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Differential invariants and their corresponding canonical forms for systems of three 2nd-order ODEs possessing three-dimensional
Lie algebras are constructed. Their extension up to kth-order system of three 2nd-order ODEs is presented. Furthermore singularity
in invariant structure for the canonical forms is investigated. In addition integrability of these canonical forms is discussed.

Mlustrative physical examples from mechanics of system of particles are provided.

1. Introduction

There are several physical phenomena whose mathematical
modeling is associated with system of 2nd-order ODEs and
hence analysis of various aspects of these systems of ordinary
differential equations plays a vital role in the applied sciences.
Due to this contributing role and importance, these systems
have been extensively studied over the years. Different meth-
ods and approaches have been introduced and constructed
for various aspects of the analysis of these systems.

One of the prominent approaches is Lie symmetry
method, initiated by Sophus Lie [1842-1899]. This is a general
method in which exact solutions and various other aspects
of linear and nonlinear differential equations are analysed.
Lie theory is based on Lie groups and the corresponding
Lie algebras. Lie proved that the integrability of a differential
equation is contingent on the properties of the Lie algebra it
admits; for details see [1-5].

In Lie theory, there are two approaches for the integra-
bility of differential equations: direct and indirect approach.
In the direct approach classical reduction is performed via
differential invariants and canonical variables and so forth,
while in the indirect approach equations are classified via
their admitted Lie algebras in prescribed number of under-
lying variables with corresponding set of structure constants.

Then algebraic realizations are used for integration of these
classified forms. The indirect approach is also known as Lie
algebraic approach. The direct approach is useful for scalar
ordinary differential equations only but does not work for
system of ordinary differential equations [6]. The indirect
approach is equally valid for both scalar ODEs as well as
system of ordinary differential equations.

In this paper, we are interested in Lie algebraic approach
(Realization approach) for system of 2nd-order ordinary
differential equations.

To apply the algebraic approach, equations have to be
classified according to their admitted symmetry algebras.
Moreover this classification scheme depends not only upon
the abstract Lie algebras (and their subalgebras) but also
the realizations of the admitted Lie algebras in prescribed
number of variables.

The initial work on classification and realizations of Lie
algebras was done by Lie [7]. After Lie, several researchers
have been involved in analysis of different aspects of this
work; see [1, 6, 8-12]. Although the algebraic approach is
more involved, it generates new cases and more insight
to mathematical properties whose base is algebra (see [8,
9, 13, 14]). Thus the classification of differential equations
via algebraic approach is more efficient than other classical
approaches. Unluckily, very limited literature is available on
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this approach for system of 2nd-order ordinary differential
equations.

Like systems of two 2nd-order ODEs, systems of three
2nd-order ODEs have vital role in different mathematical
modeling of physical situations such as small oscillation
problems, wave propagation problems, and problems of
mechanics. There is very limited and restricted work on
classification of system of three 2nd-order ODEs according to
their symmetry algebras (see [15, 16]). Thus in this paper, we
are interested in investigating classification of system of three
2nd-order ODE:s via the algebraic approach for dimension 3.

The outline of the rest of the paper is as follows. In
Section 2 invariant structure of canonical forms and their
Lie algebraic properties are constructed. Section 3 is about
the integrability of underlying canonical forms, whereas
Section 4 presents illustrative examples of the results obtained
in this paper. Paper ends with a brief conclusion.

2. Differential Invariants and Canonical Forms

By fixing number of prescribed variables for a given set
of structure constants associated with an underlying Lie
algebra one can obtain the most general classes of system
of differential equations which admit the investigated Lie
algebra in prescribed number of variables.

Here group classification of system of three 2nd order
ODEs, admitting three-dimensional Lie algebra, has been
investigated via algebraic approach. The classification results
of [11] are utilized but in the format of [8].

2.1. Invariant Construction. Following result given in [8] is
fundamental in construction of invariants and their corre-
sponding canonical forms.

Proposition 1. If u and v are invariants of a Lie algebra
admitted by any system of ordinary differential equations, then
dv/du is also its invariant.

For the construction of canonical forms the approach
developed in [8, 9, 13] is employed. By utilizing realizations
of underlying 3-dimensional Lie algebras admitted by system
of three 2nd-order ordinary differential equations we find
differential invariants associated with them. These invariants
are then used to construct invariant system of differential
equations, called canonical forms of system.

