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The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and
transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables
these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive
capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed
proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER,
which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of
ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of
tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will
provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.

1. Introduction

The endoplasmic reticulum (ER) is a dynamic and special-
ized tubular-reticular network and extends throughout the
cytoplasm in the form of connected sacs and branching
tubules [1]. The ER network is heterogenous in its structure
and adopts different morphologies in conjunction with dif-
ferent functions [2]. Interestingly, the ER is physically and
functionally interconnected with every other cellular com-
partment and can sense intrinsic and extrinsic perturbations,
combine these stress signals, and manage the cellular pro-
cesses, indicating its role as a central coordinator for mainte-
nance of cellular homeostasis [3]. The ER engages in various
cellular functions involving the biosynthesis of lipid species
such as cholesterol, triacylglycerol, and phospholipids, the
degradation of glycogen, detoxification, and the maintenance
of Ca®* homeostasis [4-6]. Most importantly, the ER is
involved in the synthesis, folding, maturation, and trafficking
of secreted and transmembrane proteins, which constitute
about one-third of all the proteins that are synthesized in

the cell [5, 6]. These proteins participate in important cellular
and organismal processes involving protein degradation, sig-
nal transduction, lipid metabolism, and cell-cell communica-
tions, suggesting that maintaining the integrity of these
proteins is essential for life.

Protein quality control of the ER is composed of three
axes, acceleration of adequate protein folding, activation of
unfolded protein response (UPR), and protein clearance via
ER-associated degradation (ERAD) [7]. Accumulation of
misfolded and unassembled proteins can cause stress and
damage, resulting in the activation of UPR to determine cell
fate and function and in the subsequent restoration of pro-
tein homeostasis, which is termed proteostasis. Even with
the assistance of dedicated protein folding machinery in the
ER, a large portion of proteins entering the ER fails to obtain
proper conformation due to mutations, unavailability of
chaperones, or changes in the amounts of interacting part-
ners and eventually must be eliminated [8, 9]. Eukaryotic
cells have evolved ERAD for clearance of misfolded, unas-
sembled, or tightly regulated proteins, resulting in the


https://core.ac.uk/display/195023933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/2969271

ER lumen IRE1

Oxidative Medicine and Cellular Longevity

\GQ Unfolded proteins

e
-

554

VATF6
VAN

Cytosol D

Y

Unspliced Spliced

CD@ Q)

Golgi

XBP1 (u) mRNA XBP1 (s) mRNA . .ED

elF2a

xBP1s ([

Nucleus

Atrs (D)

atrs (D)

\L /XSIP/SZP
ATF6<>

ATF6

v

— Target genes

FiGure 1: Unfolded protein response (UPR) of the endoplasmic reticulum (ER). UPR is composed of three branches of ER transmembrane
sensors, IRE1, PERK, and ATF6. Upon ER stress, BiP is released from the ER sensors and is recruited to misfolded proteins, leading to the
activation of UPR. Activated ER sensors transmit the stress signal into the cytosol and nucleus and subsequently operate the coordinated

stress response, the UPR.

maintenance of proteostasis [10-13]. Intriguingly, a failure in
the maintenance and/or restoration of the proteostasis leads
to various protein misfolding diseases [14-17], implicating
the importance of stringent protein quality control in the ER.
In this review, we not only discuss the molecular mecha-
nisms of UPR of the ER and ERAD but also summarize
advances in versatile aspects of these two axes. Furthermore,
we provide current insights into how the adaptive capacity of
the ER to intrinsic and extrinsic perturbations contributes to
the modulation of malignancy, the regulation of cancer
immunity, and the efficacy of therapies for cancer.

2. UPR of the ER

Numerous endogenous and exogenous stresses can disrupt
ER protein folding environment, and unfolded or misfolded
proteins accumulate in the ER, which activates UPR. While
the UPR is also involved in mitochondria biology and apo-
ptotic signal transduction, a main function of UPR is to
maintain proteostasis under ER stress condition [18, 19]. In
multicellular eukaryotes, UPR consists of three branches of
ER transmembrane sensors, inositol-requiring protein 1
(IRE1), activating transcription factor 6 (ATF6), and protein
kinase RNA- (PKR-) like ER kinase (PERK) (Figure 1). These
sensors have two functional domains. The luminal domains
of these sensors can sense the protein folding environment
and their cytosolic domains can be connected to transcrip-
tion and translation machinery. Under normal conditions,

the luminal domains of these sensors are kept in an inactive
state through the association with a chaperone, binding
immunoglobulin protein (BiP; also known as GRP78), which
belongs to the heat shock protein 70 family [20]. Upon ER
stress, BiP dissociates from the ER sensors and is recruited
to misfolded proteins, resulting in the activation of UPR
[21-23]. It has been also known that unfolded proteins them-
selves can directly bind to IRE1 or PERK and this direct bind-
ing results in dimerization, oligomerization, and activation of
UPR [24-27]. While the downstream response of UPR acti-
vation is a transient attenuation of global protein synthesis,
an increase in a transcriptional program as well as the trans-
lation of many mRNAs including Atf4 is induced, all of
which direct towards resolving the stress [28-31]. Further-
more, when protein misfolding is not resolved, prolonged
UPR activation promotes apoptosis by inducing the expres-
sion of proapoptotic genes via PERK-elF2a-ATF4-CHOP
axis [32, 33].

