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We study uniform finite-difference method for solving first-order singularly perturbed
boundary value problem (BVP) depending on a parameter. Uniform error estimates in
the discrete maximum norm are obtained for the numerical solution. Numerical results
support the theoretical analysis.

1. Introduction

In this paper, we are going to devise a finite-difference method for the following parame-
ter-dependant singularly perturbed boundary value problem (BVP):

Lu := εu′(x) + a(x)u(x)= f (x,λ), x ∈Ω= (0, l], (1.1)

u(0)=A, u(l)= B, (1.2)

where A, B are given constants and a(x), f (x,λ) are sufficiently smooth functions such
that

a(x)≥ α > 0 in Ω̄= [0, l],

0 <m1 ≤
∣∣∣∣∂ f∂λ

∣∣∣∣≤M1 <∞ in Ω̄×R.
(1.3)

ε > 0 is a small parameter and {u(x),λ} is a solution.
For ε� 1, the function u(x) has a boundary layer of thickness O(ε) near x = 0.
Under the above conditions, there exists a unique solution to problem (1.1), (1.2)

(see [7, 12]). An overview of some existence and uniqueness results and applications of
parameterized equations may be obtained, for example, in [6, 7, 8, 9, 12, 13, 15, 16]. In
[7, 9, 12], have also been considered some approximating aspects of this kind of problems.
But designed in the above-mentioned papers, algorithms are only concerned with the
regular cases (i.e., when the boundary layers are absent).

The numerical analysis of singular perturbation cases has always been far from trivial
because of the boundary layer behavior of the solution. Such problems undergo rapid
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changes within very thin layers near the boundary or inside the problem domain [4, 10,
11]. It is well known that standard numerical methods on uniform meshes for solving
such problems are unstable and fail to give accurate results when the perturbation param-
eter ε is small. Therefore, it is important to develop suitable numerical methods to these
problems, whose accuracy does not depend on the parameter value ε, that is, methods
that are convergent ε-uniformly. For the various approaches on the numerical solution of
differential equations with steep, continuous solutions, we may refer to the monographs
[4, 5, 14].

Here we analyze a fitted difference scheme on a uniform mesh for the numerical solu-
tion of the problem (1.1), (1.2). In Section 2, we state some important properties of the
exact solution. In Section 3, we present the difference scheme and obtain uniform error
estimates for the truncation term and appropriate solution on a uniform mesh. Uniform
convergence is proved in the discrete maximum norm. In Section 4, we formulate the
iterative algorithm for solving the discrete problem and give the illustrative numerical
results. The approach to construct discrete problem and error analysis for approximate
solution is similar to those ones from [1, 2, 3].

Henceforth, C and c denote the generic positive constants independent of ε and of the
mesh parameter. A subscripted such constant is also independent of ε and mesh param-
eter, but whose value is fixed.

2. The continuous problem

In this section, we give uniform bounds of the solution of the BVP (1.1), (1.2), which will
be used to analyze properties of the appropriate difference problem.

Lemma 2.1. For the solution {u(x),λ} of the problem (1.1), (1.2),

|λ| ≤ c0, (2.1)∥∥u∥∥∞ ≤ c1, (2.2)

where

c0 = ‖a‖∞
m1
(
1− exp

(−‖a‖∞l))
(|A|+ |B|)+m−1

1 ‖F‖∞,

c1 = |A|+α−1‖F‖∞ + c0α
−1M1,(

F(x)= f (x,0), ‖a‖∞ ≡ ‖a‖∞,Ω̄ :=max
Ω̄

∣∣a(x)
∣∣).

(2.3)

Proof. We rewrite (1.1) as

εu′(x) + a(x)u(x)= f (x,0) +
∂ f̃

∂λ
λ, (2.4)

where

∂ f̃

∂λ
= ∂ f

∂λ

(
x,λ∗

)
, λ∗ = γλ, 0 < γ < 1. (2.5)
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Integrating (2.4), we get

u(x)= Aexp
(
− 1

ε

∫ x

0
a(t)dt

)

+
1
ε

∫ x

0
F(τ)exp

(
− 1

ε

∫ x

τ
a(t)dt

)
dτ

+
1
ε
λ
∫ x

0

∂ f

∂λ

(
τ,λ∗

)
exp

(
− 1

ε

∫ x

τ
a(t)dt

)
dτ,

(2.6)

from which, by setting the boundary condition u(l)= B, we have

λ= B−Aexp
(− (1/ε)

∫ l
0 a(t)dt

)− (1/ε)
∫ l

0F(τ)exp
(− (1/ε)

∫ l
τ a(t)dt

)
dτ

(1/ε)
∫ l

0(∂ f /∂λ)
(
τ,λ∗

)
exp

(− (1/ε)
∫ l
τ a(t)dt

)
dτ

. (2.7)

Applying the mean-value theorem for integrals, we deduce that

∣∣(1/ε)
∫ l

0F(τ)exp
(− (1/ε)

∫ l
τ a(t)dt

)
dτ
∣∣∣∣(1/ε)

∫ l
0(∂ f /∂λ)

(
τ,λ∗

)
exp

(− (1/ε)
∫ l
τ a(t)dt

)
dτ
∣∣

=
∣∣(1/ε)

∫ l
0F(τ)exp

(− (1/ε)
∫ l
τ a(t)dt

)
dτ
∣∣

(1/ε)
∣∣(∂ f /∂λ)

(
x∗,λ∗

)∣∣∫ l
0 exp

(− (1/ε)
∫ l
τ a(t)dt

)
dτ

≤m−1
1 ‖F‖∞, 0 < x∗ < l.