Notations. The following notions are used in rest of the paper:

Mﬁ’}”” denotes the jth Lie algebra of dimension i
whereas superscripts indicate parameters on which
the algebra possibly depends; the column N in
Table 1 gives the algebra realizations; the realization is
referred to by a superscript n; as usual 0, = 0/0t, 9, =
d/0x, 0, = 9/dy, 9, = 9/0z.

X; denotes the elements of a basis of a given Lie
algebra; here i is less than or equal to the dimension
of the underlying real Lie algebra. The rank of the
associated realization is denoted by r and N is the
realization of the corresponding algebra.
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The realizations given in [8] are used to obtain the differ-
ential invariants and their corresponding invariant represen-
tation for the system of three 2nd-order ordinary differential
equations. There are various methods and approaches for
finding differential invariants but we follow the peculiar
approach developed by Ayub et al. in [8, 9, 13]. In this
approach invariants are interrelated via basic invariant. We
explain the algorithm by the following example.

Example 2. Consider the second realization sz@s = (0, 0y,
t0, + x0, + ay) from [8]. We find the second prolongation of
generators and then adopting the procedure of construction
of differential invariants described in [8, 9, 13], we obtain the
following differential invariants:

p=z
q=%
u=ye’,

z
V=

y

@)

dq _ %
dp %’
@=y'ey<¥+4),
dp z  yz
dv_2 _J
dp yz 3

This gives the following invariant representation and associ-
ated canonical form for the system of three 2nd-order ODEs
admitting Lie algebra of ;5:

dq _

i f(pauv)

du

i g(p.quv)

dv

a h(p,q.u,v)
) (2)
> =f(pqguv)

y'ey<¥ + l) =g(p.quv)

z yz
___:h s U Uy .
25 awy)

Here and in the subsequent work p, g, u, v, dq/dp, du/dp,
and dv/dp denote invariants whereas f, g, and h are arbitrary
functions.
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Example 3. Consider the algebra *Qfsl,s = (—td,, (1/2)(-to, +
x0,),x0,) given in [8]. Proceeding as in above example we
arrive at the following invariants:

p=53
a=>
Ix—x
u= —,
y
dq _y
dp z 3)
we X
7

du ti  j(x-x)
dp yz 2z
dq y yz

dp 22
Using these invariants we obtain the following invariant
representation and corresponding canonical form for the
system of three 2nd-order ODEs possessing Lie algebra .527‘31)8:

o= ()
()
dp _g p)q) )dp
d’q dq
_:h p)q) > T4
dp? ( dp)
" ) )
X _ 4q
)./3 f(p)q) )dp>
tx_y(tx—x)_ < @)
e gz PG,
Y _YE_ 49

In classification problem related to system of differential
equations, invariant interrelation plays a key role in different
types of analysis, namely, integrability, Linearization, and
singularity as well as some other aspects especially related to
system of three 2nd-order ODEs (see [8, 9, 13]). By careful
observations here we have obtained some relations between
invariants. On the basis of these relations we categorize the
regular differential invariants in the following main two types.

(i) Invariant Representation in First-Order System of ODEs. In
this system, for underlying Lie algebra with peculiar realiza-
tion, we obtain seven linearly independent invariants whose
invariant representation is in the form of system of first-order
ordinary differential equations. These invariants contain four
first-order differential invariants and three second-order dif-
ferential invariants. The four first-order differential invariants

include one invariant that plays a role of basic invariant
(p). The second-order differential invariants are derived via
differentiation property of first-order differential invariants
with respect to the basic invariant, for example, ﬂg,s'

(ii) Invariant Representation in Mixed Type System of 2nd-
Order ODE. In this system, for underlying Lie algebra with
peculiar realization, we obtain seven linearly independent
invariants whose invariant representation is in the form of
mixed type system of 2nd-order ordinary differential equa-
tions. These invariants contain four first-order differential
invariants and three 2nd-order differential invariants. The
four first-order differential invariants include one invariant
that plays a role of basic invariant (p) and remaining three;
one of the invariant is derived by the differentiation of
another invariant from the remaining two with respect to
the basic invariant. The 2nd-order differential invariants
contain one independent invariant (w) and the remaining
two are obtained via differentiation of first-order differential
inzariants with respect to the basic invariant, for example,
A g

Both types of invariants are presented in Table 1. These
observations led us to the following.