2.1. PERK. Upon ER stress, BiP dissociates from PERK, per-
mitting PERK homodimerization and autophosphorylation
to activate its cytoplasmic kinase domain. The activated cyto-
solic kinase domain of PERK in turn phosphorylates the «
subunit of eukaryotic translation initiation factor 2 (eIF2a)
at serine 51, which inhibits guanine nucleotide exchange fac-
tor (eIF2B) and lowers global mRNA translation, thereby
attenuating the entrance of newly synthesized proteins into
the ER and facilitating the cell to resolve the stress [34].
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Although global mRNA translation is reduced under ER
stress conditions, certain species of mRNA are favorably
translated, involving activation transcription factor 4 (ATF4;
also known as CREB2), which transactivates various genes,
including C/EBP homologous protein (Chop), ER oxidore-
ductin 1 (Erol), and growth arrest and DNA damage-
inducible protein (Gadd34) [35-37]. Among them, CHOP
is involved in ER stress-induced apoptosis under excessive
and chronic activation of PERK [37, 38]. At early time points
after ER stress, transcription of Chop is suppressed by several
ways, including histone methylation and Toll-like receptor
(TLR) signaling [39, 40]. However, if ER stress cannot be
resolved, ATF4 and CHOP function together as a heterodi-
mer, which increases protein synthesis, protein misfolding,
oxidative stress, and finally apoptosis [17, 30].

2.2. IRE]. IRE1 possesses a serine/threonine kinase activity as
well as endoribonuclease activity within the cytoplasmic
domain [41]. Upon sensing the ER stress, IRE1 is released
from BiP and activated, leading to the nonconventional splic-
ing of a single mRNA that encodes X-box binding protein 1
(XBP1). As a result, a translational frameshift is generated
and spliced XbpI (XBP1s) isoform is produced [25, 42]. As a
transcription factor, XBP1s induces the transcription of a
wide range of targets, involving molecular chaperones and
enzymes that together assist folding of polypeptides [43, 44].
In addition, XBP1s induces the expression of genes involved
in membrane expansion and lipid synthesis [45]. Interest-
ingly, once translated, an unspliced form, XBP1u negatively
regulates XBP1ls by promoting its proteasome-mediated
degradation [46]. When ER stress persists, IRE1 is in a hyper-
active state, resulting in the cleavage of many other RNAs
besides Xbpl, involving precursors of apoptosis-inhibitory
microRNAs, which in turn promotes programmed cell
death [47-49].

2.3. ATF6. ATF6 contains a bZIP transcription factor within
its cytosolic domain. Under stress-free conditions, the lumi-
nal domain of ATF6 is kept inactive via association with
BiP. Upon ER stress, BiP is released from ATF6 and ATF6
is transported to the Golgi apparatus, where it is processed
by the Golgi enzyme site 1 protease (S1P) and S2P, leading
to the transport of its cleaved cytosolic p50 fragment into
the nucleus. The cytosolic p50 fragment then induces the
expression of genes such as Xbp1I to increase the capacity of
the ER to resolve ER stress as well as genes required for
ERAD [50-52]. Intriguingly, XBP1s and ATF6 can heterodi-
merize and also induce the expression of genes involved in
ERAD [52, 53].

3. ERAD

The ER participates in the synthesis of the secretory proteins,
of the luminal proteins of the ER, Golgi apparatus, endo-
somes, and lysosomes, and of membrane proteins. Protein
synthesis in the ER is a complicated process involving target-
ing of ribosomes loaded with nascent polypeptide to the ER
membrane, cotranslational translocation of nascent polypep-
tide, and co- and posttranslational folding and maturation of

the polypeptide chain [2, 54]. The co- and posttranslational
folding and maturation of polypeptides commence during
translocation and are assisted by molecular chaperones resid-
ing in the ER [55-58]. Chaperones associate with folding
intermediates, accelerate their proper folding and assembly,
and prevent their improper aggregation. In addition, modifi-
cations involving N-linked glycosylation, proline cis-trans
isomerization, and disulfide bond formation support proper
folding of translocated polypeptides in the ER [59-62]. Nev-
ertheless, protein maturation is not a perfect process and pro-
duces improper polypeptides, which can cause cellular stress
and cytotoxicity [16, 17] and therefore must be eliminated.
Eukaryotic cells have evolved ERAD to eliminate misfolded,
unassembled, or metabolically regulated proteins by the cyto-
solic ubiquitin proteasome system (UPS) [10-13] (Figure 2).
Since the late 1980s, it has been elucidated that ERAD is an
elaborate and multistep process that recognizes, extracts,
and ubiquitinates proteins for degradation by the cytosolic
26S proteasome [7, 13, 63-65]. In ERAD, proteins to be inte-
grated into ER membrane or translocated into the lumen can
be ultimately subject to UPS. E3 ubiquitin ligases in ERAD
are spatially separated from their substrates, in part, by the
ER membrane, suggesting that proofreading step is required
to sort out potential ERAD targets. Polypeptides that have
failed to acquire a native structure are subject to ERAD.
These polypeptides are delivered to the ERAD E3 ubiquitin
ligases and ubiquitinated on the cytosolic side of ER mem-
brane. Then, the ubiquitinated substrates are subsequently
extracted from the ER membrane and released into the cyto-
plasm for the proteasome-mediated degradation.

