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We propose an 𝑙𝑝-norm-penalized affine projection algorithm (LP-APA) for broadband multipath adaptive channel estimations.
The proposed LP-APA is realized by incorporating an 𝑙𝑝-norm into the cost function of the conventional affine projection algorithm
(APA) to exploit the sparsity property of the broadband wireless multipath channel, by which the convergence speed and steady-
state performance of the APA are significantly improved.The implementation of the LP-APA is equivalent to adding a zero attractor
to its iterations. The simulation results, which are obtained from a sparse channel estimation, demonstrate that the proposed LP-
APA can efficiently improve channel estimation performance in terms of both the convergence speed and steady-state performance
when the channel is exactly sparse.

1. Introduction

Recently, with the fast increasing demand for high data rate
and wide bandwidth in wireless mobile communication, the
use of broadband signal transmission has become an impor-
tant technique for next-generation wireless communication
systems, for instance, 3GPP long-term evolution (LTE) and
worldwide interoperability for microwave access (WiMAX)
[1–3]. Coherent detection and equalization in broadband
communication systems require perfect channel state infor-
mation [4], which is not known at the receiver.Therefore, the
achievable performance of coherent detection for such broad-
band communication system relies heavily on the accuracy
of the channel estimation [2–7], which can help to improve
the communication quality. Fortunately, the accurate channel
estimation can be obtained by means of the adaptive filter
algorithms, such as least mean square (LMS), recursive least
squares (RLS), and affine projection algorithm (APA) [8, 9].
On the other hand, normalized LMS (NLMS) algorithm,
which is an improved LMS algorithm, has been widely stud-
ied and applied in channel estimation owing to its low com-
plexity, high stability, and easy implementation. However,
NLMS algorithm converges slowly,making it difficult to track
the rapid time-varying channels. Consequently, the APAwith

an acceptable computational complexity between the NLMS
and RLS algorithms has been deeply developed and applied
in echo cancellation and channel estimations [9, 10].

On the other hand, themeasurement results of the broad-
band channel showed that the wireless multipath channel
consists of only a few dominant active propagation paths
whose magnitudes are nonzero, even though they have large
propagation delays [5, 11, 12]. Thus, these channels can be
regarded as a sparse channel with a few nonzero taps which
are dominant, while other inactive taps are zero or close to
zero because of the noise in the channel. However, the clas-
sical adaptive channel estimation algorithms, such as NLMS
algorithm and APA, may perform poorly when the channel
is exactly sparse [13]. As a consequence, a great number
of sparse signal estimation algorithms have been presented
to improve the estimation performance for sparse channels,
such as compressed sensing (CS) [5, 14–16] and zero-
attracting adaptive channel estimation algorithms [13, 17–23].
However, these CS reconstruction algorithms are sensitive to
the noise in the channel estimation and have high computa-
tional complexity [19].

Other effective adaptive channel estimation algorithms,
denoted as zero-attracting algorithms, have been reported
by the combination of the CS theory [15, 16] and the LMS
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algorithm [8], which are famous as zero-attracting LMS (ZA-
LMS) and reweighted ZA-LMS (RZA-LMS) algorithms [13].
Recently, these zero-attracting (ZA) techniques have been
expanded to the APA in order to improve the convergence
speed of the zero-attracting LMS algorithms [20], which are
denoted as zero-attracting APA (ZA-APA) and reweighted
ZA-APA (RZA-APA). As a result, the zero-attracting APAs
converge faster than those of the ZA LMSs due to the reuse
data scheme in the APA. However, these previously pro-
posed zero-attracting algorithms, which include the ZA-LMS
algorithm and the ZA-APA, are realized by integrating an
𝑙1-norm into the cost functions of the standard LMS andAPA,
respectively. Moreover, these 𝑙1-norm-penalized algorithms
impose a condition that the number of the active taps must
be very small as compared to the number of inactive channel
taps.