(2.8)

It then follows from (2.7) that

|λ| ≤
∣∣B−Aexp

(− (1/ε)
∫ l

0 a(t)dt
)∣∣

m1(1/ε)
∫ l

0 exp
(− (1/ε)

∫ l
τ a(t)dt

)
dτ

+m−1
1 ‖F‖∞, (2.9)

which, for ε ≤ 1, immediately leads to (2.1).
Next, from (2.6), we see that

∣∣u(x)
∣∣≤ |A|exp

(
− αx

ε

)
+α−1

[
1− exp

(
− αx

ε

)](‖F‖∞ + |λ|M1
)

(2.10)

and using the estimate (2.1), we obtain (2.2). �

3. Discrete problem and convergence

3.1. Derivation of the difference scheme. In what follows, we denote by ωh the uniform
mesh on Ω:

ωh =
{
xi = ih, i= 1, . . . ,N ; Nh= l

}
, ω̄h = ωh∪{x = 0}. (3.1)
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To simplify the notation, we set gi = g(xi) for any function g(x), while ghi denotes an
approximation of g(x) at xi.

For any mesh function {wi} defined on ω̄h, we use the discrete maximum norm

‖w‖∞ ≡ ‖w‖∞,ω̄h := max
0≤i≤N

∣∣wi

∣∣. (3.2)

The approach of generating difference method is through the integral identity

χih
−1
∫ xi

xi−1

Luϕi(x)dx = χih
−1
∫ xi

xi−1

f (x,λ)ϕi(x)dx, 1≤ i≤N , (3.3)

with the exponential basis functions

ϕi(x)= exp

(
− ai

(
xi− x

)
ε

)
, xi−1 ≤ x ≤ xi, (3.4)

where

χi =
(
h−1

∫ xi

xi−1

ϕi(x)dx
)−1

= aiρ

1− exp
(− aiρ

) , ρ = h

ε
. (3.5)

We note that function ϕi(x) is the solution of the problem

−εϕ′i (x) + aiϕi(x)= 0, xi−1 ≤ x < xi, ϕi
(
xi
)= 1. (3.6)

The relation (3.3) is rewritten as

χih
−1ε

∫ xi

xi−1

u′(x)ϕi(x)dx+ aiχih
−1
∫ xi

xi−1

u(x)ϕi(x)dx+Ri = f
(
xi,λ

)
(3.7)

with the remainder term

Ri = χih
−1
∫ xi

xi−1

[
a(x)− a

(
xi
)]
ϕi(x)dx

+ χih
−1
∫ xi

xi−1

[
f
(
xi,λ

)− f (x,λ)
]
ϕi(x)dx.

(3.8)

To be consistent with [1, 2, 3], we then obtain

εθiux̄,i + aiui +Ri = f
(
xi,λ

)
, 1≤ i≤N , (3.9)
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where

θi = 1 + χih
−1aiε

−1
∫ xi

xi−1

(
x− xi

)
ϕi(x)dx,

ux̄,i = ui−ui−1

h
,

(3.10)

and a simple calculation gives us

θi = aiρ

1− exp
(− aiρ

) exp
(− aiρ

)
. (3.11)

As a consequence of (3.9), we propose the following difference scheme for approxi-
mating (1.1), (1.2):

Lhuhi := εθiu
h
x̄,i + aiu

h
i = f

(
xi,λh

)
, 1≤ i≤N ,

uh0 = A, uhN = B,
(3.12)

where θi is defined by (3.11).

3.2. Uniform error estimates. To investigate the convergence of the method, note that
the error functions zhi = uhi − ui, 0 ≤ i ≤ N , µh = λh − λ are the solution of the discrete
problem

εθiz
h
x̄,i + aiz

h
i = f

(
xi,µh + λ

)− f
(
xi,λ

)
+Ri, 1≤ i≤N , (3.13)

zh0 = 0, zhN = 0, (3.14)

where θi and Ri are given by (3.11) and (3.8), respectively.

Lemma 3.1. For the error function Ri,

‖R‖∞,ωh ≤ Ch, (3.15)

provided a∈ C1(Ω̄) and |∂ f /∂x| ≤ C for x ∈ Ω̄ and λ satisfying (2.1).

The proof easily follows from the explicit expression of Ri defined by (3.8).