Recently, it is also demonstrated that ERAD plays a role
in the control of degradation of some properly folded ER pro-
teins [9]. In addition, certain viruses exploit ERAD to
degrade host proteins such as major histocompatibility class
I (MHC) heavy chain and CD4 molecules, thereby escaping
immune surveillance [66-68]. The human cytomegalovirus
(HCMV) encodes ER membrane adaptor proteins such as
US2 and US11, which bind to MHC I molecules and deliver
them to ERAD [66]. Similarly, the human immunodeficiency
virus- (HIV-1-) encoded adaptor protein, Vpu leads to the
proteasome-mediated degradation of CD4 [67, 68]. Collec-
tively, as a sophisticated ER protein quality control mecha-
nism, ERAD not only functions as the gateway for the flux
of proteins into the secretory pathway or membrane incorpo-
ration but also impacts intracellular organelle function and
cellular communication with the extracellular environment
[28]. Genetic ablation of the components involved in ERAD
results in embryonic lethality in mice, indicating the impor-
tance of ERAD in the maintenance of organismal homeosta-
sis [69-71]. A failure of the ERAD process to remove
misfolded or unfolded proteins results in the accumulation
of these proteins, a condition referenced as ER stress and is
closely associated with a variety of human diseases, involving
cancer, neurodegeneration, infectious diseases, and meta-
bolic diseases [72].

3.1. Recognition. Substrate recognition must be tightly con-
trolled, because this is the commitment step for substrate deg-
radation in ERAD [9]. A number of proteins synthesized in
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FIGURE 2: ER-associated degradation (ERAD). (a) ERAD functions to eliminate terminally misfolded, unassembled, or tightly regulated
proteins by the cytosolic ubiquitin proteasome system (UPS). (1) Protein translocation into the ER through translocon. (2) Protein folding
and maturation. Proteins translocated into the ER are subject to cotranslational and posttranslational folding. (3) Substrate recognition.
Proteins failing to acquire their native conformation are recognized for ERAD. (4) Retrotranslocation and ubiquitination. Recognition of
ERAD substrates facilitates the assembly of retrotranslocon and initiates ERAD E3 ubiquitin ligase-mediated polyubiquitination of
substrates. (5) Proteasomal degradation. Carbohydrate and ubiquitin chains are removed from the retrotranslocated substrates. The
retrotranslocated substrates are then inserted into the narrow channel of the proteasome, resulting in the degradation of substrates. (b)
Retrotranslocation. ERAD substrate is recruited to retrotranslocon complex, which involves SEL1L, OS-9, Derlin, E3 ubiquitin ligase, and
p97/Npl4/Ufd1 complex. Blue pentagon indicates N-glycan and green circle indicates ubiquitin.

the ER are cotranslationally modified by attachment of high-
mannose “core” glycans, with the structure Glc;Man,Glc-
NAGg, ((Glc) glucose, (Man) mannose, (GlcNAc) N-acetylglu-
cosamine), to consensus asparagine residues within canonical
N-glycosylation sites (NxS/T) [73]. The ER quality control
system uses these glycans in monitoring conformational
maturation, directing correctly folded proteins to ER exit,
or directing misfolded proteins to ERAD. The lectin-type
chaperone, calnexin or calreticulin binds to Glc,Man,Glc-
NAc, produced by deglucosylation of core glycans and

facilitates folding of immature glycoproteins [73]. Further
deglucosylation of final glucose from N-glycan inhibits
additional binding of the glycoproteins to calnexin or calre-
ticulin, allowing ER exit of the proteins. Interestingly,
incompletely folded proteins are subject to reglucosylation
by UDP-glucose : glycoprotein glucosyltransferase (UGGT).
These glycoproteins reassociate with calnexin or calreticulin
and undergo further rounds of folding [74, 75].
Terminally misfolded proteins must escape from cal-
nexin/calreticulin cycle for ERAD. This escape is regulated
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by mannosidases that progressively remove terminal man-
nose residues from core glycans, permitting them to associate
with mannose-specific lectins for ERAD [74, 76]. Further
trimming of terminal mannoses by ER mannosidase I
(ERManl) [77, 78], the ER degradation-enhancing a-manno-
sidase-like proteins 1 (EDEM1) [79, 80], EDEM3 [81, 82], or
Golgi-resident mannosidase « class 1C member 1 (ManlCl1)
[83] leads to the discrimination of terminally misfolded
proteins from their maturation-competent counterparts.
ER-resident lectins, osteosarcoma 9 (0S-9), and XTP3-B/
Erlectin then recognize these mannose-trimmed proteins
through mannose-6-phosphate receptor homology (MRH)
domains and recruit them to protein penetration channel,
retrotranslocon [84-86]. Silencing both lectins attenuates
the degradation of model substrates, while knockdown of
either lectin has marginal effects in stabilizing ERAD sub-
strates, suggesting that there may be some redundancy
between them [82, 85, 87].

Whereas oligosaccharides are common for substrate rec-
ognition step, features besides glycan trimming can contrib-
ute to the targeting of folding-defective proteins to ERAD.
The nonlectin chaperone BiP associates with glycoproteins
as well as nonglycosylated proteins for targeting to ERAD
[88,89]. In addition, EDEM1 is involved in targeting of ungly-
cosylated proteins to ERAD [90]. Redox-driven protein disul-
fide isomerase (PDI) that is characterized by thioredoxin-like
motifs [91] is also involved in ERAD [92]. Interaction of
chaperones with ERAD substrates permits the association of
substrates with PDL