Remark 4. The number of functionally independent invari-
ants for the regular system of three 2nd-order ODEs admit-
ting three-dimensional Lie algebra is 7.

2.2. Singularity in Invariant Structure. If the rank of solution
manifold is less than the rank of generic manifold, then
invariant differential equation is singular [13]. This singularity
plays an important role in the integrability of such systems.

For example, consider the case of Lie algebra o3, =
(0,,10,, ¥0,). By employing the same procedure as used for
the invariant construction of &fg’s and Qi;‘,g in the previous
subsection, the following set of differential invariants is
found:

p=t

q=>

u=z,

dq .

ap

du

— =z, (5)
dp

w =X,

Pu

d’q .
d—pz=0 (y=0)



The corresponding invariant representation and canonical
form for the system of three 2nd-order ordinary differential
equations having the Lie algebra &/ 2’1, respectively, are

d
o= {pas )

dp
2
dq _,
dp?
d*u dq)
S _nlpgu 2
dp? <M” dp (6)
-t (pan )
y=0
. dq
z-h<p,q,u,d >

By employing the same procedure as given in [13], it is
deduced that the condition of singularity is satisfied for the set
of invariants given in (5) and hence possesses the singularity
structure.

This type of singularity in invariant structure occurs in
o g,s presented in Table 1.

If we consider the Lie algebra M‘;,l, we obtain the
following set of differential invariants:

p=t

q=)

u=z,

dq _

dp

du

au _ . 7
i z, (7)
w =X,

dp2 7

dzq

— =0 y=0),

0 (y=0)

whereas &iél and o/ ;,3 do not form the system of three 2nd-
order ODEs.

2.3. Extension in System of Three kth-Order ODEs. Utilizing
the interrelationship between invariants of three second-
order ODEs, three kth-order ordinary differential equations
admitting three-dimensional algebras can be constructed, as
done in [8].

For this purpose we utilize the basic invariant that is
introduced in the invariant representation for the classifica-
tion. Consider the case of &i‘;’s that belongs to the invariant
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representation in mixed type system of 2nd-order ODEs. We
have the following invariant structure for this case:

p=z
q=y
X — x
u= —,
y
dq9 _y
d z’
b (8)
i
w—F,

du _ ti j(tx-x)
dp  yz 32z
dq _j i

dp2 22 3

Differentiating the set of second-order differential invariants
with respect to basic invariant (p), we find the following 3rd-
order differential invariants:

dw  x 35&)7

dp zy Tzt

du (tx+x)  txE

j(tx+x (£ 1))

pr ~ y? g

9)
. 2% (th—x)  JE(tk—-x) J(tk-x)
y3z2 )'/2‘,23 )',222
dq_J 3% JE )

dp> 22 T TS 2

Thus the set of functionally independent invariants for the
system of three 3rd-order ordinary differential equations

. 4 .
possessing &5 ¢ is

p=z
9=
Ix—x
u= —,
y

dq _y
dp 2’
R
w }?,

du _ ti  j(ti-x)
dp  yz 2z
dq _j yz

dp* ¢
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TaBLE 1: 2nd-order differential invariants and equations.

Algebra N Invariants and equations

=z, =% Uu=y,v= .dq xdu_j)ﬂ_é
p— =5 U=rV=5 0 zdp 2 dp z

< —f(P qu,v), < —g(p»q,u»v) < =h(p,gu,v)
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dq)
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z
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_J dq
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)

xdq yw:

z
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x
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TaBLE 1: Continued.

Algebra N Invariants and equations

p:z,q:y,u:x,dfq:Z,u):l2 duzg _)’Z_)’

d
L x dq\ J ( dq) Z2_ Y _ < @)
2 ‘f<P’q’”’dp>’ yoa\peng, ) e w T peng,

ydpzé’?q: : Tyrdp gz ¥

[\"]
N\R ’tr
I\)

N\w

dq . . i} ) .
p=t,q=y,u=z,%:z,—_z—:y,w:x:(),i:z
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P P
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o ea—1 d
pP=z 9=y, u=xy Sy

d d y 4 d
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dp /)’ <
z dq b y‘2> du:y‘(“*“er(a—l)xy(“y dv_ i
v _

' dg P P dp  yz 3
= h(p,q,u,v)

A p=zq=w%u=xyﬂv=fg;=ﬂ A
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) f@qmw)y
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sz =y u=ts S =2 w=t 22 _ )
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X f(pqudp> 73 gpqudp +z pqudp

Z3

- (a— 1)
i
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Y, @ arctan x : - _—aarctan X —aarctan x - N o - s
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TaBLE 1: Continued.

