𝑘) +𝐷

𝑢𝑖
𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) ,

for 𝑥 ∈ 𝑆
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

(14)

where𝑥(𝑘) ∈ 𝑅𝑛,𝑢(𝑘) ∈ 𝑅𝑚,𝑦(𝑘) ∈ 𝑅𝑝, 𝑧(𝑘) ∈ 𝑅𝑞, and𝜔(𝑘) ∈
𝑅
𝑟 are the state, the control input, the measured output, the

control output, and the disturbance input, respectively; 𝑆
𝑖
⊆

𝑅
𝑛, 𝑖 = 1, 2, . . . , 𝑙, denotes a partition of the output space into

a number of closed polyhedral regions. LetΩ be the set of all
possible switches from one region to itself or another region;
that is,

Ω = {(𝑖, 𝑗) : 𝑖, 𝑗 = 1, 2, . . . , 𝑙 s.t. 𝑥 (𝑘) ∈ 𝑆
𝑖
, 𝑥 (𝑘 + 1)

∈ 𝑆
𝑗
} .

(15)

With the controller (3), the closed-loop system of system
(14) becomes
𝑥 (𝑘 + 1) = (𝐴

𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) 𝑥 (𝑘) + 𝐵

𝑤𝑖
𝜔 (𝑘) ,

𝑧 (𝑘) = (𝐶
𝑧𝑖
+𝐷
𝑢𝑖
𝐹
𝑖
𝐶
𝑖
) 𝑥 (𝑘) ,

𝑖 = 1, 2, . . . , 𝑙.

(16)

In this section, new sufficient conditions for SOF control
design for the switched system (14) in the𝐻

∞
framework will

be present. Given a scalar 𝛾 > 0, assuming 𝑥(0) = 0, the
exogenous signal𝜔 is attenuated by 𝛾 if for each integer𝑁 > 0
and for every 𝜔 ∈ 𝐿2([0, 𝑁], 𝑅

𝑟

)

𝑁

∑

𝑘=0
‖𝑧 (𝑘)‖

2
< 𝛾

2
𝑁

∑

𝑘=0
‖𝜔 (𝑘)‖

2
. (17)

The 𝐻
∞

performance of the closed-loop system (16)
proposed by Cuzzola and Morari in [13] is reviewed in the
next lemma.

Lemma 5 (see [13]). Consider the switched system (14), if there
exists a function 𝑉(𝑥) = 𝑥

𝑇

𝑃
𝑖
𝑥, ∀𝑥 ∈ 𝑆

𝑖
with 𝑃

𝑖
= 𝑃
𝑇

𝑖
> 0

satisfying the following inequality:

𝑉 (𝑥 (𝑘 + 1)) −𝑉 (𝑥 (𝑘)) < 𝛾
2
‖𝜔 (𝑘)‖

2
− ‖𝑧 (𝑘)‖

2
,

∀𝑘;

(18)

then the closed-loop switched system (16) is exponentially stable
with𝐻

∞
performance 𝛾.
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Obviously, inequality (18) is equivalent to the following
inequalities:

(𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

𝑃
𝑗
(𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)

+ (𝐶
𝑧𝑖
+𝐷
𝑢𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

(𝐶
𝑧𝑖
+𝐷
𝑢𝑖
𝐹
𝑖
𝐶
𝑖
)

+ (𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)
𝑇

𝑃
𝑗
𝐵
𝑤𝑖
Υ
−1
𝐵
𝑇

𝑤𝑖
𝑃
𝑗
(𝐴
𝑖
+𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
)

− 𝑃
𝑖
< 0, ∀ (𝑖, 𝑗) ∈ Ω,

(19)

where Υ = 𝛾
2
𝐼 − 𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐵
𝑤𝑖
> 0.

Now, the sufficient conditions to obtain SOF control gains
with𝐻

∞
performance are given in the following theorem.