Lemma 3.2. The solution {zhi ,µh} of the problem (3.13), (3.14) satisfies

∣∣µh∣∣≤m−1
1 ‖R‖∞,ωh , (3.16)∥∥zh∥∥∞,ω̄h

≤ α−1(1 +m−1
1 M1

)‖R‖∞,ωh . (3.17)
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Proof. From (3.13), we obtain

zhi =
εθi

εθi +hai
zhi−1 +

h(∂ f̃ /∂λ)i
εθi +hai

µh +
hRi

εθi +hai
, (3.18)

where

(
∂ f̃

∂λ

)
i
= ∂ f

∂λ

(
xi,λ+ γµh

)
, 0 < γ < 1. (3.19)

Solving the first-order difference equation with respect to zhi and setting the boundary
condition zh0 = 0, we get

zhi = µhh
i∑

k=1

(∂ f̃ /∂λ)k
εθk +hak

Qik +h
i∑

k=1

Rk

εθk +hak
Qik, (3.20)

where

Qik =




1, k = i,
i∏

j=k+1

εθj
εθj +haj

, 1≤ k ≤ i− 1.
(3.21)

For i=N , taking into consideration that zhN = 0, we have

µh =−
∑N

k=1

(
Rk/

(
εθk +hak

))
QN ,k∑N

k=1

(
(∂ f̃ /∂λ)k/

(
εθk +hak

))
QN ,k

, (3.22)

from which, since εθi +hai > 0 (1≤ i≤N), the required result (3.16) easily follows.
Finally, applying the maximum principle for difference operator Lhzhi := εθiz

h
x̄,i + aiz

h
i ,

1≤ i≤N , to (3.13) yields

∥∥zh∥∥∞,ω̄h
≤ α−1(M1

∣∣µh∣∣+‖R‖∞,ωh

)
, (3.23)

which, along with (3.16), leads to (3.17). �

Combining the two previous lemmas gives us the following convergence result.

Theorem 3.3. Let {u(x),λ} be the solution of (1.1), (1.2) and {uhi ,λh} the solution of (3.13),
(3.14). Then

∣∣λ− λh
∣∣≤ Ch,

∥∥u−uh
∥∥∞,ω̄h

≤ Ch. (3.24)
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4. Numerical results

In this section, we present some numerical experiments in order to illustrate the present
method.

(a) We solve the nonlinear problem (3.12) using the following quasilinearization tech-
nique:

εθiu
(n)
x̄,i + aiu

(n)
i = f

(
xi,λ(n−1)), 1≤ i < N ,

u(n)
0 =A,

λ(n) = λ(n−1)− f
(
l,λ(n−1)

)− θNρ−1
(
B−u(n)

N−1

)− aNB

(∂ f /∂λ)
(
l,λ(n−1)

) ,

(4.1)

n = 1,2, . . . ; λ(0) given. (For simplicity, the h on ui is omitted.) The initial guess λ(0) is
being chosen by condition (2.1).

(b) Consider the test problem

εu′(x) +
1

1 + x2
u(x)= 2λ+ sin

λx

2
, 0≤ x ≤ 1,

u(0)= 1, u(1)= 0.
(4.2)

The initial guess in (4.2) is taken as λ(0) = 0.00039 and stopping criterion is

max
i

∣∣u(n)−u(n−1)
∣∣≤ 10−5;

∣∣λ(n)− λ(n−1)
∣∣≤ 10−5. (4.3)

We use a double-mesh method (see, e.g., [5]) to compute the experimental rates of
convergence:

pε,hu = ln
(
eε,hu /eε,h/2u

)
ln2

, eε,hu = max
0≤i≤N

∣∣uhi −uh/22i

∣∣ (4.4)

for uhi , and

pε,hλ = ln
(
eε,hλ /eε,h/2λ

)
ln2

, eε,hλ = ∣∣λh− λh/2
∣∣ (4.5)

for λh.
Tables 4.1 and 4.2 contain some numerical results for different values of ε and h, based

on the double-mesh principle. The result established here is that the discrete solution is
uniformly convergent with respect to the perturbation parameter, and also clearly, that
we obtain first-order convergence, so Theorem 3.3 is sharp.
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Table 4.1. Errors {eε,hu ,eε,hλ } and convergence rates {pε,hu , pε,hλ } on ωh for h= 1/8 and h= 1/16.

ε
h= 1/8 h= 1/16

pε,hu pε,hλeε,hu eε,hλ eε,h/2u eε,h/2λ

10−3 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.028

10−4 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−5 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−6 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−7 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−8 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−9 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−10 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−11 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

10−12 0.00002235 0.00000506 0.00001069 0.00000248 1.064 1.027

Table 4.2. Errors {eε,hu ,eε,hλ } and convergence rates {pε,hu , pε,hλ } on ωh for h= 1/16 and h= 1/32.

ε
h= 1/16 h= 1/32

pε,hu pε,hλeε,hu eε,hλ eε,h/2u eε,h/2λ

10−3 0.00001152 0.00000248 0.00000566 0.00000122 1.028 1.028

10−4 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−5 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−6 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−7 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−8 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−9 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−10 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−11 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014

10−12 0.00001152 0.00000248 0.00000571 0.00000123 1.014 1.014
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