Algebra N Invariants and equations
cmgepusFOE LY F du & @-xy dq_§ gt
Prodqe U eV Y S T3z Cdp 2 2
4 dq\ tx (x-x)y < dq) y o yZ ( dq)

= U —— |, - = g~ |, 5 -5 =h{pgu

f(pqudp> 72 e I\Pat gy ) 5 Pt g,

; Lo X2 dq X'w_1+x2+ £ odu NI+ ®( xiz Xz x'kEk
Prod=r = dp 2 T Ry T dp T 2 \(1+0)  Vize (142
dq _j
dpr 22 3

5 1+x° % dq\ jy yz ( dq)
Py +xz)-/3 —f<P>¢1>”»%>s ;—;—g P>q’“>%

Vi+x? [ xxz X’z xX°XEE dq
( p q’ u, di

+ —
xz 1+x%) 1+x2 (1+4%?)

1+x + (tx — x)? dq y X
p=z4q9=yu 2, a2 FT 2, .2\
(1+¢ x)y dp 2’ (T+£2+x2)""y?
du 2(1+5c2+(t5c—x))y 4(t + xx) (1+x+tx x)) 2(xt—(1+t2)5c)5é dzq_)'; vz

dp 293 (1412 + x2)° 292 (1412 + x2)° (142 4x2)  dp? 22 2
e )
! (1+£+x2)7 5 P dp
2(1+x +(tx — x))y 4(t+xx)(1+3‘c2+(t5c—x)2) 2(xt - (1+1%) %)% < dq)
—_ — > q> U,
zy? (1+£2+x2)° 292 (1412 + x2)° 292 (1+ 12 + x2)° b4 dp
y )z dq
55 on(pany
— 2, g = arctan(i sec x) - o yseexttanx o Zsecx dq _ secx(:’c’+3’c2tanx)_z'
Ay pP=24= s V1 + #2sec’x V1 + #2secix dp z(1+x7secx?) %
) du (V1+5C25eC2X) j . (1+%* +ysinx)x %% (ysecx + tanx)
dp Zsecx cos”x (1 +%%sec’x)  cos?x (1 + a2sec’x)’  cos’x (1 + x2secx)
ﬂ _ ( V1+ xzseczx) z . Xz tan x B Xiz sectx
dp zsecx cos?x (1 + X%sec’x)  cos?x (1 + x2sec’x)’  cos?x (1 + x2sec?x)’
2 secx (¥+%°tanx) y
E(Hsecw) 2 DAY
(V1+5C256C2x)< 3 (1+x*+ ysinx)x %% (ysecx + tan x) ) ( )
- =g(p.qu,v
Zsecx cos’x (1 + %%sec’x)  cos’x (1 + x2sec’x)’  cos’x (1 + x2sec?x)’ gpa
( VI + xzseczx) z XZtan x XXz sec’x
; 2 Zeoc2y) | . 2" . 7 | =hpguv)
zsecx cos’x (1 + X%sec’x)  cos?x (1 + x2sec’x)”  cos’x (1 + %2sec’x)
dw dw _ . dq  du d'q
dp ap I\ gy iy ap
d’u d*u dq du d* dq
—_—, _—= »q > W,
dp? dp? g\ P dp dp’ dp?
d’q d3q dq du d’q
dp>’ dpr T\ PP g e
" i_3ﬁ=f(pqudq o i)
where dw/dp, d*u/dp®, d’q/dp® are as mentioned in (9). zy* 2yt dp’ " dp’ dp’
Consequently, the number of functionally independent Z(AX+x)—txz J@EX+x(t-1))
invariants for the system of three 3rd-order ODEs admitting 723 - [

o ‘31)8 is 10. We arrive at the following invariant representation
as well as corresponding canonical form for the system of ;V (tx - x) (22 + yZ)
three 3rd-order ODEs possessing Lie algebra d;{sz 9323