Theorem 6. If there exist points (𝐹
𝑖
(𝑘), 𝑃
𝑖
(𝑘)), 𝑖 = 1, 2, . . . , 𝑙,

such that the LMIs

(
(
(
(
(

(

−(𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) ∗ ∗ ∗ ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) ∗

𝐵
𝑇

𝜔𝑖
(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝐵

𝑇

𝜔𝑖
𝑃
𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

−Υ (𝑘) + 𝐵
𝑇

𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖

∗

𝐶
𝑧𝑖
+ 𝐷
𝑢𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖

−𝐼

𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

Δ𝑃
𝑗

Δ𝑃
𝑗
𝐵
𝑤𝑖

−2𝐼

)
)
)
)
)

)

< 0,

Υ (𝑘) − 𝐵
𝑇

𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖
> 0, 𝑃

𝑖
(𝑘) + Δ𝑃

𝑖
> 0, ∀ (𝑖, 𝑗) ∈ Ω

(20)

hold for some (Δ𝐹
𝑖
, Δ𝑃
𝑖
), where 𝐴

𝑐𝑖
(𝑘) = 𝐴

𝑖
+ 𝐵
𝑖
𝐹
𝑖
(𝑘)𝐶
𝑖

and Υ(𝑘) = 𝛾
2
𝐼 − 𝐵

𝑇

𝑤𝑖
𝑃
𝑗
(𝑘)𝐵
𝑤𝑖

> 0, then the points (𝑃
𝑖
=

𝑃
𝑖
(𝑘)+Δ𝑃

𝑖
, 𝐹
𝑖
= 𝐹
𝑖
(𝑘)+Δ𝐹

𝑖
) are feasible solutions to inequalities

(19).

Proof. By Schur complement, inequalities (19) are equivalent
to

(

−𝑃
𝑖

∗ ∗ ∗

𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −𝑃

𝑗

𝐵
𝑇

𝑤𝑖
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −Υ

𝐶
𝑧𝑖
+ 𝐷
𝑢𝑖
𝐹
𝑖
𝐶
𝑖

−𝐼

) < 0. (21)

Write 𝐹
𝑖
= 𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
, 𝑃
𝑖
= 𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
, and 𝐴

𝑐𝑖
(𝑘) =

𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
(𝑘)𝐶
𝑖
, where 𝐹

𝑖
(𝑘) and 𝑃

𝑖
(𝑘) are fixed matrices. The

left side of inequality (21) is expanded around (𝐹
𝑖
(𝑘), 𝑃
𝑖
(𝑘)) as

(
(

(

−(𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) ∗ ∗ ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) (𝐴
𝑖
+ 𝐵
𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖
) − (𝑃

𝑗
(𝑘) + Δ𝑃

𝑗
)

𝐵
𝑇

𝑤𝑖
(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) (𝐴
𝑖
+ 𝐵
𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖
) −Υ (𝑘) + 𝐵

𝑇

𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖

𝐶
𝑧𝑖
+ 𝐷
𝑢𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖

−𝐼

)
)

)

=
(
(

(

−(𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) ∗ ∗ ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)

𝐵
𝑇

𝑤𝑖
(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝐵

𝑇

𝑤𝑖
𝑃
𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

−Υ (𝑘) + 𝐵
𝑇

𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖

𝐶
𝑧𝑖
+ 𝐷
𝑢𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖

−𝐼

)
)

)

+𝑙((𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
0 0 0)𝑇 , (0 Δ𝑃

𝑗
Δ𝑃
𝑗
𝐵
𝑤𝑖

0)) .

(22)
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That is, the following inequalities hold:

𝑙 ((𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖
0 0 0)𝑇 , (0 Δ𝑃

𝑗
Δ𝑃
𝑗
𝐵
𝑤𝑖

0))

<(

𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
∗ ∗ ∗

− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) − 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

𝑃
𝑗
(𝑘) + Δ𝑃

𝑗

−𝐵
𝑇

𝑤𝑖
(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) − 𝐵

𝑇

𝑤𝑖
𝑃
𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

Υ (𝑘) − 𝐵
T
𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖

−𝐶
𝑧𝑖
− 𝐷
𝑢𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖

𝐼

).