In this paper, we proposed an 𝑙𝑝-norm-penalized APA
(LP-APA) that incorporates an 𝑙𝑝-norm into the cost function
of the conventional APA on the basis of the concepts of zero-
attracting algorithm proposed in [13, 17–23], by which the
convergence speed and steady-state performance of the
conventional APA can be significantly improved when the
channel is exactly sparse.Moreover, the proposedLP-APAhas
an extra parameter 𝑝, which is more flexible than the previ-
ously proposed zero-attracting APAs [20–22].The LP-APA is
realized by introducing a zero attractor in its iterations, which
is used to attract the inactive taps to zero quickly. In other
words, our proposed LP-APA can inherit the benefits of both
the conventional APA and the past zero-attracting algorithms
and, hence, it can achieve faster convergence speed and
smaller steady-state error in comparison with the conven-
tional APA. In this study, our proposed LP-APA is imple-
mented over a sparsemultipath channel in single antenna sys-
tems in order to verify the channel estimation performance in
comparison with the NLMS, APA, ZA-APA, and RZA-APA.
Computer simulation results demonstrate that the proposed
LP-APA achieves better estimation performance in terms of
both the convergence speed and steady-state behavior for
sparse channel estimation.

The remainder of this paper is organized as follows. In
Section 2, we briefly discuss the previously proposed conven-
tional APA, ZA-APA, and RZA-APA based on a sparse multi-
path communication system. In Section 3, wemathematically
propose the LP-APA by the use of an 𝑙𝑝-norm-penalty in
the cost function of the conventional APA. Furthermore, the
update function of the LP-APA is obtained by using Lagrange
multiplier method. In Section 4, the channel estimation per-
formance of the proposed LP-APA is experimentally inves-
tigated over a sparse channel and compared with those of
the ZA-APA, RZA-APA, APA, andNLMS algorithms. Finally,
Section 5 draws a conclusion for this paper.

2. Conventional Channel
Estimation Algorithms

In this section, a sparse multipath communication system
shown in Figure 1 is employed in order to illustrate the con-
ventional channel estimation algorithms, namely, APA, ZA-
APA, and RZA-APA. The input signal x(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1),
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Figure 1: Typical sparse multipath communication system.

. . . , 𝑥(𝑛−𝑁+1)]
𝑇, which contains the𝑁most recent samples,

is transmitted over an unknown finite impulse response
(FIR) channel with channel impulse response (CIR) h =

[ℎ0, ℎ1, . . . , ℎ𝑁−1]
𝑇, where (⋅)𝑇 is the transposition operation.

The input signal x(𝑛) is also an input of the channel estimator
ĥ(𝑛) with 𝑁 coefficients to generate an estimation output
ŷ(𝑛), and the desired signal d(𝑛), which is obtained at the
receiver, is composed of the channel output y(𝑛) and the noise
v(𝑛) in the channel. The purpose of the channel estimation is
to estimate the unknown channel h by using the APA, ZA-
APA, and RZA-APA.

2.1. Review of Conventional APA. The APA adopts multiple
projection scheme by utilizing past vectors from time itera-
tion 𝑛 to time iteration (𝑛 − 𝑄 + 1), where 𝑄 is defined as the
affine projection order. In the APA, we assume that the last𝑄
input signal vectors are organized as a matrix as follows:

U (𝑛) =
[
[
[
[

[

x𝑇 (𝑛)
x𝑇 (𝑛 − 1)

...
x𝑇 (𝑛 − 𝑄 + 1)

]
]
]
]

]

, (1)

where x(𝑛) is the input signal. We also define the following
useful vectors to further describe theAPA, such as the desired
signal d(𝑛), the estimation output of the APA filter ŷ(𝑛), and
the additive white Gaussian noise k(𝑛):

ŷ (𝑛) = [𝑦 (𝑛) 𝑦 (𝑛 − 1) ⋅ ⋅ ⋅ 𝑦 (𝑛 − 𝑄 + 1)]𝑇,

d (𝑛) = [𝑑(𝑛) 𝑑(𝑛 − 1) ⋅ ⋅ ⋅ 𝑑(𝑛 − 𝑄 + 1)]𝑇,

k (𝑛) = [V (𝑛) V (𝑛 − 1) ⋅ ⋅ ⋅ V(𝑛 − 𝑄 + 1)]𝑇.