(11)

Proceeding in similar manner, we arrive at the following
invariant representation for the system of three kth-order
ODEs (k > 3) possessing Lie algebra szig’sz

4w dg du dq  dw du
I P BT e
dp dp’ ™ dp’dp’ " gt dp
dk—lq
dp~-1

(a)pquv@@ﬂﬁ@dzv
a;:;p

2 2. 53
dq du d°q dw du du ‘ (13)

®) p,gu, —,w
p.q b

© pau dq du d’q d*u

where (a) corresponds to these algebras

1 1 2 3 2 2 2 2 2
A3,1’ A3,2’ A3,2’ A3,3’ A3,5’ A3,6’ A3,7’ A3,8’ A3,9’ (14)
(b) corresponds to
2 2 3 4 1 2 1 3 1 4 1
A3,1’ A3,2’ A3,2’ A3,2’ A3,3’ A3,3’ A3,4’ A3,4’ A3,5’ AS,S’ A3,6’
(15)
3 1 3 3 4 5 1
A3,6’ A3,7’ A3,7’ A3,8’ A3,8’ A3,8’ A3,9’
and (c) corresponds to
3 44 43 1
A3 A3 A5 Asg (16)

Remarks 6. The classification results of (a) and (b) mentioned
in Theorem 5 are also valid for k = 2.

There are 31 canonical forms for the case of a system of
three 3rd- and higher-order ordinary differential equations
admitting three-dimensional Lie algebras, and these can be
constructed by invariant differentiation as described above.

Note that A§,1 and A13,s are admitted by a regular system
of two 3rd- and higher-order ordinary differential equations
whereas they do not form a system of three 2nd-order
ordinary differential equations.

du d'q Fu &g du 47w d'q d'u
dpadp)dpzadpza ’dp3)dp3,“.’dpki?’)dpk)dpk’
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dkilu dq du qu dk*Sw dkfzu
e =9<Prq,“,—,w,—,—2,...,T,?,
dp dp dp dp dp dp

dk73w dk721/l
dpk—3 > dpk—z’

dq du d’q
Tk =h<P,q,U,—,w,%,d—pz,-.-,

(12)

By careful observation we can classify the invariant represen-
tation for all cases of the three-dimensional Lie algebras with
corresponding realization admitted by the system of three
kth-order ordinary differential equations (k > 3) admitting
three-dimensional Lie algebra.

Theorem 5. If a regular system of three kth-order ordinary
differential equations (k > 3) admits three-dimensional Lie
algebra then its canonical form can be represented by a set of
basic 3k + 1 functionally independent invariants in one of the
following forms:

dk_lq dk_lu dk_lv

d3w d*q dku

3. Integrability

It is well known that symmetries can be used to integrate
ODE:s either by successive reduction or by using the canon-
ical forms. Though the later method requires classification
according to their admitted algebras before integration but
this method is applicable to all kinds of systems of ODEs
whereas the former applies only to scalar ODEs. Here we
provide an integration algorithm for canonical forms (given
in Table 1). The algorithm depends on the subdivision scheme
of the canonical forms that is based on general observations.

3.1 Integration Algorithm. The canonical forms for systems
of three 2nd-order ODEs presented in Table 1 are subdivided
mainly in two classes: Type-I and Type-II.

Type-I: Case of Singular Invariants. This consists of two cases
A33)1 and A33’5.

(i) A33)1 = (0;, 0, x0,+0,). The corresponding canonical form
and invariant representation for this symmetry Lie algebra are

. dq du
x—f<p,q,u,dp,dp>, (17)
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j =0, (18)
é:h(g%mS§Z§> (19)
w=f<g%mg%g§> (20)
Zipg _o, (21)

where p, g, u, dq/dp and du/dp are taken from Table 1. By
using (21), we arrive at

q=ap+q. (23)

Thus utilizing the values of (23) in (20) and (22), we deduce
that

du
= (pepresnen )
) (24)
d—“—h( G D +C,UC d_u
dp? =n|p.aptau, l’dp

Inverting back into original variables, (23) and (24), we get
the following form:

y=qt+g (25)
5c'=f<t,clt+cz,z,cl,‘ji—f> (26)
é=h<t,c1t+g,z,cl,%>. (27)

The solution of (27) gives the value of z, and then by utilizing
this value in (26), one can get the solution of system (17), (18),
and (19).

