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Abstract: We study a class of arrangements of lines with multiplicities on the plane
which admit the Chalykh–Veselov Baker–Akhiezer function. These arrangements are
obtained by adding multiplicity one lines in an invariant way to any dihedral arrangement
with invariant multiplicities. We describe all the Baker–Akhiezer arrangements when
at most one line has multiplicity higher than 1. We study associated algebras of quasi-
invariants which are isomorphic to the commutative algebras of quantum integrals for the
generalized Calogero–Moser operators. We compute the Hilbert series of these algebras
and we conclude that the algebras are Gorenstein. We also show that there are no other
arrangements with Gorenstein algebras of quasi-invariants when at most one line has
multiplicity bigger than 1.

1. Introduction

The notion of a multi-dimensional Baker–Akhiezer (BA) function was introduced by
Chalykh and Veselov in [1] in connection with quantum Calogero–Moser systems. In
that context, the BA function is a special common eigenfunction of the Calogero–Moser
operator and its quantum integrals. Chalykh, Styrkas, Veselov, and one of the authors
studied the BA functions associated with finite sets of vectors in C

N taken with integer
multiplicities [2,3]. Besides the relevance to quantum integrable systems of Calogero–
Moser type, it was established in [3] that the BA functions are closely related to the
Huygens’ Principle in the Hadamard sense (see also [4,5]).

Let us recall the construction of [2] in more detail. Let A be a finite set of non-
collinear vectors αi ∈ C

N , 0 ≤ i ≤ n, for some n ∈ N. Let m : A → N be the
multiplicity function. Let mi = m(αi ). For λ = (λ1, . . . , λN ) and x = (x1, . . . , xN ) let
(λ, x) = ∑N

i=1 λi xi be the standard inner product in C
N .

Definition 1.1. A function φ(λ, x), λ, x ∈ C
N is called the Baker–Akhiezer function as-

sociated with the configuration A = (A,m) if the following two conditions are fulfilled:
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• φ(λ, x) has the form

φ(λ, x) = P(λ, x)e(λ,x),

where P(λ, x) is a polynomial in λ and x with the highest term
∏
αi ∈A(αi , λ)

mi

(αi , x)mi ;
• For all αi ∈ A

∂2s−1
αi

φ(λ, x)|�i = 0,

where 1 ≤ s ≤ mi , �i is the hyperplane (αi , x) = 0, and ∂αi = (αi ,
∂
∂x ) is the

normal derivative for this hyperplane.

The following conditions provide an effective way to check if the BA function exists.

Theorem 1.2. [2,3] The Baker–Akhiezer function exists for a configuration A if and
only if for any α j ∈ A the following two sets of conditions hold

n∑

i=0, i �= j

mi (α j , αi )
2k−1

(x, αi )2k−1

∣
∣
∣
∣
� j

= 0, (α j (k))

n∑

i=0, i �= j

mi (mi + 1)(αi , αi )(α j , αi )
2k−1

(αi , x)2k+1

∣
∣
∣
∣
� j

= 0, (α̃ j (k))

where 1 ≤ k ≤ m j .

The BA function exists for very special configurations only. Chalykh et al. showed that
it exists in the Coxeter case that is for A = R+ a positive half of a Coxeter root system R
and for the multiplicity function being invariant under the corresponding Coxeter group
W [2] (see also [1]). Furthermore if all the multiplicities are equal then there are no
other cases [2]. The only non-Coxeter examples for which φ is known to exist are the
deformed root systems AN (m) and CN (m, l), which were found by Chalykh, Veselov
and one of the authors [6,7]. These configurations can be viewed as deformations of the
positive halves of the classical root systems AN and CN .

In the paper [3] Chalykh, Veselov and one of the authors introduced function ψ by
modifying the axiomatics of the Baker–Akhiezer function. The idea was to make the
axiomatics less restrictive in order to obtain a richer class of algebraically integrable
Schrödinger operators of Calogero–Moser type. It was shown that if the BA function φ
exists, then so too does ψ and φ = ψ , although the converse is not true. The equations
(α̃ j (k)) are both necessary and sufficient for the existence of ψ [3].

A direct description of all configurations admitting the BA functions or those satis-
fying weaker restrictions (α̃ j (k)) (so called locus configurations) is not obtained yet in
general. On the plane a description of all the locus configurations follows with the use of
[3] from the results of Berest and Lutsenko [5,8] who found all two-dimensional opera-
tors which solve a restricted Hadamard’s problem. Muller investigated the existence of
planar locus configurations in more detail and showed that for any ‘coarsely symmetric’
collection of multiplicities there exists a unique real locus configuration [9].

In this paper we study a class of planar locus configurations which admit the BA
function. We show that all of Muller’s real locus configurations with coarsely symmet-
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ric multiplicities admit the BA functions, and we describe these configurations. Conjec-
turally, this provides all the planar locus configurations admitting the BA functions. We
also study the rings of quantum integrals of the associated operators of Calogero–Moser
type. We show that these rings have nice algebraic properties that do not hold in case of
general locus configurations. Another nice feature of this subclass of planar locus con-
figurations is explored in [10] where the integrals of Macdonald–Mehta type associated
with these configurations are explicitly computed.

Recall the observation of [1] that the algebras of quantum integrals for the Calogero–
Moser systems become larger at the special values of coupling parameters. In the case
of the Calogero–Moser system associated to a Coxeter group W this algebra extends the
algebra of W -invariant polynomials C[x1, . . . , xN ]W which is isomorphic to the algebra
of quantum integrals at generic parameters.

Definition 1.3 (cf. [2,11]). A polynomial p ∈ C[x1, . . . , xN ] is called quasi-invariant
with respect to A = (A,m) if for all αi ∈ A and 1 ≤ s ≤ mi one has ∂2s−1

αi
p|�i = 0.

These polynomials form an algebra QA. The relation of the algebra QA to the BA
function φ and integrability of the corresponding generalized Calogero–Moser system
is clarified by the following result.

Theorem 1.4. [1,2] If the Baker–Akhiezer function φ(λ, x) exists then for any polyno-
mial f ∈ QA there exists a differential operator L f = L f (x,

∂
∂x ) such that

L f φ(λ, x) = f (λ)φ(λ, x).

These operators form a commutative algebra isomorphic to QA. The operator

L = �−
∑

αi ∈A

2mi

(αi , x)
∂αi (1.5)

corresponds to f (λ) = λ2.