(2)

For channel estimation, the APA is used to minimize
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1) − ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

2

subject to : d (𝑛) − U (𝑛) ĥ (𝑛 + 1) = 0.
(3)
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Here, the Lagrange multiplier method is employed in
order to find out the solutions thatminimize the cost function
𝐽APA(𝑛 + 1) of the APA and 𝐽APA(𝑛 + 1) is given by

𝐽APA (𝑛 + 1) =
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1) − ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ [d (𝑛) − U (𝑛) ĥ (𝑛 + 1)]
𝑇

𝜆APA,

(4)

where 𝜆APA is a𝑄×1 Lagrange multiplier vector with 𝜆APA =
[𝜆0 𝜆1 ⋅ ⋅ ⋅ 𝜆𝑄−1]

𝑇. By calculating the gradient of 𝐽APA(𝑛 +
1), we have

𝜕𝐽APA (𝑛 + 1)

𝜕ĥ (𝑛 + 1)
= 0, 𝜕𝐽APA (𝑛 + 1)

𝜕𝜆
= 0, (5)

ĥ (𝑛 + 1) = ĥ (𝑛) + U𝑇 (𝑛) [U (𝑛)U𝑇 (𝑛)]
−1

e (𝑛)

= ĥ (𝑛) + U+ (𝑛) e (𝑛) ,
(6)

where U+(𝑛) = U𝑇(𝑛)[U(𝑛)U𝑇(𝑛)]−1. In order to balance
the convergence speed and the steady-state performance, a
step size 𝜇APA is introduced into (6), and hence, the update
function (6) of the APA can be modified to

ĥ (𝑛 + 1) = ĥ (𝑛) + 𝜇APAU
+
(𝑛) e (𝑛) . (7)

It is worthwhile to note that the APA is aNLMS algorithm
when the affine projection order 𝑄 is set to one.

2.2. Review of the ZA-APA and RZA-APA. In this subsection,
we briefly review the ZA-APA and RZA-APA. On the basis of
the past studies, we know that the cost function of the ZA-
APA is defined by combining the cost function 𝐽APA(𝑛 + 1) of
the standard APA with an 𝑙1-norm-penalty of the channel
estimator and is expressed as

𝐽ZA (𝑛 + 1)

=
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1) − ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ [d (𝑛) − U (𝑛) ĥ (𝑛 + 1)]
𝑇

𝜆ZA + 𝛾ZA
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1)󵄩󵄩󵄩󵄩󵄩1,

(8)

where 𝜆ZA is the Lagrange multiplier vector with a size of𝑄×
1, while 𝛾ZA is a regularization parameter which is used to
balance the estimation error and the sparse 𝑙1-norm-penalty
of ĥ(𝑛 + 1). To minimize the cost function of the ZA-APA,
we use the Lagrange multiplier method on 𝐽ZA(𝑛+ 1), and we
obtain

𝜕𝐽ZA (𝑛 + 1)

𝜕ĥ (𝑛 + 1)
= 2ĥ (𝑛 + 1) − 2ĥ (𝑛) − U𝑇 (𝑛)𝜆ZA

+ 𝛾ZA sgn [ĥ (𝑛 + 1)] ,
(9)

where sgn[𝑥] is a component-wise sign function defined as
follows:

sgn [𝑥] =
{{

{{

{

𝑥

|𝑥|
, 𝑥 ̸= 0

0, 𝑥 = 0.

(10)

In order to get the minimization of (9), the left-hand side
(LHS) of (9) is set to zero. Therefore, we have

ĥ (𝑛 + 1) = ĥ (𝑛) + 1
2
U𝑇 (𝑛)𝜆ZA −

1

2
𝛾ZA sgn [ĥ (𝑛 + 1)] .

(11)

Then, by multiplyingU(𝑛) on both sides of (11) and using
the e(𝑛) = d(𝑛) − U(𝑛)ĥ(𝑛), we can get

𝜆ZA =
2e (𝑛) + 𝛾ZAU (𝑛) sgn [ĥ (𝑛 + 1)]

U (𝑛)U𝑇 (𝑛)
. (12)

Substituting (12) into (11), assuming sgn[ĥ(𝑛 + 1)] ≈
sgn[ĥ(𝑛)] at the steady stage, and introducing a step-size 𝜇ZA
to balance the convergence speed and the steady-state perfor-
mance, we can obtain the update function of the ZA-APA

ĥ (𝑛 + 1)

= ĥ (𝑛) + 𝜇ZAU
+
(𝑛) e (𝑛)

+
1

2
𝛾ZAU
+
(𝑛)U (𝑛) sgn [ĥ (𝑛)] − 1

2
𝛾ZA sgn [ĥ (𝑛)] .