3.2. Retrotranslocation. Energy-dependent protein extrac-
tion across the ER membrane back into the cytoplasm is
a step known as dislocation or retrotranslocation [93]
(Figure 2(b)). Importantly, no evidence indicates that the
ER lumen contains any components involved in UPS such
as E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating
enzyme, or the proteasome, implicating that retrotransloca-
tion is an essential step for degradation of ERAD substrates.
Intriguingly, the processes of retrotranslocation and protea-
somal degradation should be also tightly coupled, because
many ERAD substrates are highly hydrophobic and easily
aggregate in an aqueous environment. Therefore, a number
of adaptors that recognize a diverse set of features through
which substrates are committed to ERAD are essential for
recruitment of ERAD substrates to retrotranslocons. As one
of the most abundant proteins, p97/valosin-containing pro-
tein (VCP), a homohexameric enzyme, is a member of the
type II AAA+ protein family of ATPases and consists of
two AAA domains, D1 and D2, that are assembled in a
head-to-tail manner, as well as an N-terminal domain that
plays a role in substrate recognition [94-97]. In addition,
the C-terminal domain of p97/VCP associates with a large
number of adaptors, explaining the diversity of p97/VCP
interacting partners [96]. p97/VCP has been demonstrated
to be implicated in chromatin remodeling, autophagosome
maturation, proteasome-mediated degradation, and ER
membrane fusion [98, 99]. Importantly, p97/VCP is crucial
for the clearance of misfolded proteins by affecting a large
number of protein homeostatic mechanisms. p97/VCP

couples ATP hydrolysis to unfolding of ERAD substrates
and functions in the retrotranslocation of nearly all ERAD
substrates, along with cofactors recruited through p97/
VCP-binding domains, involving VIM, VBR, and SHP [94].

Several studies suggest that Derlins are part of the retro-
translocon channel {100, 101]. Mammalian cells have three
Derlins, Derlin-1, Derlin-2, and Derlin-3. As a rhomboid-
like protein, Derlin-1 has six membrane-spanning domains
and homo- or heterooligomerizes with Derlin-2 and
Derlin-3 [102-107]. Derlins are related to rhomboid prote-
ases such as ER-resident intramembrane protein RHBD14,
which cleaves unstable single-membrane-spanning or poly-
topic membrane proteins [108]. However, Derlins are defi-
cient in proteolytic activity, implicating that these proteins
associate with ERAD substrates and target them to p97/
VCP for retrotranslocation and to E3 ubiquitin ligases for
ubiquitination [109].

Suppressor/enhancer of Lin12-like (SEL1L) recruits lumi-
nal substrate recognition factors, involving OS-9, XTP3-B,
EDEMs, ERdj5, and PDI to components of the retrotranslo-
con [64, 110]. In addition, SEL1L serves as a scaffold for the
formation of a complex with integral membrane ERAD com-
ponents that include Derlin-1, Derlin-2, ancient ubiquitous
protein 1 (AUPIL), ubiquitin regulatory X (UBX) domain-
containing protein 8 (UBXD8), and VCP-interacting mem-
brane protein (VIMP) [85, 86, 111-115], which in turn
recruits the p97/VCP, thereby leading to substrate retrotran-
slocation. Furthermore, SEL1L is not only required for the
transfer of substrates from ER lectins to E3 ubiquitin ligase
hydroxymethylglutaryl reductase degradation protein 1
(HRD1) but also crucial for the stabilization of HRD1, sug-
gesting that SEL1L is important for ERAD substrate recruit-
ment, retrotranslocation, and ubiquitination [85, 116-120].

Erlin1/2, heterotetrameric complex located in the ER
membrane rapidly associates with inositol 1,4,5-triphosphate
receptors (IP;R) for activation of IP;R and links IP;R to the
ER-resident E3 ubiquitin ligase RNF170, indicating its role
in the degradation of membrane-integrated substrates [121].

3.3. Ubiquitination. Ubiquitination is a reversible process
that conjugates ubiquitin to target proteins, which in most,
but not all, cases leads to proteasome-mediated degradation
of ubiquitinated proteins and is conserved in all eukaryotes.
Ubiquitin is covalently attached to target proteins by a
sequential enzymatic system consisting of E1 ubiquitin-acti-
vating, E2 ubiquitin-conjugating, and E3 ubiquitin-ligating
enzymes [13, 122]. Additionally, removal of ubiquitin cata-
lyzed by deubiquitinating enzymes also plays key roles in
the control of numerous biological pathways [123]. In the
initial step of ubiquitination, an El ubiquitin-activating
enzyme activates ubiquitin and forms a thioester bond with
ubiquitin. In the next step, an E2 ubiquitin-conjugating
enzyme transfers the ubiquitin from the E1 to the target pro-
tein, which is assisted by an E3 ubiquitin ligase. Ubiquitin is
normally conjugated via its C-terminus to lysine or, in some
cases, to serine, threonine, or cysteine residues on the target
proteins [63, 124-126]. Once ubiquitinated, ubiquitin can
be further extended by the additional ubiquitin moieties on
one of the lysine residues within ubiquitin, involving Ke6,



K11, K27, K29, K33, K48, and K63 or its N-terminus
[127-130]. The linkages of ubiquitin chains confer diverse
structural properties to ubiquitin chains, providing a dif-
ferent binding platform for various processes.

In mammalian cells, more than a dozen E3 ubiquitin
ligases have been demonstrated to be involved in ERAD.
Several ERAD E3 ubiquitin ligases are transmembrane pro-
teins, involving HRD1, glycoprotein 78 (gp78), membrane-
associated RING (really interesting new gene) finger protein
6 (MARCHS), and RNF5 [63, 131-138]. In addition, cyto-
plasmic E3 ubiquitin ligases involving parkin, CHIP, SCF
complexes with the F-box proteins Fbx2, Fbx6, and f-
TrCP1/2, Smurfl, and Nrdp1/FLRF have been demonstrated
to be involved in ERAD [139-145]. ERAD E3 ubiquitin
ligases accomplish ERAD substrate processing in parallel
with multiple E3 ubiquitin ligases, by conjugating ubiquitin
to different sites of a substrate at the same time, by an initial
monoubiquitination and extension by E4 ubiquitin ligase, or
via sequential rounds of ubiquitination and deubiquitination,
suggesting that various strategies have been evolved for opti-
mal efficiency of ERAD [136, 146, 147]. For instance, gp78
and Trc8 cooperate as E3 ubiquitin ligase pairs to degrade
HMG-CoAR [146]. RNF5 functions sequentially with CHIP
to degrade misfolded CFTRAF508 and also serves as a
primer for gp78-mediated chain elongation [135, 136]. In
addition to the ubiquitination of ERAD substrates, ERAD
E3 ubiquitin ligases may ubiquitinate other ERAD compo-
nents to recruit p97/VCP or other ERAD components that
possess ubiquitin-binding domains (UBDs), involving gp78,
AUPI, ubiquitin-associated- (UBA-) domain-containing
protein 2 (UBAC2), and UBX domain-containing protein 8
(UBXDS8) [63, 148, 149]. Interestingly, ERAD E3 ubiquitin
ligases ubiquitinate each other and form a negative feedback
loop, thereby leading to fine-tuning of ERAD [64, 136, 146,
150, 151].