In the Coxeter case the algebra of quasi-invariants QR is isomorphic to the max-
imal commutative algebra containing all W -invariant quantum integrals L f for the
corresponding generalized Calogero–Moser operator in the potential free gauge (1.5)
[11]. The algebras QR also have good algebraic structure, namely they are Gorenstein.
In the two-dimensional case this was established by Veselov and one of the authors
in [11] where the Hilbert series of QR for any dihedral configuration R with con-
stant multiplicity function was computed. For the general Coxeter case the Gorenstein
property of QR was established by Etingof and Ginzburg in [12]. Using results of
Felder and Veselov [13], the work [12] also led to the calculation of the Hilbert series
of QR.

Although the algebras QA do not in general have the nice algebraic properties evident
in the Coxeter case there exist interesting examples for which these properties do ap-
pear. In [14] it was shown that the rings QA corresponding to the configurations AN (m)
and CN (m, l) are Cohen–Macaulay. Veselov and one of the authors also calculated the
Hilbert series for the quasi-invariants corresponding to the two-dimensional configura-
tions A2(m) and C2(m, l) and found that the corresponding algebras are Gorenstein.
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In the present paper we compute the Hilbert series of the algebras of quasi-invariants
for all the two-dimensional configurations admitting the BA functions when at most one
multiplicity is bigger than 1. It appears that the algebras are Gorenstein. We explore
this property further by trying to capture integrable generalizations of Calogero–Moser
systems by studying the algebras of quasi-invariants of the corresponding configura-
tions. It was noted by Etingof and Ginzburg in [12] that configurations with Goren-
stein quasi-invariants are exceptional: in the case of two lines with multiplicities 1 the
lines have to be orthogonal. We describe all configurations on the plane with Goren-
stein algebras of quasi-invariants when at most one multiplicity is bigger than 1. We
show that there exists a unique such configuration for any number of lines and for
an arbitrary multiplicity. Remarkably, this brings us back to the configurations ap-
pearing in the beginning of this paper, that is, all such configurations admit the BA
function.

The structure of the paper is as follows. In Sect. 2 we study the class of configurations
in C

2 which admit the BA functions and which have type (m, 1n), that is, n vectors have
multiplicity 1 and one vector has multiplicity m ≥ 1. We show that there exists a
configuration of this type for any number of vectors n + 1 and for any multiplicity m
and that it is unique and real. This configuration is denoted A(m,1n), it is introduced in
Definition 2.11. We firstly show in Theorem 2.5 that the conditions (α j (k)) uniquely
fix the configuration and then we verify in Proposition 2.13 that the locus conditions
(α̃ j (k)) also hold.

In Sect. 3 we construct further planar configurations admitting the BA functions.
Firstly, we introduce a configuration A(m,m̃,1n). It consists of pairwise non-collinear
vectors α0, . . . , αn+1 ∈ R

2 with the multiplicities m0 = m,mn+1 = m̃, and mi = 1 for
i = 1, . . . , n. We show in Theorem 3.4 that A(m,m̃,1n) admits the BA function. Then for
any q ∈ N we introduce configurations Aq

(m,m̃,1n)
which also admit the BA functions

(Corollary 3.10). The corresponding lines form dihedral arrangement with 2q lines with
multiplicities m, m̃ and n/2 dihedral orbits of multiplicity 1. We conclude the section
by relating our results to the considerations in [9].

In Sect. 4 we construct Darboux–Crum transformations which relate the Sturm–
Liouville operators associated with the configuration Aq

(m,m̃,1n)
with the operator with

trivial potential. Using results of Berest et al. [16] this leads to the explicit formulas for
the Baker–Akhiezer functions for the configurations Aq

(m,m̃,1n)
.

In the remainder of the paper we turn our attention to the algebras of quasi-invariants
QA, where A has type (m, 1n). We start with the preliminary analysis of the quasi-
invariant conditions in Sect. 5, where we find partial information on the Hilbert series. In
Sect. 6 we study quasi-invariant conditions in more detail. Most of the analysis is relevant
to the configuration A(m,1n). Thus we determine the values of the symmetric polynomials
in the coordinates of the configuration vectors, these values fix the configuration A(m,1n).
Further, in Proposition 6.18 we establish that all the configurations of type (m, 1n) have
the same dimension of the space of homogeneous quasi-invariants of degree 2(m +n−1)
except for the configuration A(m,1n). The main result of this section is Theorem 6.31,
which gives the Hilbert series of the algebra of quasi-invariants QA(m,1n )

. An immediate
corollary is the fact that the algebra is Gorenstein.

The main result of Sect. 7 is the statement that there are no other configurations of
type (m, 1n) with Gorenstein quasi-invariants except the configuration A(m,1n). This is
achieved by further study and analysis of possible Hilbert series and by making further
use of Proposition 6.18.
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2. Baker–Akhiezer Configurations of Type (m, 1n)

We will work in dimension N = 2. It is convenient to make some use of polar coordinates.
The identities from Theorem 1.2 are rearranged as follows.

Lemma 2.1. Consider the non-collinear vectorsα0, α1, α2, . . . , αn ∈ C
2. Let us assume

that (αs, αs) = 1 for all s = 0, . . . , n, and let αs = (cosϕs, sin ϕs) for some ϕs . Put
zs = e2iϕs . Then for 1 ≤ k ≤ m j the condition (α j (k)) is equivalent to

n∑

i=0
i �= j

mi (zi + z j )
2k−1

(zi − z j )2k−1 = 0, (z j (k))

and the condition (α̃ j (k)) is equivalent to

n∑

i=0
i �= j

mi (mi + 1)zi (zi + z j )
2k−1

(zi − z j )2k+1 = 0. (z̃ j (k))

Proof. We consider the identity (α̃ j (k)), the identity (α j (k)) is similar. Since (α j , x) = 0
we take x = (− sin ϕ j , cosϕ j ). Then relation (α̃ j (k)) takes the form

n∑

i=0
i �= j

mi (mi + 1)(cosϕi cosϕ j + sin ϕi sin ϕ j )
2k−1

(− cosϕ j sin ϕi + cosϕi sin ϕ j )2k+1 = 0,

or, equivalently,

n∑

i=0
i �= j

mi (mi + 1)
cos2k−1(ϕ j − ϕi )

sin2k+1(ϕ j − ϕi )
= 0.