(13)

From the update equation (13) of the ZA-APA, we find
that there are two additional terms in comparison with the
update equation (7) of the conventional APA, which attract
the inactive taps to zero when the tap magnitudes of the
sparse channel are zero or close to zero.These two additional
terms are regarded as zero attractors whose zero-attracting
strengths are controlled by the regularization parameter 𝛾ZA.
In a word, the zero attractor can speed up the convergence of
the ZA-APA when the majority of taps of the channel h are
inactive ones, such as sparse channel.

Unfortunately, the ZA-APA cannot distinguish the active
taps and the inactive taps of the sparse channel so that it
exerts the same penalty to all the channel taps, which forces
all the channel taps to zero uniformly [13, 20]. Therefore, the
performance of theZA-APAmight be degraded for less sparse
channel. In order to improve the estimation performance of
the ZA-APA, a heuristic method first investigated in [24] and
used in [20] to reinforce the zero attractor was proposed,
which was denoted as RZA-APA. In the RZA-APA,
∑
𝑁

𝑖=1
log(1 + 𝜀RZA|ℎ̂𝑖(𝑛)|) (𝑖 = 1, 2, . . . , 𝑁) is adopted instead

of ‖ĥ(𝑛)‖1 used in ZA-APA. Thus, the cost function of the
RZA-APA can be written as

𝐽RZA (𝑛 + 1)

=
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1) − ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ [d (𝑛) − U (𝑛) ĥ (𝑛 + 1)]
𝑇

𝜆RZA

+ 𝛾RZA

𝑁

∑

𝑖=1

log (1 + 𝜀RZA
󵄨󵄨󵄨󵄨󵄨
ℎ̂𝑖 (𝑛 + 1)

󵄨󵄨󵄨󵄨󵄨
) ,

(14)

where 𝛾RZA is a regularization parameter for balancing the
estimation error and the strength of the zero attractor,
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𝜀RZA > 0 is a positive threshold which is set to 10 in [13, 20]
to obtain optimal performance, and 𝜆RZA is a vector of the
Lagrange multiplier with size of 𝑄 × 1. We use the Lagrange
multiplier to the cost function of the RZA-APA and assume
sgn[ĥ(𝑛+1)]/(1+𝜀RZA|ĥ(𝑛+1)|) ≈ sgn[ĥ(𝑛)]/(1+𝜀RZA|ĥ(𝑛)|)
in the steady stage. Then, we can get the update equation of
the RZA-APA by taking the statistical property of the channel

ĥ (𝑛 + 1) = ĥ (𝑛) + 𝜇RZAU
+
(𝑛) e (𝑛)

+
1

2
𝛾RZAU

+
(𝑛)U (𝑛)

sgn [ĥ (𝑛)]

1 + 𝜀RZA
󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨

−
1

2
𝛾RZA

sgn [ĥ (𝑛)]

1 + 𝜀RZA
󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨

,

(15)

where 𝜇RZA is the step size of the RZA-APA.

3. Proposed LP-APA Sparse Channel
Estimation Algorithm

On the basis of the conventional APA and the zero-attracting
techniques used in the ZA-APA and RZA-APA, we proposed
an 𝑙𝑝-norm-penalized affine projection algorithm (LP-APA)
by integrating an 𝑙𝑝-norm into the cost function of the
conventional APA in order to design a zero attractor.The pro-
posed LP-APA is also a zero-attracting algorithm, which can
further exploit the sparsity property of the wireless multipath
channel. In the LP-APA, an 𝑙𝑝-norm is employed to replace
the 𝑙1-norm in the ZA-APA. As for channel estimation, the
objective of the LP-APA is to minimize

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1) − ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ 𝛾LP
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1)󵄩󵄩󵄩󵄩󵄩𝑝

subject to : d (𝑛) − U (𝑛) ĥ (𝑛 + 1) = 0,
(16)

where 𝛾LP is a very small constant that is used to balance the
estimator error and the 𝑙𝑝-norm-penalized ĥ(𝑛 + 1) and ‖ ⋅ ‖𝑝
is the 𝑙𝑝-normwith 0 < 𝑝 < 1. It is found that an extra tunable
parameter 𝑝 in the 𝑙𝑝-norm can provide a flexible penalty for
the proposed LP-APA in comparison with the fixed 𝑙1-norm
in ZA-APA. In order to minimize (16), the Lagrange multi-
pliermethod is employed and the cost function of the LP-APA
can be written as