The ER membrane-embedded E3 ubiquitin ligases com-
prise a part of the retrotranslocon, and inhibiting ubiquitina-
tion attenuates retrotranslocation of ERAD substrates,
suggesting that retrotranslocation is tightly coupled with ubi-
quitination [109]. Derlin-1 and Derlin-2 are closely linked to
E3 ubiquitin ligases such as HRD1, gp78, and RNF5 to form
huge complexes spanning the ER membrane [103, 104, 115,
135, 152-154]. Additionally, it is speculated that Hrdlp in
yeast functions as an essential part of retrotranslocon with
its cofactors, thereby recruiting ERAD substrates and in turn
promoting their retrotranslocation from the ER [155].

Most of the p97/VCP cofactors possess UBDs and associ-
ate directly with ubiquitinated substrates. p97/VCP and its
cofactors, Npl4 and Ufdl, cooperatively produce a driving
force for the retrotranslocation of ERAD substrates [156,
157]. The ERAD substrate is slightly exposed to the ER sur-
face through the retrotranslocon, which in turn is subject to
E3 ubiquitin ligase-mediated polyubiquitination, and further
retrotranslocated by the p97/Npl4/Ufd1 complex, which can
recognize the polyubiquitinated substrate, suggesting that
polyubiquitination serves as a binding site that promotes
p97/VCP-mediated substrate extraction. To summarize,
membrane-embedded ERAD components such as UBXD2,
UBXDS, and VIMP, ERAD E3 ubiquitin ligases, such as
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gp78 and HRD1, and Derlins have p97/VCP-binding motifs,
implicating that p97/VCP provides a platform for these fac-
tors to regulate ubiquitination at the sites of retrotransloca-
tion [63, 102, 104, 158-160].

3.4. Proteasome-Mediated Degradation. p97/VCP is also
closely linked to proteasome-mediated degradation of ERAD
substrates [94]. p97/VCP plays a key role in linking retro-
translocated substrates to cytoplasmic cofactors involved in
further processing of substrates. The deglycosylating enzyme
NGly1 localized in the cytoplasm is recruited to retrotranslo-
con complexes through direct binding to p97/VCP and
cleaves N-linked glycans from retrotranslocated ERAD sub-
strates [161, 162]. In addition, deubiquitinating enzymes
(DUBs), involving YOD1 (OTUD2), VCIP135, USP13, and
Ataxin-3, associate with p97/VCP either directly or indi-
rectly and are implicated in ERAD [163-165]. Recently, it
is demonstrated that impairment of p97/VCP-associated
deubiquitination or expression of dominant-negative YOD1
attenuates retrotranslocation and degradation of ERAD sub-
strates, whereas expression of p97/VCP-associating DUB
restores them [163], indicating that sequential rounds of ubi-
quitination and deubiquitination are essential for efficient
ERAD process.

Retrotranslocated substrates need to be rapidly degraded
to prevent misfolded proteins from aggregating in the cyto-
plasm. A chaperone complex consisting of Bag6-UbI4A-
Trc35 and a cochaperone SGTA is involved in this process.
Bagé is a cytosolic chaperone and forms a large homooligo-
mer through proline-rich domain. The proline-rich domain
is sufficient for binding to the hydrophobic segments of
misfolded proteins and maintaining them in a soluble state
[166]. The holdase activity of Bag6 is required to maintain
some retrotranslocated substrates in a competent state for
proteasome-mediated degradation [167]. Ubl4A, an adaptor
of Bag6, associates with SGTA via its noncanonical
ubiquitin-like (UBL) domain [168]. Bag6 also associates with
proteasome and adaptor proteins of proteasome, suggesting
that Bag6 transfers retrotranslocated substrates to protea-
some for degradation.

4. UPR of the ER and Cancer

UPR of the ER has been demonstrated in diverse human can-
cers. In fact, it has been documented that UPR of the ER plays
a crucial role in the control of tumor progression and affects
tumor microenvironment involving immune cells and endo-
thelial cells [6]. UPR of the ER modulates the expression and/
or the function of oncogenes or tumor-suppressive genes in
cancer, which leads to an increase in protein synthesis, result-
ing in an increased necessity of protein-folding capacity of
the ER and subsequent activation of UPR to improve the
adaptive capacity of the ER. However, persistent activation
of UPR consequently affects cancer cell survival, metastasis,
angiogenesis, immunogenicity, and drug resistance [6].

4.1. UPR of the ER and Tumorigenesis. During malignant
transformation, tumor cells are exposed to not only extrinsic
stresses such as nutrient deprivation, accumulation of acidic
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waste, and hypoxia but also intrinsic stresses such as alter-
ation in chromosome number, activation of oncogenes,
inactivation of tumor-suppressive genes, and accelerated
secretion, thereby triggering exacerbated protein synthesis,
which results in a cellular state of ER stress and subsequently
activates UPR of the ER [169-172]. It is also suggested that
chronic UPR at later stages leads to adaptation of tumor to
extrinsic and intrinsic perturbations and confers resistance
to ER stress-induced apoptosis on tumor, while transient
UPR at early stages of tumorigenesis often impedes tumor
progression [173].