The latter relation takes the form (z̃ j (k)) upon expressing trigonometric functions
through the exponents. ��

We say that a configuration A has type (m, 1n) if A consists of n + 1 pairwise non-
collinear vectors α0, α1, . . . , αn ∈ C

2 with the respective multiplicities m0 = m ∈ N,
mi = 1 for all i = 1, . . . , n. We are going to study configurations which admit the
BA functions. It is easy to see that if A admits the BA function then so does any other
configuration obtained by applying an orthogonal transformation to A. Furthermore,
vectors from A may be multiplied by scalars preserving the existence of the BA function.
We call configurations obtained this way equivalent. We assume throughout the paper
that all the vectors in the configurations we consider are non-isotropic: (αi , αi ) �= 0.
First we prove the following.

Proposition 2.2. Let A be a configuration of non-collinear vectors α0, α1, . . . , αn ∈ C
2

with corresponding multiplicities m0 = m ∈ R, m j = 1 for j = 1, . . . , n. Let z j be
defined as in Lemma 2.1. Consider the polynomial P(w) = ∏n

j=1(w − z j ). Then A
satisfies the identities (z j (1)) for all j = 1, . . . , n if and only if P = P(w) satisfies the
second order differential equation

w(w − z0)P
′′ − ((n − 1)(w − z0)− m(w + z0))P

′ − mn P = 0. (2.3)
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Proof. We have P ′(z1) = ∏n
j=2(z1 − z j ) and

P ′′(z1)

P ′(z1)
=

n∑

j=2

2

z1 − z j
.

The relation (z1(1)) has the form

n∑

j=2

z1 + z j

z1 − z j
+

m(z1 + z0)

z1 − z0
= 0,

which can be rearranged as

z1
P ′′(z1)

P ′(z1)
+

m(z1 + z0)

z1 − z0
= n − 1.

Equivalently,

(w − z0)wP ′′(w) + (m(w + z0)− (n − 1)(w − z0))P
′(w) = 0 (2.4)

ifw = z1. Similarly for any j = 1, . . . , n the left-hand side of (2.4) vanishes atw = z j if
and only if (z j (1)) holds. Since the left-hand side of (2.4) is a polynomial inw of degree
n the collection of conditions (z j (1)) for j = 1, . . . , n is equivalent to the differential
equation (2.3) as stated. ��
Theorem 2.5. Let A be a configuration of type (m, 1n). Let ϕ j , z j be same as in
Lemma 2.1, and suppose that the conditions (z j (1)) hold for all j = 0, . . . , n. Let
ek be the k-th elementary symmetric polynomial in the variables z1, . . . , zn. Then

ek = (−1)k
∏k

j=1(m + j − 1)(n − j + 1)zk
0

k! ∏k
j=1(m + n − j)

= (−1)k
(n

k

)(m+k−1
k

)
zk

0
(m+n−1

k

) (2.6)

for any k = 1, . . . , n.

Proof. Let

P(w) =
n∏

k=1

(w − zk) =
n∑

k=0

(−1)n−ken−kw
k,

where e0 = 1. The polynomial P(w) satisfies the differential equation (2.3). By consid-
ering terms of degree n − 1 we get e1 = −mnz0/(m + n − 1) as required. We also have
the following recurrence relation

z0(k + 1)(n + m − k − 1)en−k−1 + (n − k)(m + k)en−k = 0 (2.7)

for any k = 0, . . . , n − 2. These relations uniquely determine all the elementary sym-
metric polynomials ek , k = 1, . . . , n. It is easy to see that the values (2.6) satisfy (2.7).
Hence the statement follows. ��

Theorem 2.5 has the following corollary.
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Proposition 2.8. There exists at most one up to equivalence configuration of type (m, 1n)

which satisfies identities (z j (1)) for all j = 0, . . . , n. The corresponding arrangement
of lines is symmetric with respect to the line of multiplicity m.

Proof. Let us fix the vector of multiplicity m by requiring z0 = 1. Then the symmetric
combinations ek of the coordinates z j of the vectors of multiplicities 1 are all determined
by Theorem 2.5. This fixes the configuration. Let

P(z) =
n∏

i=1

(z − zi ) =
n∑

i=0

(−1)i ei z
n−i =

n∑

i=0

(−1)i ei z
n−2i
0 zi ,

where we used the symmetry

ei = (−1)nz2i−n
0 en−i , 1 ≤ i ≤ n, (2.9)

which can be easily seen from the formulas (2.6). It follows that if z = zi is a solution
to P(z) = 0 then z = z2

0z−1
i is another solution, so the configuration is symmetric. ��

In order to establish the existence of the configuration described in Theorem 2.5,
one has to prove that the corresponding values of elementary symmetric polynomials
ek define a point in C

n/Sn which is not in the discriminant set. Rather than showing
this directly we are going to explain that for any multiplicities m0, . . . ,mn there exists
a (unique) real configuration A satisfying identities (z j (1)) for all j = 0, . . . , n.

Theorem 2.10. Let A be a configuration of vectors α0, . . . , αn ∈ R
2 with the cor-

responding multiplicities m0, . . . ,mn ∈ R+. Let ϕ j ∈ [0, π) be such that α j =
(cosϕ j , sin ϕ j ). Suppose that 0 = ϕ0 < ϕ1 < · · · < ϕn < π . Then for any choice
of the multiplicities m0, . . . ,mn there exists a unique configuration A which satisfies
the relations (α j (1)) for all j = 0, . . . , n.

Proof. We follow closely the proof of a similar statement established in [9, Theorem 6.4].
Let

F(ψ1, . . . , ψn) =
n∑

i, j=0
i< j

mi m j f (ψ j − ψi ),

where f (x) = log sin x and ψ0 = 0. Then the collection of identities (α j (1)), j =
0, . . . , n, is equivalent to the property that F has a critical point at ψ j = ϕ j .

One can show that in the region 0 = ψ0 < ψ1 < · · · < ψn < π the function F has a
unique critical point. This uses convexity of the function f (x) and the behaviour at the
boundaries encoded by f (x) → −∞, as x → 0+ or x → π−. This is in full analogy
with the case of [9] where f (x) = 1/ sin2 x was considered. ��

Now we are ready to introduce a particular configuration A.