Remark 7. The solution of (27) can be obtained by employing
different symmetry approaches including Lie canonical form
method.

(b) p.gu, dp’

@)pqucm du d*q d*u

dq » du d’q dw d*u d’u
)dp)dpza dp,dpz’dpz',”.’
dq du dq Fu  Lg du  d7w d'q d'u
dp’ dp) dpz’ dpz’ ’dp3) dPS)"'S dpk_s)dpk)dpk‘
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(ii) A33,5 = (0,,1t0,,x0,). The associated canonical form
possessing symmetry Lie algebra is

%=0, (28)

L dq du>
y_g<p’q’u’dp’dp 4 (29)

. dq du>

= h s> U 7/ T |
Z ( p-qu dp’ dp (30)

where p, g, u, dq/dp and du/dp are taken from Table 1. By
using (28), we deduce that

x=dt+d, (31)

The system of three second-order ODEs admitting symmetry
Lie algebra A} is integrable by quadrature provided that
system of two second-order ODEs formed by (29) and (30)
is integrable by quadrature.

On the basis of reductions discussed above, we arrive at
the following results.

Proposition 8. If a singular system of three 2nd-order ordi-
nary differential equations admits a three-dimensional solvable
symmetry algebra, then the general solution of the singular
system can be obtained by quadratures from the general
solution of the invariant representation of the singular system
given by the solution of

(a) a 2nd-order differential equation in the case of A33,1 ;

(b) system of two 2nd-order ordinary differential equations
in the case ofA33’5.

Remark 9. Proposition 8 is related to algebraic approach for
analysis of singular system of ODEs. Proposition 8 leads to
the solution of underlying singular system of three 2nd-order
ODEs by either of two ways: case (a) when corresponding
reduced 2nd-order differential equation has integrable class
or case (b) when associated system of two 2nd-order ordinary
differential equations is integrable. In both of the above
cases ((a) and (b)), for integrability one can consult the Lie
canonical form method of scalar second-order ODEs and
other symmetry approaches as well in the former case and in
latter case one can utilize approaches discussed in [6, 8, 9,13].

Proposition 10. If a regular system of three kth-order (k > 3)
ordinary differential equations possesses a three-dimensional
solvable symmetry algebra, then the general solution of the
system can be obtained by quadratures from the general
solution of the invariant representation given by one of the
following systems:

dk_lq dk_lu dk—lv

dk—Zw dk_lu ﬁ
dpk—z > dpk—l ’ dpk
dw dq du

(32)



10

The proof follows from Proposition 8 and the discussion
preceding Proposition 8.

Remark 11. Proposition 10 is also related to algebraic
approach for analysis of regular system of ODEs. Proposi-
tion 10 leads to the solution of underlying regular systems of
three kth-order (k > 3) ODEs admitting a three-dimensional
solvable symmetry algebra when corresponding canonical
forms of these systems given in cases (a), (b), and (c) are
integrable.

Type-II: Case of Regular Invariants. This type consists of all
the cases of regular invariants mentioned in Table 1 and their
integrability depends on the peculiar structure of associated
system of three 2nd-order ordinary differential equations
with admitting Lie algebras.

3.1.1. Examples. Let us consider two examples of physical sys-
tems which describe the integration algorithm that depends
on the peculiar structure of associated system of three 2nd-
order ODEs and the admitted Lie algebra.

(1) Consider the motion of a system of three particles
defined by

X=-z
j =y (33)
Z=-yz

in a small region; g, < x < a,, by < y < byand ¢ <
z < ¢, such that for any small number € > 0, |a, — a,|*
€ |b —bl* = eand |, — 6|* = €, where e — 0. There is a
time varying applied force which produces the motion after
neglecting the effects of gravity due to small region. System
(33) represents the motion of system of interacting particles
in which the first particle faces the resistance proportional to
the velocity of third particle, while second particle faces the
drag resistance and third particle is facing resistance equal
to the product of the velocities of second and third. This
system admits the symmetry Lie algebra A13)5 and belongs to
the class of canonical form associated with this algebra with
f =g = -1land h = 0. The corresponding invariants and
invariant representation for A13’5 are

p=z
9=y
u =X,
dq _y
dp 2z’
.. (34)
w2,
du _
dp 2’
d’q _yz_j
dp2 3 22
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Plugging in the values of f, g, and h we arrive at

w=-1
du _
dp
d’q (35)
dp?
w=-1= —% =1,
which gives
l. =t+d,. (36)
y
Some manipulations give
y=In(t+d,)+d,. (37)
Similarly
%’Z =0, (38)
which gives
y=dsz+d,. (39)
We deduce that
z= w +ds. (40)
From du/dp = —1, by utilizing the value of z, we obtain
X = —% +ds. (41)
We deduce that
x=(t+d)In(t+d,)—dst +d. (42)