(23)

Thus, by Lemma 2, inequalities (20) hold.
With Theorem 6, the nonlinear optimization problem

OP2 for solving SOF control with𝐻
∞

performance

min 𝛼

subject to 𝑃
𝑖
> 0,

Υ = 𝛾
2
𝐼 − 𝐵
𝑇

𝑤𝑖
𝑃
𝑗
𝐵
𝑤𝑖
> 0

(

−𝑃
𝑖
− 𝛼𝑃
𝑖

∗ ∗ ∗

𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −𝑃

𝑗

𝐵
𝑇

𝑤𝑖
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
𝐶
𝑖
) −Υ

𝐶
𝑧𝑖
+ 𝐷
𝑢𝑖
𝐹
𝑖
𝐶
𝑖

−𝐼

)

< 0,

∀ (𝑖, 𝑗) ∈ Ω

(24)

can be replaced by solving the following linear optimization
problem OP2:

min 𝛼

subject to 𝑃
𝑖
(𝑘) +Δ𝑃

𝑖
> 0,

Υ (𝑘) − 𝐵
𝑇

𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖
> 0,

(

𝛽𝑃
𝑖
(𝑘) Δ𝑃

𝑖

Δ𝑃
𝑖

𝛽𝑃
𝑖
(𝑘)

) > 0,

(
(
(

(

−(𝑃
𝑖
(𝑘) + Δ𝑃

𝑖
) − 𝛼𝑃

𝑖
(𝑘) ∗ ∗ ∗ ∗

(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝑃

𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

− (𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
) ∗

𝐵
𝑇

𝜔𝑖
(𝑃
𝑗
(𝑘) + Δ𝑃

𝑗
)𝐴
𝑐𝑖
(𝑘) + 𝐵

𝑇

𝜔𝑖
𝑃
𝑗
(𝑘) 𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

−Υ (𝑘) + 𝐵
𝑇

𝑤𝑖
Δ𝑃
𝑗
𝐵
𝑤𝑖

∗

𝐶
𝑧𝑖
+ 𝐷
𝑢𝑖
(𝐹
𝑖
(𝑘) + Δ𝐹

𝑖
) 𝐶
𝑖

−𝐼

𝐵
𝑖
Δ𝐹
𝑖
𝐶
𝑖

Δ𝑃
𝑗

Δ𝑃
𝑗
𝐵
𝑤𝑖

−2𝐼

)
)
)

)

< 0,

∀ (𝑖, 𝑗) ∈ Ω.

(25)

Based onTheorems 3 and 6, an iterative algorithm to solve
stabilization and 𝐻

∞
control via static output feedback for

discrete-time switched systems is established.

Algorithm 7. Consider the following.

Step 1 (initialization step). At initial, we need to obtain initial
values of 𝐹

𝑖
and 𝑃

𝑖
.

Firstly, let 𝑃
𝑖
= 𝐼. Then, solve the optimization problem

OP1 (or OP2 instead for𝐻
∞

case) with respect to 𝐹
𝑖
and 𝛼.

If 𝛼 < 0, stop; else let 𝐹
𝑖
(0) = 𝐹

𝑖
, 𝑃
𝑖
(0) = 𝑃

𝑖
, 𝐴
𝑐𝑖
(0) =

𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖
(0)𝐶
𝑖
, and 𝛼(0) = 𝛼, and set 𝑘 = 1.

Step 2 (small perturbation step). Set 𝛽 = 𝛽0, where 𝛽0 > 0
is a prescribed small value. Solve LMI optimization problem
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OP1 (or OP2 instead for𝐻
∞
case) with respect to Δ𝐹

𝑖
, Δ𝑃
𝑖
,

and 𝛼.