𝐽LP (𝑛 + 1)

=
󵄩󵄩󵄩󵄩󵄩
ĥ(𝑛 + 1) − ĥ(𝑛)󵄩󵄩󵄩󵄩󵄩

2

+ [d (𝑛) − U (𝑛) ĥ (𝑛 + 1)]
𝑇

𝜆LP

+ 𝛾LP
󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛 + 1)󵄩󵄩󵄩󵄩󵄩𝑝,

(17)

where 𝜆LP is the Lagrange multiplier vector.
By calculating the gradient of the cost function 𝐽LP(𝑛 + 1)

of the LP-APA, we have

𝜕𝐽LP (𝑛 + 1)

𝜕ĥ (𝑛 + 1)
= 0, 𝜕𝐽LP (𝑛 + 1)

𝜕𝜆LP
= 0. (18)

Then, by solving (18), we get

ĥ (𝑛 + 1) = ĥ (𝑛) + 1
2
U𝑇 (𝑛)𝜆LP

−
1

2
𝛾LP

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

.

(19)

In order to avoid dividing by zero, which is a case for a
sparse channel at initialization stage, we introduce a small
positive constant into the denominator of the last termof (19).
Then, (19) can be further modified to

ĥ (𝑛 + 1) = ĥ (𝑛) + 1
2
U𝑇 (𝑛)𝜆LP

−
1

2
𝛾LP

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

+ 𝜀𝑝

.

(20)

By multiplying both sides of (20) by U(𝑛), we obtain

U (𝑛) ĥ (𝑛 + 1) = U (𝑛) ĥ (𝑛) + 1
2
U (𝑛)U𝑇 (𝑛)𝜆LP

−
1

2
𝛾LPU (𝑛)

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

+ 𝜀𝑝

.

(21)

Taking (18) and (21) into consideration, we have

d (𝑛) = U (𝑛) ĥ (𝑛) + 1
2
U (𝑛)U𝑇 (𝑛)𝜆LP

−
1

2
𝛾LPU (𝑛)

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

+ 𝜀𝑝

.

(22)

From the discussion of the APA, ZA-APA, and RZA-APA
and considering e(𝑛) = d(𝑛) − U(𝑛)ĥ(𝑛), we can get the
Lagrange multiplier 𝜆LP by solving (22)

𝜆LP = [U (𝑛)U
𝑇
(𝑛)]
−1

×

{{

{{

{

2e (𝑛) + 𝛾LPU (𝑛)

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

+ 𝜀𝑝

}}

}}

}

.

(23)
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Substituting (23) into (20), we can get the update equation
of the LP-APA

ĥ (𝑛 + 1) = ĥ (𝑛) + U+ (𝑛) e (𝑛)

+
1

2
𝛾LPU
+
(𝑛)U (𝑛)

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

+ 𝜀𝑝

−
1

2
𝛾LP

󵄩󵄩󵄩󵄩󵄩
ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

1−𝑝

𝑝
sgn (ĥ (𝑛))

󵄨󵄨󵄨󵄨󵄨
ĥ (𝑛)󵄨󵄨󵄨󵄨󵄨
1−𝑝

+ 𝜀𝑝

= ĥ (𝑛) + U+ (𝑛) e (𝑛)

+
1

2
𝛾LPU
+
(𝑛)U (𝑛)M (𝑛) − 1

2
𝛾LPM (𝑛) ,

(24)

where M(𝑛) = (‖ĥ(𝑛)‖
1−𝑝

𝑝
sgn(ĥ(𝑛)))/(|ĥ(𝑛)|

1−𝑝

+ 𝜀𝑝). To
further balance the convergence speed and the steady-state
performance of the LP-APA, a step size 𝜇LP is introduced into
(24) which is similar to APA, ZA-APA, and RZA-APA, and
hence, (24) can be modified to

ĥ (𝑛 + 1) = ĥ (𝑛) + 𝜇LPU
+
(𝑛) e (𝑛)