Oncogenic RAS-mediated transformation of melano-
cytes activates UPR, which induces cell cycle arrest coupled
with vacuolization and ER expansion, resulting in premature
senescence [174]. In models of RET-induced fibroblast
transformation, UPR activation plays a protective role
against oncogene-induced malignant progression through
the proapoptotic CHOP pathway [175]. In a model of
KRAS-transformed lung tumor, high caloric diet-induced
ER stress hinders tumor growth [176]. In addition, depletion
of XBPl1s is known to promote tumorigenesis, suggesting
that UPR of the ER may play a tumor-suppressive role [177].

PERK has been described in the initiation and progres-
sion of various tumors. Depletion of PERK leads to tumor
progression [178, 179]. ATF4-CHOP axis in PERK pathway
promotes protein synthesis and in turn accelerates ROS pro-
duction from oxidative protein folding in the ER. The treat-
ment of antioxidant and depletion of RPL24 reduced
apoptosis by decreasing ROS production and protein syn-
thesis, indicating that PERK is involved in tumor regression
[30]. In contrast, PERK facilitates tumor growth through the
stabilization of NRF2, the modulation of redox homeostasis
as well as of metabolism, and the regulation of lipid biosyn-
thesis [178, 180-184]. Intriguingly, elF2a phosphorylation
by PERK facilitates LC3 lipidation, autophagy initiation,
and subsequent survival [185]. Additionally, it is also
demonstrated that ATF4-CHOP axis induces the expres-
sion of numerous genes involved in autophagophore for-
mation and maturation, including Atg5, Atgl2, Atgl6ll,
and Becnl [186].

IRE1 is also involved in tumor progression. JNK activa-
tion by IRE1 suppresses antiapoptotic BCL2 activity and
accelerates the action of proapoptotic BIM, leading to cell
death [6]. In addition, IREl-dependent decay of mRNA
(RIDD) activates proapoptotic caspase-2 in MEFs and
facilitates the expression of gene encoding thioredoxin-
interacting protein (Txnip) in pancreatic 3 cells [48, 49].
On the contrary, IREl-mediated activation of STAT3 and
NF-«B upregulates the expression of antiapoptotic proteins,
involving BCL2 family members, caspase-8 inhibitor c-
FLIP, MCL1, and inhibitor of apoptosis protein (IAP)
[187]. IRE1-XBP1 axis is also demonstrated to correlate
with poor prognosis in glioblastoma and pre-B acute
lymphoblastic leukemia [188-192]. Additionally, mutated
forms of IRE1 facilitate tumor progression, although some
of these mutants have intact kinase and endoribonuclease
activity [47, 193, 194].

ATF6-dependent p58 (IPK) restricts apoptosis during
oncogenic transformation via the inhibition of PERK [175].

ATF6 also facilitates the survival of glucose restriction-
resistant squamous carcinoma cells [195].

In order to provide sufficient oxygen and nutrients, grow-
ing cancer cells produce proangiogenic factors to initiate vas-
cularization. Several studies indicate that UPR facilitates
angiogenesis. PERK upregulates the expression of the vessel
growth and stabilization factors VCIP and PDGFRB [179].
In addition, PERK-mediated upregulation of fibroblast
growth factor 2 (FGF2), vascular endothelial growth factor
(VEGEF), and interleukin-6 (IL-6) and downregulation of
antiangiogenic cytokines remarkably promote tumor growth
and vascularization [196]. IRE1-XBP1 axis also facilitates
angiogenesis via the association of XBPIls with hypoxia-
inducing factor 1a (HIF1«), a key regulator of VEGF in triple
negative breast cancer (TNBC) cells [197]. Intriguingly,
VEGF signaling also activates UPR in endothelial cells
through a phospholipase Cy-mTORCI pathway, indicating
that VEGF signaling and UPR may operate a positive feed-
back loop for angiogenesis [198].

UPR of the ER has begun to be elucidated in metastasis.
Metastasis is a complicated process in which cancer cells
migrate from the original tumor site, infiltrate extracellular
matrix (ECM) and stromal cell layers, penetrate the lym-
phatic circulatory systems, colonize foreign tissues, and grow
into new tumor mass [172, 199-201]. PERK-ATF4 axis acti-
vates lysosome-associated membrane protein 3 (LAMP3),
thereby facilitating metastasis of hypoxic breast cancer cells
[202,203]. The upregulation of ATF4 in esophageal squamous
carcinoma leads to an increase in metastasis through the reg-
ulation of matrix metalloproteinases [204]. Intriguingly,
ATF4-mediated gene expression is potentially correlated
with the expression of genes involved in epithelial-to-
mesenchymal transition (EMT) [199].

IRE1-XBP1 axis is also implicated in metastasis. TNBC
cell lines constitutively express XBPls, and silencing of
Xbpl potentially inhibits metastasis [197]. XBP1s drives
TNBC tumorigenicity and invasiveness by assembling a tran-
scriptional complex with HIF1« that upregulates the expres-
sion of HIFla targets such as PDK1 and GLUTI. On the
contrary, while inhibition of IRE1 in malignant glioma corre-
lates with the downregulation of proangiogenic factors such
as VEGF-A, IL-1f, IL-6, and IL-8, it induces a significant
upregulation of proteins linked to mesenchymal differentia-
tion and glioma invasiveness such as SPARC, decorin, and
thrombospondin-1, demonstrating that IRE1 in malignant
glioma promotes the formation of functional tumor blood
vessels and attenuates tumor cell invasion as well as vessel
cooption [205, 206]. Therefore, a comprehensive analysis of
IRE1-XBP1 axis is required to determine the relationship
between invasiveness and angiogenesis. Additionally, the dif-
ferent consequences of UPR activation likely result from an
interplay between particular axes of signaling pathways
within specific tumor contexts.