Step 3 (update step). Let 𝐹
𝑖
(𝑘) = 𝐹

𝑖
(𝑘−1)+Δ𝐹

𝑖
, 𝑃
𝑖
(𝑘) = 𝑃

𝑖
(𝑘−

1)+Δ𝑃
𝑖
, 𝛼(𝑘) = 𝛼, and𝐴

𝑐𝑖
(𝑘) = 𝐴

𝑐𝑖
(𝑘−1)+𝐵

𝑖
Δ𝐹
𝑖
𝐶
𝑖
. For fixed

𝐹
𝑖
(𝑘), compute new 𝑃

𝑖
(𝑘) by solving OP1 (or OP2 instead for

𝐻
∞

case), and then compute new 𝐹
𝑖
(𝑘) and 𝛼(𝑘) by solving

OP1 (or OP2 instead for𝐻
∞

case).
If 𝛼(𝑘) < 0, stop; else if the relative improvement in 𝛼 is

more than a desired accuracy, set 𝑘 = 𝑘 + 1, and go to Step 2.
Else, set 𝑘 = 1, and let 𝐹

𝑖
(0) = 𝐹

𝑖
(𝑘), 𝑃
𝑖
(0) = 𝑃

𝑖
(𝑘), 𝐴

𝑐𝑖
(0) =

𝐴
𝑐𝑖
(𝑘), and 𝛼(0) = 𝛼(𝑘).

Step 4 (wide perturbation step). Set 𝛽 = 𝛽 × 2. Solve LMI
optimization problem OP1 (or OP2 instead for 𝐻

∞
case)

with respect to Δ𝐹
𝑖
, Δ𝑃
𝑖
, and 𝛼.

Step 5 (update step). Let 𝐹
𝑖
(𝑘) = 𝐹

𝑖
(𝑘−1)+Δ𝐹

𝑖
, 𝑃
𝑖
(𝑘) = 𝑃

𝑖
(𝑘−

1)+Δ𝑃
𝑖
, 𝛼(𝑘) = 𝛼, and𝐴

𝑐𝑖
(𝑘) = 𝐴

𝑐𝑖
(𝑘−1)+𝐵

𝑖
Δ𝐹
𝑖
𝐶
𝑖
. For fixed

𝐹
𝑖
(𝑘), compute new 𝑃

𝑖
(𝑘) by solving OP1 (or OP2 instead for

𝐻
∞

case), and then compute new 𝐹
𝑖
(𝑘) and 𝛼(𝑘) by solving

OP1 (or OP2 instead for𝐻
∞

case).
If 𝛼(𝑘) < 0, stop; else if the relative improvement in 𝛼 is

more than a desired accuracy, set 𝑘 = 1, and let 𝐹
𝑖
(0) = 𝐹

𝑖
(𝑘),

𝑃
𝑖
(0) = 𝑃

𝑖
(𝑘), 𝐴

𝑐𝑖
(0) = 𝐴

𝑐𝑖
(𝑘), and 𝛼(0) = 𝛼(𝑘), and go to

Step 2. Else if the relative improvement in 𝛼 is inferior to the
desired accuracy and 𝑘 < 𝑘0, where 𝑘0 > 0 is a prescribed
integer, set 𝑘 = 𝑘 + 1, and go to Step 4. Else, stop.

Remark 8. The wide perturbation step is a crucial step in
improved path-following method. The purpose of this step
is to broaden the search scope during each iteration so
that the algorithm has the opportunity to escape form the
local optimum. However, the enlarged search scope may
cause nonconvergence. So the iteration number of wide
perturbation step should not be too large. As long as the
objective function𝛼has been improved significantly, thewide
perturbation stepwill be replaced by a small perturbation step
immediately.

5. Numerical Examples

In this section, two examples are given to show the effec-
tiveness of our method. Example 1 is with respect to the
SOF control problem for switched systems. Example 2 is
concerning the 𝐻

∞
controller design problem for switched

systems.