+
1

2
𝜌LPU
+
(𝑛)U (𝑛)M (𝑛) − 1

2
𝜌LPM (𝑛) ,

(25)

where 𝜌LP = 𝜇LP𝛾LP. It is worthwhile to note that our pro-
posed LP-APA in (25) has two more terms than the standard
APA, namely, (1/2)𝜌LPU+(𝑛)U(𝑛)M(𝑛) and (1/2)𝛾LPM(𝑛),
which are denoted as zero attractors. Therefore, the conver-
gence speed and steady-state performance of the LP-APA are
significantly improved due to the zero attractors used in our
proposed LP-APA. Moreover, the zero-attracting strengths of
the zero attractors are controlled by the parameter 𝜌LP. In
otherwords, the zero attractors in our proposedLP-APAexert
the 𝑙𝑝-norm-penalty mainly on the inactive taps and hence
the convergence speed of these zero taps is significantly
increased. In addition, we found that the computational
complexity is a little higher than those of the RZA-APA and
ZA-APA, which comes from the gradient calculation of the
𝑙𝑝-norm. However, our proposed LP-APA outperforms the
RZA-APA, ZA-APA, and APA in terms of the convergence
speed and the steady-state performance.

4. Results and Discussions

In this section, we use the computer simulation to investigate
the channel estimation performance of our proposed LP-
APA over a sparse multipath communication system. The
simulation results are compared with those of the previously
proposed sparsity-aware algorithms including ZA-APA and
RZA-APA as well as the standardAPA andNLMS algorithms.
Here, we consider a sparse channelhwhose length𝑁 is 32 and
whose number of dominant active taps 𝐾 is set to two
different sparsity levels, namely,𝐾 = 1 and 4, similarly to past
studies in [13, 17–19]. In all the simulations, the dominant
active channel taps are obtained from aGaussian distribution
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Figure 2: Typical sparse multipath channel.

which is subjected to ‖h‖2
2
= 1, and the positions of these

dominant active channel taps are randomly distributed
within the length of the channel.The input signal x(𝑛) used in
this paper is a Gaussian random signal while the v(𝑛) is an
additive zero-mean Gaussian noise with variance 𝛿2V , which is
independent with the input signal x(𝑛). An example of a
typical sparsemultipath channel with a channel length of𝑁 =
32 and a sparsity level of𝐾 = 3 is described in Figure 2. In all
the simulations, the power of the received signal is 𝐸𝑏 = 1,
and hence, the signal-to-noise ratio (SNR) can be defined as
SNR = 10 log(𝐸𝑏/𝛿

2

V). The difference between the actual and
estimated channels based on these sparse adaptive channel
estimation algorithms and the sparse channel discussed
above is evaluated by using mean square error (MSE) which
is defined as follows:

MSE (𝑛) = 10log
10
𝐸{
󵄩󵄩󵄩󵄩󵄩
h − ĥ (𝑛)󵄩󵄩󵄩󵄩󵄩

2

2
} (dB) . (26)

In this paper, the following parameters are used to obtain
the channel estimation performance: 𝜇NLMS = 0.73, 𝜇APA =
𝜇ZA = 𝜇RZA = 𝜇LP = 0.5, 𝛾ZA = 𝛾RZA = 5 × 10

−4, 𝜀RZA = 10,
𝑝 = 0.5, 𝜌LP = 4×10

−5, and 𝜀𝑝 = 0.05. Here, 𝜇NLMS is the step
size of the NLMS algorithm. In the investigation of the effects
on the parameters, we change one of these parameters, while
other parameters are invariable.

4.1. Effects of Parameters on the Proposed LP-APA. In the
proposed LP-APA, two more parameters, 𝑝 and 𝜌LP, are
introduced to design the zero attractors compared with the
conventional APA. Furthermore, we also investigate the
effects on the performance of the LP-APAwith different affine
projection order 𝑄. Next, we show how these three parame-
ters affect the proposed LP-APA over a sparse channel with
channel length𝑁 = 32 and the sparsity level𝐾 = 4.The com-
puter simulation results for different value of 𝑝, 𝜌LP, and 𝑄
are presented and shown in Figures 3, 4, and 5, respectively.
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Figure 3: Effects of 𝑝 on the proposed LP-APA.
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Figure 4: Effects of 𝜌LP on the proposed LP-APA.

We can see from Figure 3 that the steady-state error of the
proposed LP-APA is reduced with an increase of 𝑝 ranging
from 0.4 to 0.5. When 𝑝 = 0.6, the LP-APA can achieve the
same steady-state error as that of 𝑝 = 0.5. However, the
steady-state performance is becoming worse for 𝑝 = 0.8 and
1. In fact, when 𝑝 = 1, the proposed LP-APA is the ZA-APA.
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Figure 5: Effects of affine projection order 𝑄 on the proposed LP-
APA.