Definition 2.11. Let A be a collection of vectors α0, α1, . . . , αn ∈ C
2 with multiplicities

m0 = m ∈ Z+, mi = 1 for 1 ≤ i ≤ n. Suppose that α0 = (1, 0). Let zi be the same as in
Lemma 2.1, and denote by ei the i-th elementary symmetric polynomial in the variables
zi , 1 ≤ i ≤ n. We say that A is the A(m,1n) configuration if

ei = (−1)i
(

n

i

)(
m + i − 1

i

)(
m + n − 1

i

)−1

for 1 ≤ i ≤ n.
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It follows from Theorems 2.5, 2.10 that the configuration A(m,1n) consists of n + 1
pairwise non-collinear real vectors, and the corresponding arrangement of lines is sym-
metric with respect to the vector α0. The latter property can be rephrased as zi zn−i+1 = 1
for 1 ≤ i ≤ n where the vectors with multiplicity 1 are ordered appropriately. In the
case m = 1 the vectors α0, . . . , αn are the normal vectors of the dihedral arrangement
of n + 1 lines in R

2.
It appears that the configuration A(m,1n) admits the BA function.

Theorem 2.12. A configuration A of type (m, 1n) admits the BA function if and only if
A is equivalent to the configuration A(m,1n).

It follows from Theorem 2.5 and its proof that a configuration A of type (m, 1n)

satisfies the identities (α j (1)) for all j = 0, . . . , n if and only if A is equivalent to
the configuration A(m,1n). Since the configuration A(m,1n) is symmetric the identities
(α̃0(k)), k = 1, . . . ,m are satisfied. Thus Theorem 2.12 is reduced to the following
statement.

Proposition 2.13. Suppose a configuration A of type (m, 1n) satisfies the identities
(α j (1)) for all j = 0, . . . , n. Then A satisfies the identities (α̃ j (1)) for all j = 0, . . . , n.

Before proving this proposition we analyze the identities (z̃ j (1)).

Lemma 2.14. Suppose a configuration A of type (m, 1n) satisfies the condition (z1(1)).
Then the relation (z̃1(1)) can be rearranged as

(
2m(m + 1)z0z1(z0 + z1) + 2(z1 − z0)

2γ − 3(z1 − z0)γ
2 + γ 3

)
P ′(z1)

+ 2z2
1(z1 − z0)

2 (2(z1 − z0)− γ ) P(3)(z1) + z3
1(z1 − z0)

3 P(4)(z1) = 0, (2.15)

where P(z) = ∏n
j=1(z − z j ), and γ = (n − 1)(z1 − z0)− m(z1 + z0).

Proof. Firstly we use the identity

n∑

i=2

(z1 + zi )zi

(z1 − zi )3
= −3z1

n∑

i=2

1

(z1 − zi )2
+ 2z2

1

n∑

i=2

1

(z1 − zi )3
+

n∑

i=2

1

z1 − zi
(2.16)

to rearrange the condition (z̃1(1)) into

m(m + 1)(z1 + z0)z0

2(z1 − z0)3
+ f (z1) + 3z1 f

′
(z1) + z2

1 f
′′
(z1) = 0, (2.17)

where we introduced

f (z) =
n∑

i=2

1

z − zi
= P

′
(z)

P(z)
− 1

z − z1
.

Note that due to the identity (z1(1)) one has

m
z1 + z0

z1 − z0
+

n∑

i=2

z1 + zi

z1 − zi
= m

z1 + z0

z1 − z0
+ 2z1 f (z1)− (n − 1) = 0,
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hence

f (z1) = P ′′(z1)

2P ′(z1)
= 1

2z1

(

n − 1 − m(z1 + z0)

z1 − z0

)

= γ

2z1(z1 − z0)
. (2.18)

Now we express f
′
(z1) and f

′′
(z1) in terms of P by considering the Taylor expansion

of f (z) at z = z1. Put ε = z − z1. We have

f (z) = P
′
(z)(z − z1)− P(z)

P(z)(z − z1)
=

1
2 P(2)(z1) + 1

3 P(3)(z1)ε + 1
8 P(4)(z1)ε

2 + O(ε3)

P ′
(z1) + 1

2 P(2)(z1)ε + 1
6 P(3)(z1)ε2 + O(ε3)

= 1

P ′
(z1)

(
1

2
P(2)(z1) +

1

3
P(3)(z1)ε +

1

8
P(4)(z1)ε

2 + O(ε3)

)

×
(

1 − P(2)(z1)

2P ′
(z1)

ε − P(3)(z1)

6P ′
(z1)

ε2 + (
P(2)(z1)

2P ′
(z1)

)2ε2 + O(ε3)

)

= P(2)(z1)

2P ′
(z1)

+
1

P ′
(z1)

(
P(3)(z1)

3
− P(2)(z1)

2

4P ′
(z1)

)

ε +
1

P ′
(z1)

(
1

8
P(4)(z1)

− P(3)(z1)P(2)(z1)

6P ′
(z1)

+
1

4
P(2)(z1)

(
P(2)(z1)

2

2P ′
(z1)2

− P(3)(z1)

3P ′
(z1)

))

ε2 + O(ε3).

Thus we have the identities

f
′
(z1) = 1

P ′
(z1)

(
P(3)(z1)

3
− P(2)(z1)

2

4P ′
(z1)

)

, (2.19)

f
′′
(z1) = 1

P ′
(z1)

(
P(4)(z1)

4
− P(3)(z1)P(2)(z1)

2P ′
(z1)

+
P(2)(z1)

3

4P ′(z1)2

)

. (2.20)

Now we substitute expressions (2.18), (2.19), (2.20) into (2.17). We get

m(m + 1)z0z1(z1 + z0) + (z1 − z0)
2γ + 2z2

1(z1 − z0)
3

(
P(3)(z1)

P ′
(z1)

− 3 f (z1)
2

)

+ z3
1(z1 − z0)

3

(
P(4)(z1)

2P ′
(z1)

− 2P(3)(z1)

P ′(z1)
f (z1) + 4 f (z1)

3

)

= 0.

By substituting the equality f (z1) = γ /(2z1(z1 − z0))we arrive at the required relation.
��

We are now ready to establish Proposition 2.13.