4.2. UPR of the ER and Cancer Immunogenicity. It is of
great importance to explore the crosstalk between UPR of
the ER in tumor cells, the release of damage-associated mol-
ecules, and the activation of immune responses for the
understanding of anti-tumor immunity. Through a process



“transmissible ER stress,” ER stress enables cancer cells to
secrete some factors that promote macrophage activation
and induce a proinflammatory response in the microenviron-
ment of tumors [207]. This process represses the antigen-
presenting capacity of bone-marrow-derived dendritic cells
(DCs) and inhibits T cell proliferation, which promotes the
upregulation of immunosuppressive molecules [208], sug-
gesting that ER stress signaling may facilitate immune escape.
On the contrary, ER stress also triggers immunogenic cell
death (ICD) and antitumor immunity [209]. The ICD pro-
vokes release of damage-associated molecular patterns
(DAMPs), involving surface exposure of calreticulin, ATP
secretion, and passive release of high-mobility group box 1
(HMGBL1), suggesting that DAMPs serve as signals of danger
and facilitate antitumor immunity [173, 210, 211]. PERK-
elF2a axis is associated with the exposure of calreticulin in
non-small-cell lung carcinoma (NSCLC) and is correlated
with ICD and antitumor immunity [212]. Photodynamic
therapy increases the surface exposure of calreticulin as well
as ATP secretion via PERK signaling in human bladder carci-
noma, leading to engulfment of cancer cells by dendritic cells
(DCs) [213]. In addition, radiation and anthracycline treat-
ment induce lethal ER stress characterized by ROS produc-
tion, an increase in the level of cytosolic Ca**, and the
excessive activation of UPR, thereby leading to the activation
of inflammasome and subsequent ICD [48, 214]. However,
IRE1-XBP1 axis is demonstrated to prevent the induction
of ICD in metastatic colorectal cancer cells exposed to che-
motherapy [215].

The tumor microenvironment is a complex environ-
ment consisting of stromal cells such as fibroblasts and
endothelial cells and infiltrating immune cells such as CD8
T cells, Tregs, myeloid-derived suppressor cells (MDSCs),
and DCs. Recently, it has begun to emerge as a new research
area to elucidate the relationship between ER stress
response in tumor-associated immune cells and tumor pro-
gression [199]. IRE1-XBP1 axis is essential for the differen-
tiation of plasma cells and some dendritic cells [216-218].
ER stress response driven by XBP1 hyperactivation pro-
motes neutrophil-infiltrating acute lung injury [219]. Addi-
tionally, XBP1 is required for the production of IL-6 in
macrophages [220]. Persistent activation of IRE1-XBP1 axis
is found in ovarian tumor-infiltrating DCs [221]. Intrigu-
ingly, the ovarian tumor-infiltrating DCs facilitate ROS pro-
duction and consequential disruption of ER homeostasis,
thereby leading to the control of antitumor immunity. In
addition, the status of ROS-promoted lipid peroxidation has
been suggested as a biomarker of disease recurrence in breast
cancer patients [222]. Consistently, tumor-infiltrating DCs
lacking XBP1 acquire immunostimulatory and antitumoral
characteristics in vivo [223-225]. Pharmacological inhibition
of IRE1 in bone-marrow-derived macrophages stimulated by
IL-6 and IL-4 attenuates macrophage-mediated cell invasion
in vitro [226]. Interestingly, IL-4 and IL-6 synergistically acti-
vate IRE1-XBP1 axis in macrophages. In addition, pharma-
cological induction of ER stress triggers the upregulation of
the lectin-type oxidized LDL receptor-1 (LOX-1) in neutro-
phils and can induce transformation of neutrophils into
immunosuppressive cells [227, 228]. These studies suggest
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that IRE1-XBP1 axis plays a key role in the control of
tumor-associated myeloid cells.

CHOP is known to be upregulated in tumor-infiltrating
MDSCs [229]. Tumor-infiltrating MDSCs devoid of CHOP
show reduced immunosuppressive activity toward T cells
due to defective expression of arginase. In addition, UPR
activation in tumor-infiltrating MDSCs promotes apoptosis
through death receptor 5 (DR5) and caspase-8 activation
[230]. To summarize, these findings suggest that UPR activa-
tion plays a pivotal role in fine-tuning of tumor-associated
immune responses.

4.3. UPR of the ER and Therapies for Cancer. UPR-activating
or inhibiting strategies have begun to emerge as new pharma-
cological tools for cancer treatment. A large number of anti-
cancer drugs induce UPR activation and facilitate the
development of chemosensitivity or chemoresistance in a
context-dependent manner [199]. Anticancer drugs involv-
ing paclitaxel, the epidermal growth factor receptor (EGFR)
inhibitor cetuximab, and the BRAF (V600E) inhibitor
vemurafenib induce PERK-mediated eIF2«a phosphorylation
[137, 215, 231]. In addition, nonsteroidal anti-inflammatory
drugs promote UPR-mediated apoptosis and are used in
combined anticancer therapies [232, 233].