In addition, we obverse that the LP-APA can achieve the same
convergence speed at the early iteration stage; after that, the
convergence speed of the LP-APA slows downwith increasing
of 𝑝.

Now, we turn to discuss the effects of the 𝜌LP on the
proposed LP-APA. We can see from Figure 4 that the steady-
state performance of our proposed LP-APA is improved with
a decrease of 𝜌LP when 𝜌LP is greater than 4 × 10

−5. When 𝜌LP
continues to decrease, the steady-state error increases again.
This is because a small 𝜌LP results in a weak zero attracting
strength, which consequently reduces the convergence speed
and degrades the steady-state performance. According to the
discussions of those effects on parameters 𝑝 and 𝜌LP, it is
observed that a small 𝑝 can speed up the convergence and
reduce the steady-state error of the LP-APA for 0.5 < 𝑝 < 1.
The effect of parameter 𝜌LP shown in Figure 4 is similar to the
parameter 𝛼 in ZA-APA [20]. Thus, we can fix the parameter
𝜌LP on the basis of investigation of the ZA-APA and select a
small 𝑝 to obtain better performance.

Then, we show the channel estimation performance of the
LP-APA with different value of 𝑄. The simulation results are
shown in Figure 5. It is found that the convergence speed is
significantly improvedwith the increasing of the parameter𝑄
for the proposed LP-APA and the ZA-APA, while the steady-
state errors for both the LP-APA and ZA-APA are increased.
This is due to the reuse data scheme in the APAs, which can
accelerate their convergence speed. Furthermore, we found
that the LP-APA can achieve faster convergence speed than
the APA and NLMS algorithms with the same steady-state
error floor when 𝑄 = 8. Thus, we can draw a conclusion
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Figure 6: Performance of sparse channel estimation with different sparsity levels.

from the discussions alluded to above thatwe should carefully
select the parameters𝑝,𝜌LP, and𝑄 to balance the convergence
speed and steady-state performance for the proposed LP-
APA.

4.2. Effects of Sparsity Level 𝐾 on the Proposed LP-APA. In
view of the results discussed above for our proposed LP-APA,
we choose 𝑝 = 0.5, 𝜌LP = 4 × 10

−5, and 𝑄 = 2 to evaluate the
channel estimation performance of the LP-APA over a sparse
channel with channel length of 𝑁 = 32 and 𝐾 = 1 and 4 for
which the obtained simulation results are given in Figure 6 at
30 dB.We can see fromFigure 6(a) that our proposedLP-APA
can achieve the fastest convergence speed and lowest steady-
state error when 𝐾 = 1 in comparison with the previously
proposed ZA-APA, RZA-APA, and the conventional APA
and NLMS algorithms. When 𝐾 = 4, we can see from
Figure 6(b) that our proposed LP-APA still has the highest
convergence speed. However, our proposed LP-APA achieves
nearly the same steady-state error floor as that of RZA-
APA. This is owing to that these sparsity-aware algorithms
attract the inactive taps to zero quickly when 𝐾 = 1, and
hence their convergence speeds are improved so much, while
their convergence speed reduced because of the reduction of
the zero taps when 𝐾 = 4. With the reduction of the sparsity
of the sparse channel, the steady-state error floors are dete-
riorated and the convergence speeds are reduced for all the
sparse-aware APAs.Moreover, our proposed LP-APA still has
fastest convergence speed from 𝐾 = 1 to 𝐾 = 4. Thus, we
can summarize this discussion by saying that the convergence
speed and the steady-state performance of the LP-APA can

be improved for sparse channel estimation applications by
proper selection of its parameters.

5. Conclusion

In this paper, we proposed an LP-APA to exploit the sparsity
of the broadband multipath channel and to speed up the
convergence of the standard APA. The LP-APA was realized
by incorporating an 𝑙𝑝-norm into the cost function of the con-
ventional APA, resulting in a zero attractor in its iterations,
which attracted the inactive taps to zero quickly and hence
accelerated the convergence speed of theAPA.The simulation
results showed that our proposed LP-APA with acceptable
computational complexity increased the convergence speed
and reduced the steady-state error of the APA as well as the
ZA-APA and RZA-APA for sparse channel estimation.
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