Proof. By differentiating the equation (2.3) we get the following two differential equa-
tions for P(w):

w(w − z0)P
(3) − ((n − 2)(w − z0)− m(w + z0)− w)P ′′

−(mn − m + n − 1)P ′ = 0, (2.21)

w(w − z0)P
(4) − ((n − 3)(w − z0)− m(w + z0)− 2w)P(3)

−(mn − 2m + 2n − 4)P ′′ = 0. (2.22)
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We use equations (2.3), (2.21), (2.22) to rearrange the left-hand side of (2.15). We have

2z2
1(z1 − z0)

2 (2(z1 − z0)− γ ) P(3)(z1) + z3
1(z1 − z0)

3 P(4)(z1) = a P ′(z1) + bP(z1),

where a, b are polynomials in z1, z0 with

a = ((γ − 2z1 + z0)γ + (mn − m + n − 1)z1(z1 − z0)) (−γ − 2z0)

+z1(z1 − z0)(mn − 2m + 2n − 4)γ.

Since P(z1) = 0 and

a +
(

2m(m + 1)z0z1(z0 + z1) + 2(z1 − z0)
2γ − 3(z1 − z0)γ

2 + γ 3
)

= 0

the Proposition follows. ��

3. Planar Arrangements with Dihedral Symmetry

We start by fixing a particular configuration. It consists of pairwise non-collinear vec-
tors α0, . . . , αn+1 ∈ R

2 with the multiplicities m0 = m,mn+1 = m̃, and mi = 1 for
i = 1, . . . , n. We require that the vectors α0 and αn+1 are orthogonal and that the cor-
responding arrangement of lines is symmetric with respect to reflection about α0, so in
particular n is even. Let us also require that the conditions (z j (1)) are satisfied for all
j = 1, . . . , n. Indeed, it follows by the arguments of Theorem 2.10 and [9] that there
exists a configuration with these properties, and moreover it is unique up to equivalence.
We denote it by A(m,m̃,1n).

Our further arguments are also close to the ones used in Sect. 2. We use the iden-
tities (z j (k)) to find symmetric combinations of the coordinates determining αi (i =
1, . . . , n), and we show that the conditions (z j (k)) imply the locus conditions (z̃ j (k)).
This leads to the existence of the BA function for the configuration A(m,m̃,1n).

Proposition 3.1. Let z j be defined for the configuration A(m,m̃,1n) in the same way as
in Lemma 2.1. Consider the corresponding polynomial P(w) = ∏n

j=1(w − z j ). Then
P(w) satisfies the second order differential equation

w(w2 − z2
0)P

′′ −
(
(n − 1)(w2 − z2

0)− m(w + z0)
2 − m̃(w − z0)

2
)

P ′

= (n(m + m̃)w + n(m − m̃)z0) P. (3.2)

Further, the elementary symmetric polynomials ek = ek(z1, . . . , zn) satisfy the recur-
rence relations

(m + m̃ + k − 1)(k − n − 1)en−k+1 + (n − 2k)(m − m̃)z0en−k

+(m + m̃ + n − k − 1)(k + 1)z2
0en−k−1 = 0

for k = 1, . . . , n − 1 with en = zn
0, en−1 = zn−1

0
(m−m̃)n

n+m+m̃−1 .
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Proof. We have zn+1 = −z0. Then the conditions (z1( j)) take the form

w(w2 − z2
0)P

′′ − ((n − 1)(w2 − z2
0)− m(w + z0)

2 − m̃(w − z0)
2))P ′ = 0 (3.3)

if w = z j for any j = 1, . . . , n. It follows that the polynomial in the left-hand side of
(3.3) equals (βz + γ )P(z) with β = n(m + m̃) and γ ∈ C. By considering terms of
degrees 0 and n we get the equations

en−1z2
0(n + m + m̃ − 1) + γ en = 0, e1(n + m + m̃ − 1) + 2(m − m̃)nz0 = γ.

Using the symmetry en−1 = e1zn−2
0 , en = zn

0 we derive γ = (m − m̃)nz0 and en−1 =
zn−1

0
(m̃−m)n

n+m+m̃−1 as required. The recurrence relation also follows. ��
Theorem 3.4. There exists the BA function for the configuration A(m,m̃,1n).

Proof. In a similar fashion to the proof of Lemma 2.14, the condition (z1(1)) takes the
form

z2
1 P(4)(z1) + 4z1(1 − z1 f )P(3)(z1) + 2z1(2z1 f − 3) f P(2)(z1)

+

(

4 f + 2z0
m(m + 1)(z1 + z0)

4 − m̃(m̃ + 1)(z1 − z0)
4

(z2
1 − z2

0)
3

)

P ′(z1) = 0, (3.5)

where

f = (n − 1)(z2
1 − z2

0)− m(z1 + z0)
2 − m̃(z1 − z0)

2

2z1(z2
1 − z2

0)
.

On the other hand by differentiating (3.2) we get

z1(z
2
1 − z2

0)P
(3)(z1) +

(
3z2

1 − z2
0 − (n − 1)(z2

1 − z2
0) + m(z1 + z0)

2

+ m̃(z1 − z0)
2
)

P(2)(z1)− ((2(n − 1) + (n − 2)(m + m̃))z1

+ (n − 2)(m − m̃)z0) P ′(z1) = n(m + m̃)P(z1), (3.6)

and

z1(z
2
1 − z2

0)P
(4)(z1) +

(
2(3z2

1 − z2
0)− (n − 1)(z2

1 − z2
0) + m(z1 + z0)

2

+ m̃(z1 − z0)
2
)

P(3)(z1) + ((10 − 4n + (4 − n)(m + m̃))z1

+ (4 − n)(m − m̃)z0) P(2)(z1)− 2(n − 1)(m + m̃ + 1)P ′(z1) = 0 (3.7)

Using Eqs. (3.2), (3.6), (3.7) we can express each of P(4)(z1), P(3)(z1), and P(2)(z1) as a
linear combination of P ′(z1) and P(z1). One can check that after the substitution of these
expressions into the relation (3.5) the term with P ′(z1) cancels, hence the locus condition
(3.5) is satisfied. In the same way all the conditions (z j (1)) hold for j = 1, . . . , n. Due
to the symmetry of the configuration A(m,m̃,1n) all the conditions (α j (k)), (α̃ j (k)) are
satisfied so the BA function exists by Theorem 1.2. ��
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In the special case m̃ = 0 or m̃ = 1 the configuration A(m,m̃,1n) is reduced to the
configuration A(m,1n) and A(m,1n+1) respectively. Now we are going to generate further
configurations with Baker–Akhiezer functions. Let A be a configuration of vectors in C

2

with the multiplicity function m. For any vector αi ∈ A let αi = (cosϕi , sin ϕi ) for some
ϕi ∈ C. For any positive integer q we define a new configuration Tq(A). The number
of vectors in Â = Tq(A) is q times the number of vectors in A. For each vector αi ∈ A
we define new vectors αi,s ∈ Â, where s = 1, . . . , q. Let ϕi,s = ϕi + πs/q. Define
αi,s = (cosϕi,s, sin ϕi,s). The multiplicity function on Â is defined by m(αi,s) = m(αi ).
The importance of the operation Tq is explained by the following proposition.