Thus (37), (40), and (42) are solutions of system (33).
(2) Consider the oscillatory motion of a system of three
particles governed by

X = kleftk"
=k, 9" +koy (43)
2= —ky2* + kyZ

inaregion;a; < x < a,, by < y <band¢ <z < ¢
such that for any small number € > 0, |a, — a,|* = ¢, |b, —
bl* = eand |, - ¢* = € where e — 0 and k; k,
are arbitrary constants whereas k, is a drag constant. There
is a time varying applied force which produces the motion
after neglecting the effects of gravity due to small region.
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System (43) admits the Lie algebra A33’ , Spanned by symmetry
generators

d
la’
thy D
= e
10 d

=2 ikl
3T kot ok

X, =k
X5 (44)

By using the invertible transformations

t = tk,,

=l
Il

1.
ko (45)

ekz}”

=
I

Z= ekzz)
this Lie algebra is transformed into the canonical form of the
Lie algebra A33)4 mentioned in [8]. System (43) is transformed
into

" t

X=e
j =y, (46)
Z=2z.

System (46) is matched with corresponding canonical form
by taking f = h = 1 and g = 0 in it, plugging with A33)4
mentioned in Table 1. The associated differential invariants
and canonical representation are

p=z
9=y
u=2z,

dq _y

d z’
re (47)
w=ex,
du _z
dp %’
dq i
dp2 22 27

Using invariant representations, inverting back into original
variables and dropping the bars, we get

. t
x =ke ko 4 klelk— + ke,
0

log (et/k" + eSki + e4> , (48)
0

log <et/k° + 65L + €6> .
ko

These are solutions of system (43).

1

4. Conclusion

In symmetry analysis of differential equations, integrability is
an important part of the analysis. In the literature different
approaches have been constructed by employing admitted
symmetries of differential equations. The classical approach
of reductions is not valid in usual way for systems of ordinary
differential equations as used for scalar ordinary differential
equations (see, e.g., [5, 6,12]). In this research work, our focus
is on systems of three kth-order (k > 2) ordinary differential
equations that admit three-dimensional Lie algebras.

By utilizing the approach developed by Ayub et al. in
[8, 9, 13], the bases of differential invariants for system
of three 2nd-order ODEs admitting three-dimensional Lie
algebras which are constructed. This is Lie algebraic approach
with special type of invariant representation, obtained by
exploiting the interrelationships of the invariants. Moreover
canonical forms associated with these invariants for system
of three 2nd-order ODEs are obtained and listed in Table 1.
Furthermore singularity in invariant structures has also been
investigated. In addition an algorithm for construction of
systems of three kth-order (k > 2) ordinary differential
equations possessing three-dimensional Lie algebras is pro-
vided. Integrability of canonical forms presented in Table 1
is investigated in detailed manner. Illustrative examples from
mechanics of system of particles are presented to explain
the integrability of canonical forms. This classification will
provide a framework for classification of system of three 2nd-
order ODEs admitting higher dimensional Lie algebras.

Remarks 12. (i) For Table 1 notations are mentioned in
Section 2.1 whereas f, g, h, k,and ¢ are arbitrary functions.

(ii) Both of algebras A§,1 and A13,8 possess the same set of
invariants plugging with a single equation (are not associated
with systems of three 2nd-order ODEs); the canonical forms
are not obtained for them. For example A§,1 corresponds
to the following invariants u = x, v = y, dv/du =
y/x, dvjdu* = —5&)’//9&3 + y/xz and the related single
equation, namely, —56')'//563 + y/xz = g(u,v,dv/du). The
invariant representations of these cases are not listed in
Table 1.

(iii) The algebras Az,l and Az,s possess singular invari-
ants structure.
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