Recently, targeting of UPR of the ER in cancer cells has
been demonstrated to inhibit survival or promote cell death
[173,234,235]. Therapies targeting UPR are applied for mul-
tiple myeloma or B cell-associated hematologic malignancies
[173]. In addition, inhibition of PERK-elF2« axis promotes
cell death of therapy-resistant hypoxic glioblastoma and
colon carcinoma cells [236], suggesting that combination of
cancer therapy and UPR targeting may be desirable for can-
cer treatment.

ER stress-induced autophagy may facilitate therapeutic
resistance. Autophagy induced by IRE1-JNK pathway facili-
tates sorafenib resistance in hepatocellular carcinoma cell
lines [237, 238]. It is also demonstrated that a marked
increase in cytoprotective autophagy induced by PERK
develops vemurafenib resistance in melanoma [231]. Intrigu-
ingly, simultaneous inhibition of BRAF (V600E) and PERK
sensitizes chemoresistant melanoma to ER stress-induced
apoptosis, suggesting that the balance between autophagy
mediated by UPR and chemotherapy is required for the over-
come of chemoresistance.

Because ER stress modulates the functions of tumor-
associated immune cells and subsequently protumoral or
antitumor immune responses, it is noteworthy to consider
UPR-targeting therapies in immune cells. Targeting IRE1-
XBP axis in DCs has been demonstrated to be effective for
cancer treatment [221, 239, 240]. Depletion of Xbpl or
silencing of Irel in preclinical models remarkably transforms
DCs into immunostimulatory cells, thereby promoting sur-
vival through T-cell-mediated antitumor immunity [221].
In addition, transplanted MDSCs devoid of DNA damage-
inducible transcript 3 (Ddit3) show enhanced antigen-
presenting capacity and T cell stimulatory effects [229].
Intriguingly, EROla is demonstrated to upregulate pro-
grammed death ligand 1 (PDL1) in TNBCs [241]. These
studies suggest that the combination of UPR-modulating
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therapies with immunotherapies might be effective for
cancer treatment.

5. ERAD and Cancer

ERAD in tumor progression and immunogenicity is not well
known. Several studies suggest that the high degree of cell
division and high mutation rates in cancer cells lead to an
accumulation of misfolded proteins, which activates ERAD
[242, 243]. Higher expression of SEL1L in pancreatic cancer
cells leads to not only G1 phase cell cycle arrest via the induc-
tion of a phosphatase and tensin homolog (PTEN) but also
reduction in invasiveness by modulating genes related to
cell-matrix interactions [244, 245]. Additionally, low expres-
sion of SEL1L in breast cancer patients has been reported to
correlate with poor prognosis [246]. However, in the context
of colorectal cancer, while basal expression of SELIL in
normal mucosa of the epithelial lining is low, SEL1L is upreg-
ulated in adenoma and adenocarcinoma cells [247]. There-
fore, it is pivotal to elucidate the mechanism by which
SELIL is involved in tumor progression within a specific
tumor context and the effects of changes in SEL1L expression
in tumor cells on ERAD substrates or ER homeostasis to clar-
ify the role of SELIL in cancer pathogenesis.

Under hypoxic conditions, OS-9-mediated degradation
of HIFle is crucial in the downregulation of genes that pro-
mote cell survival, proliferation, angiogenesis, and metastasis
[248-250], suggesting that OS-9 is important in the regula-
tion of tumor progression.

gp78 induces a signaling cascade to mediate tumorigene-
sis and is linked with various types of cancers [251-253].
gp78 is highly expressed in bladder carcinoma tissues, and
colorectal cancer patients with higher expression of gp78
have less survival and high risk of cancer recurrence, suggest-
ing that gp78 is closely related to increased risk of cancer with
lower survival rate [254-256].

The role of gp78 in metastasis is largely unknown.
However, several studies suggest the involvement of gp78 in
metastasis. Expression of gp78 is modulated by cell-cell
contact, and loss of this balance is linked to metastasis
[257]. Intriguingly, an inverse correlation between gp78 and
E-cadherin has been reported in patients with bladder carci-
nomas as well as gastric cancers [258-260]. gp78-mediated
degradation of metastasis suppressor protein Kangail
(KAIl) promotes metastasis [261, 262]. Additionally, gp78
activates ROCK2, an important metastasis-associated pro-
tein, indicating the involvement of gp78 in metastasis [263].

CHIP, cytosolic E3 ubiquitin ligase involved in ERAD
is inversely correlated with malignancy in breast cancers
and depletion of CHIP results in an increase in the growth
of subcutaneous tumors, indicating its role as a tumor
suppressor [264].

6. Conclusion

Organisms are continuously exposed to extrinsic and intrin-
sic stresses that destroy proteostasis and subsequently result
in protein misfolding and aggregation, thereby leading to
the state of ER stress. To restore proteostasis, eukaryotic cells

have evolved UPR of the ER and ERAD as key adaptive
responses. Intriguingly, a failure in these adaptive responses
leads to various protein misfolding diseases, involving can-
cer. UPR of the ER not only acts as a guardian of tumor pro-
gression at an early stage but also serves as a key player for
maintenance of tumors under chronic ER stress. Addition-
ally, UPR has been described to manipulate immune cells
in tumor microenvironment, resulting in antitumor immu-
nity or immune escape. Importantly, UPR activation also
develops chemosensitivity or chemoresistance in a context-
dependent manner. Overall, UPR of the ER is involved in
the modulation of tumor growth, metastasis, and angiogene-
sis; the interaction of tumor and stromal cells; and the regu-
lation of inflammatory/immune responses. Therefore, to
elucidate the precise molecular mechanisms by which UPR
of the ER and ERAD coordinate tumor progression at differ-
ent stages and modulate the communication between tumor
and tumor microenvironment remarkably contributes to
novel therapeutic interventions.
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