Proposition 3.8. Let A admit the BA function. Then Â = Tq(A) also admits the BA
function for any q ∈ Z≥1.

Proof. Let us consider equalities (α j (k)) for the configuration A. They are equivalent
to the collection of the equalities

∂2k−1
ϕ

(
v(ϕ)− m j log sin(ϕ − ϕ j )

) |ϕ=ϕ j = 0, (3.9)

where v(ϕ) = log
∏

αi ∈A
i �= j

sin(ϕ − ϕi )
mi and k = 1, . . . ,m j . This implies that

∂2k−1
ϕ

(
v(qϕ)− m j log sin(qϕ − ϕ j )

) |ϕ=ϕ j,s = 0

for s = 1, . . . , q. Notice that

sin(qϕ − ϕi ) = 2q−1
q∏

s=1

sin(ϕ − ϕi,s),

and that
∑q

s=2 cot(ϕ− ϕ j,s) is invariant under the transformation ϕ → −ϕ + 2ϕ j,1 (the
symmetry about ϕ j,1). It follows that

∂2k−1
ϕ

⎛

⎜
⎝log

q∏

t=1
αi ∈A,i �= j

sin(ϕ − ϕi,t )
mi − mi log sin(ϕ − ϕ j,s)

⎞

⎟
⎠ |ϕ=ϕ j,s = 0,

which means that equalities (α j (k)) for the configuration Â hold. Similarly the equalities
(α̃ j (k)) hold and hence the statement follows by Theorem 1.2. ��

Fix q ∈ Z≥1 and define Aq
(m,m̃,1n)

= Tq(A(m,m̃,1n)).

Corollary 3.10. The configuration Aq
(m,m̃,1n)

admits the BA functions. The collection of
lines of the corresponding arrangement forms the set of mirrors of the dihedral group
I2(2q) together with n/2 I2(2q)-orbits where all the multiplicities are 1.

We conclude this section by relating our results to the analysis in [9]. Suppose vectors
α0, . . . , αn+1 ∈ R

2 are such that the associated angles ϕ j satisfy 0 ≤ ϕ0 < · · · < ϕn+1 <

π . The set of corresponding multiplicities m j is said to be coarsely symmetric if for any
m j > 1 one has m j+i = m j−i for any i ∈ Z where we define m j+(n+2)r = m j for
any r ∈ Z [9]. Muller showed in [9] that for any collection of coarsely symmetric
multiplicities there exists a unique up to rotation the corresponding real arrangement
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of lines such that the normal vectors α j satisfy the conditions (α̃ j (k)) so form a locus
configuration. It is also shown in [9] that the corresponding arrangement of lines is
invariant under reflections about the lines of multiplicity higher than 1 which form a
dihedral arrangement.

Our configurations Aq
(m,m̃,1n)

provide examples of such arrangements with coarsely
symmetric multiplicities. Furthermore, it is easy to see that the corresponding multi-
plicities exhaust all possible collections of coarsely symmetric multiplicities. Therefore
Aq
(m,m̃,1n)

are up to equivalence all the real arrangements on the plane which satisfy
the locus conditions (α̃ j (k)) with coarsely symmetric multiplicities. The results of this
section show that these configurations also admit the BA function that is they also satisfy
identities (α j (k)).

4. Darboux Transformations

In this section we construct specific Darboux–Crum transformation which relates the
Sturm–Liouville operator associated with the configuration Aq

(m,m̃,1n)
with the operator

with trivial potential.
Define Q(w) = P(w)w− n

2 , where P(w) = ∏n
j=1(w − z j ) satisfies the differential

equation (3.2). Then Q = Q(w) satisfies the differential equation

w(w2 − z2
0)Qww +

(
(w2 − z2

0) + (w − z0)
2m̃ + (w + z0)

2m
)

Qw

−n

2

(
m + m̃ +

n

2

) w2 − z2
0

w
Q = 0.

Let now w = e2iϕ so that

∂w = − i

2w
∂ϕ, ∂2

w = − 1

4w2 ∂
2
ϕ +

i

2w2 ∂ϕ.

Put z0 = 1. Then as a function of ϕ, Q satisfies the differential equation

Qϕϕ + 2(m cot ϕ − m̃ tan ϕ)Qϕ + n(2(m + m̃) + n)Q = 0. (4.1)

Note also that

Q =
⎛

⎝
n∏

j=1

(e2iϕ − e2iϕ j )

⎞

⎠ e−inϕ = ε(2i)n
n∏

j=1

sin(ϕ − ϕ j ),

where ε = ei
∑n

j=1 ϕ j . Define Q̃ = (cosϕ)m̃(sin ϕ)m Q. It follows from (4.1) that Q̃
satisfies the differential equation

Lm,m̃ Q̃ = (n + m + m̃)2 Q̃, (4.2)

where

Lm,m̃ = −∂2
ϕ +

m(m − 1)

sin2 ϕ
+

m̃(m̃ − 1)

cos2 ϕ
. (4.3)

Let us apply Darboux transformation to the operator Lm,m̃ at the level (n + m + m̃)2

with the help of function Q̃. That is we represent Lm,m̃ − (n + m + m̃)2 = A∗ A where
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A = ∂ϕ−Q̃ϕ/Q̃, A∗ = −∂ϕ−Q̃ϕ/Q̃ and we define new operator L = AA∗+(n+m+m̃)2.
Then

L = −∂2
ϕ +

m(m + 1)

sin2 ϕ
+

m̃(m̃ + 1)

cos2 ϕ
+

n∑

j=1

2

sin2(ϕ − ϕ j )
. (4.4)

The operator L has singularities on the lines of the configuration A(m,m̃,1n) (at z0 = 1)
rotated byπ/2. If m̃ = 0 then the singularities are on the lines of the rotated configuration
A(m,1n) (at z0 = 1).