Example 1. Consider system (1) with the following parame-
ters:

𝐴1 = (

1 0.3 2
1 0 1
0.3 0.6 0.6

),

𝐴2 = (

−0.5871 −0.8441 −0.0092
−0.6865 −0.5090 −0.8561
0.0974 0.4523 −0.2280

),

𝐴3 = (

0.1089 0.2458 −0.9035
0.3998 −0.9213 −0.4161
0.6745 −0.5750 0.7138

),

𝐵1 = (

1 0
0 1
1 0

),

𝐵2 = (

0.1930 −0.4204
−0.7359 0.0346
0.5073 −0.9077

),

𝐵3 = (

−0.4164 0.0244
0.8297 −0.4366
−0.0900 −0.8416

),

𝐶1 = (1 1 0) ,

𝐶2 = (1 0 1) ,

𝐶3 = (0 1 1) .
(26)

It cannot be stabilized by the method in [12, 20]. However,
using our method, set 𝛽0 = 0.2; after iterations, output
feedback stabilizing controller matrices are computed to be

𝐹1 = (

−0.7454
−0.8806

) ,

𝐹2 = (

−0.8899
−0.2598

) ,

𝐹3 = (

0.5736
0.4941

) ,

𝑃1 = (

11359.9012 −13835.4590 3078.1446
−13835.4590 45253.4272 −20668.2151
3078.1446 −20668.2151 36198.7545

),

𝑃2 = (

7437.9005 −6354.0674 −141.5298
−6354.0674 34828.7955 −8170.2774
−141.5298 −8170.2774 16785.3283

),

𝑃3 = (

12867.1197 −18832.8739 5382.2570
−18832.8739 43961.3298 −14881.7520
5382.2570 −14881.7520 23348.2946

).

(27)
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Example 2. Consider a systemwith the following parameters:

𝐴1 = (

−0.5871 −0.8441 −0.0092
−0.6865 −0.5090 −0.8561
0.0974 0.4523 −0.2280

),

𝐴2 = (

0.1089 0.2458 −0.9035
0.3998 −0.9213 −0.4161
0.6745 −0.5750 0.7138

),

𝐵1 = (

0.1930 −0.4204
−0.7359 0.0346
0.5073 −0.9077

),

𝐵2 = (

−0.4164 0.0244
0.8297 −0.4366
−0.0900 −0.8416

),

𝐶1 = (1 0 1) ,

𝐶2 = (0 1 1) ,

𝐵
𝑤1 = 𝐵

𝑤2 = (

0
1
0
),

𝐶
𝑧1 = 𝐶

𝑧2 = (

1 0 0
0 1 0
0 0 1

),

𝐷
𝑢1 = 𝐷

𝑢2 = (

0 0
0 1
0 1

).

(28)

Using our method, set 𝛽0 = 0.2; after iterations, output
feedback control matrices are computed to be

𝐹1 = (

−0.9811
−0.6662

) ,

𝐹2 = (

0.4284
−0.2097

) .

(29)

In this case,

𝑃1 = (

5.3254 −2.9578 1.2843
−2.9578 12.6330 −2.3378
1.2843 −2.3378 2.8444

),

𝑃2 = (

6.0132 −3.0439 3.3919
−3.0439 6.3742 −3.3469
3.3919 −3.3469 9.2144

)

(30)

and the closed-loop system has the 𝐻
∞

performance 𝛾 =

4.7328. The result is better than the solution solved by the

method in [12] which gives 𝛾 = 5.6853, which is inferior
compared to our result 𝛾 = 4.7328 and

𝐹1 = (

−1.0832
−0.5259

) ,

𝐹2 = (

0.3563
−0.1241

) .

(31)

6. Conclusion

This paper studies the problems of static output feedback con-
trol and 𝐻

∞
controller synthesis for discrete-time switched

systems. Based on piecewise quadratic Lyapunov functions
and a new linearization method, new sufficient conditions
for system stability and 𝐻

∞
controller design are obtained.

Then, an improved path-following algorithm is built to solve
the problems. Finally, the merits and effectiveness of the
proposed method are shown by two numerical examples.
Compared to the existing methods, the proposed method is
less conservative.

Important future research work will be applying the
results to some real-world systems. How to reduce the design
conservatism is an important research topic that deserves
further investigation.
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