Theorem 4.5. Suppose m ≥ m̃ with m̃,m ∈ Z≥0. Let χ j (ϕ) = sin(k jϕ), where 1 ≤
j ≤ m, and k j = j for j = 1, . . . ,m − m̃, km−m̃+ j = m − m̃ + 2 j for j = 1, . . . , m̃ −1,
and km = m̃ + m + n. Then

L = −∂2
ϕ − 2

(
∂

∂ϕ

)2

log W [χ1, . . . , χm], (4.6)

where W is the Wronskian of the corresponding functions χ1(ϕ), . . . , χm(ϕ), and L is
given by (4.4). Further to that,

Q = ν(cosϕ)−
m̃(m̃+1)

2 (sin ϕ)−
m(m+1)

2 W [χ1, . . . , χm], (4.7)

where ν = 2− m̃(m̃+1)
2 − m(m−1)

2 (−1)
m(m−1)

2
∏m

p,q=1
p>q

(kp − kq)
−1.

Proof. It is discussed in [5] that the operator (4.3) can be obtained as a sequence of
Darboux transformations with the specified functions χ1, . . . , χm−1:

Lm,m̃ = −∂2
ϕ − 2

(
∂

∂ϕ

)2

log W [χ1, . . . , χm−1],

so that W [χ1, . . . , χm−1] = μ(sin ϕ)
m(m−1)

2 (cosϕ)
m̃(m̃−1)

2 for some constant μ.
It follows from the properties of Darboux–Crum transformations that the opera-

tor L can be expressed by the formula (4.6) where the function χm = aei(m̃+m+n)ϕ +
be−i(m̃+m+n)ϕ , and that the function Q̃ has the form Q̃ = cW [χ1, . . . , χm]/W [χ1, . . . ,

χm−1], where a, b, c are some constants. It is easy to see that Q̃ = aψ(i(m̃ +m +n), ϕ)+
bψ(−i(m̃ + m + n), ϕ) where ψ(k, ϕ) is the trigonometric Baker–Akhiezer function as-
sociated with the root system BC1 with the multiplicity m − m̃ of the short root and the
multiplicity m − 1 of the long root (unless m = 0 in which case the statement can be
verified directly) [15]. It follows from the properties of the Baker–Akhiezer functions
and the equation (4.2) that Q̃ has a pole at φ = 0 of order m − 1 unless a = −b. Thus
we have to have a = −b so χm has the required form. The value of the coefficient ν is
obtained by comparing einϕ terms in both sides of (4.7). ��

The case m < m̃ can be reduced to the case considered in Theorem 4.5 by performing
a rotation ϕ → ϕ + π

2 . Further, by replacing the Darboux parameters k j with qk j , q ∈ N

the formula (4.6) gives the angular part of the Schrödinger operator associated with the
configuration Aq

(m,m̃,1n)
. Now, the Baker–Akhiezer functions of the two-dimensional

configurations are expressed in [16] in terms of Chebyshev polynomials and Darboux
transformations data. Thus Theorem 4.5 and [16, Theorems 2,3] provide explicit expres-
sions for the Baker–Akhiezer functions for the configurations Aq

(m,m̃,1n)
.
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5. Quasi-Invariants: Preliminary Results

We now turn our attention to the algebras of quasi-invariants QA, where A has type
(m, 1n)with m, n ∈ Z≥1. In this section we get a partial information on the Hilbert series
of the algebra QA. In Sect. 6 we derive the complete Hilbert series for the algebra of
quasi-invariants for the configurationA(m,1n) and conclude that the algebra is Gorenstein.
In Sect. 7 we prove that there are no other configurations of type (m, 1n)with Gorenstein
algebras of quasi-invariants except the configuration A(m,1n).

Let us fix some notation. Let A be a finite set of non-collinear vectors β0, β1, . . . , βn
with the multiplicities m0 = m, mi = 1 for 1 ≤ i ≤ n. Let βi = (1, αi ) with αi ∈ C.
We fix β0 = (0, 1). Let QA be the corresponding algebra of quasi-invariants (see
Definition 1.3). It is clear that the algebra is graded. Define its Hilbert series

PA(t) =
∞∑

k=0

bktk, (5.1)

where bk = dim Q(k)
A , and Q(k)

A denotes the space of homogeneous polynomials of
degree k which are quasi-invariant with respect to A. It will be convenient to fix notations
for various parts of the series (5.1) as follows. Define

Pk,l
A (t) = Pk,l =

l∑

i=k

bi t
i ,

Pk,l
A,odd(t) = Pk,l

odd =
∑

k≤2i+1≤l

b2i+1t2i+1,

and
Pk,l

A,even(t) = Pk,l
even =

∑

k≤2i≤l

b2i t
2i ,

where k, l ∈ Z≥0. We will also allow l to be infinite in which case the corresponding
sums will run until infinity.

Lemma 5.2. Let k ∈ N satisfy 0 ≤ k ≤ n. Then bk = 0 if k is odd, and bk = 1 if k is
even, in the Hilbert series (5.1).

Proof. Let us first suppose that 2m ≤ k. Let q be a homogeneous polynomial of degree
k:

q =
k∑

i=0

λi xk−i yi ,

for some λi ∈ C. We know that λ1 = λ3 = · · · = λ2m−1 = 0 due to the quasi-
invariance condition for the vector β0. The quasi-invariance conditions for the vec-
tors β j for 1 ≤ j ≤ n can be expressed in the matrix form AC = 0, where CT =
(λ0, λ2, . . . , λ2m−2, λ2m, λ2m+1, . . . , λk) and the matrix A consists of the columns A0,

A2, . . . , A2m−2, A2m, A2m+1, . . . , Ak given by

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(k − i)αk−i−1
1 − iαk−i+1

1

(k − i)αk−i−1
2 − iαk−i+1

2

(k − i)αk−i−1
3 − iαk−i+1

3
...

(k − i)αk−i−1
n − iαk−i+1

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Suppose that
∑m

i=0 a2i A2i +
∑k

i=2m+1 ai Ai = 0 for some ai ∈ C. It follows that
the polynomial p(x) = ∑k−1

j=0 c j x j satisfies p(α j ) = 0 for all 1 ≤ j ≤ n, where we
defined

c j = ( j + 1)ak− j−1 − (k − j + 1)ak− j+1 (5.3)
and a−1 = a1 = a3 = · · · = a2m−1 = ak+1 = 0. Since deg p ≤ k − 1 < n we conclude
p(x) ≡ 0. We have c j = 0 for 0 ≤ j ≤ k − 1. Suppose k is odd. Then it follows from
(5.3) that ai = 0 for all i = 0, . . . , k. Thus A has rank k + 1 − m and bk = 0. If k is
even then we have

a1 = a3 = a5 = . . . = ak−1 = 0
and a0 ∼ a2 ∼ a4 ∼ · · · ∼ ak , where ∼ denotes proportionality with a non-zero
coefficient. Thus A has rank at least k − m. In fact the rank of A is exactly k − m. This
is because in this case one can produce a linear dependence in the columns of A by
applying elementary column transformations to the columns A2 j , 0 ≤ j ≤ k/2. Hence
bk = 1. In the case 2m > k the arguments are similar. ��
Corollary 5.4. The initial part of the Hilbert series is given by

P0,n = 1 − t2[ n+2
2 ]

1 − t2 .

Lemma 5.5. In the Hilbert series (5.1) we have b2m+n−1 = m if n is even. If n is odd
then b2m+n−2 = m − 1.

Proof. Suppose n is even, the odd case is similar. Let q be a homogeneous polynomial
of degree 2m + n − 1:

q =
2m+n−1∑

i=0

ai x2m+n−1−i yi

for some ai ∈ C. It follows from the quasi-invariance conditions for the vector β0 =
(0, 1) that is from ∂s

yq|y=0 = 0 for s = 1, 3, . . . 2m − 1 that ai = 0 for i = 1, 3, . . . ,
2m − 1.

The quasi-invariance conditions for the vectors β j for 1 ≤ j ≤ n can be expressed in
the matrix form AC = 0, where CT = (a0, a2, . . . , a2m, a2m+1, a2m+2, . . . , a2m+n−1)

and the matrix A consists of m + n columns A0, A2, . . . , A2m, A2m+1, . . . , A2m+n−1
given by the following. For 0 ≤ i ≤ m one has

A2i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2m + n − 1 − 2i)α2m+n−2i−2
1 − 2iα2m+n−2i

1

(2m + n − 1 − 2i)α2m+n−2i−2
2 − 2iα2m+n−2i

2

(2m + n − 1 − 2i)α2m+n−2i−2
3 − 2iα2m+n−2i

3
...

(2m + n − 1 − 2i)α2m+n−2i−2
n − 2iα2m+n−2i

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

while for 2m + 1 ≤ i ≤ 2m + n − 1 one has

Ai = (−1)i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2m + n − 1 − i)α2m+n−i−2
1 − iα2m+n−i

1

(2m + n − 1 − i)α2m+n−i−2
2 − iα2m+n−i

2

(2m + n − 1 − i)α2m+n−i−2
3 − iα2m+n−i

3
...

(2m + n − 1 − i)α2m+n−i−2
n − iα2m+n−i

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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By applying appropriate elementary column transformations we reduce the matrix A
to the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+n−2
1 α2m+n−4

1 . . . α2
1 1 αn−1

1 αn−3
1 . . . α3

1 α1

α2m+n−2
2 α2m+n−4

2 . . . α2
2 1 αn−1

2 αn−3
2 . . . α3

2 α2

α2m+n−2
3 α2m+n−4

3 . . . α2
3 1 αn−1

3 αn−3
3 . . . α3

3 α3

...
...

...
...

...
...

...

α2m+n−2
n α2m+n−4

n . . . α2
n 1 αn−1

n αn−3
n . . . α3

n αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that after the column permutation we have the n × n Vandermonde minor

Q =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αn−1
1 αn−2

1 αn−3
1 . . . α3

1 α2
1 α1 1

αn−1
2 αn−2

2 αn−3
2 . . . α3

2 α2
2 α2 1

αn−1
3 αn−2

3 αn−3
3 . . . α3

3 α2
3 α3 1

...
...

...
...

...
...

...

αn−1
n αn−2

n αn−3
n . . . α3

n α2
n αn 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Since Q �= 0 we get rkA = n. Hence b2m+n−1 = m + n − rkA = m as stated. ��
It is easy to find all the odd coefficients of the Hilbert series for terms larger than a

certain degree.

Proposition 5.6. Let i ≥ 2m + n − 1 with i odd. Then bi = i + 1 − m − n in the Hilbert
series (5.1).

Proof. As in the proof of Lemma 5.5 we have bi = i + 1 − m − rkA, where A is the
matrix of the system of quasi-invariance conditions as equations for the coefficients of
a polynomial of degree i . By the same reasons as in Lemma 5.5 we get rkA = n, so the
statement follows. ��
Corollary 5.7. For any configuration A of type (m, 1n) we have

P2m+n+1,2m+2n−3
odd

= (m + 2)t2m+n+1 − mt2m+n+3 − (m + n)t2m+2n−1 + (m + n − 2)t2m+2n+1

(t2 − 1)2

if n is even, and

P2m+n,2m+2n−3
odd

= (m + 1)t2m+n − (m − 1)t2m+n+2 − (m + n)t2m+2n−1 + (m + n − 2)t2m+2n+1

(t2 − 1)2

if n is odd.

We need some lemmas before analyzing the even terms of the Hilbert series. Let
� = ∏

1≤i< j≤[n/2](α2
i − α2

j ). Refer to the elementary symmetric polynomials in the



M. Feigin, D. Johnston

variables α2
1, α

2
2, . . . , α

2[n/2] as êi , 0 ≤ i ≤ [n/2], (̂e0 = 1). Let B be the [n/2]× (n − s)
matrix, where 0 ≤ s ≤ n − 1, with the columns

Ci (X) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)α2i−2
1 − (2X + 2n − 2i + 1)α2i

1

(2i − 1)α2i−2
2 − (2X + 2n − 2i + 1)α2i

2

(2i − 1)α2i−2
3 − (2X + 2n − 2i + 1)α2i

3
...

(2i − 1)α2i−2
[n/2] − (2X + 2n − 2i + 1)α2i[n/2]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.8)

where 1 ≤ i ≤ n − s.

Lemma 5.9. Let s ≤ [n/2]. Let BL be the minor of B formed by taking the determinant
of the square submatrix with columns CL(X),CL+1(X), . . . ,CL+[n/2]−1(X) where 1 ≤
L ≤ [(n + 1)/2] − s + 1. Then

BL =�
[n/2]∏

i=1

α2L−2
i

[n/2]∑

i=0

(−1)i
[n/2]∏

r=i+1

(2[n/2] − 2r + 2L − 1)

×
i∏

r=1

(2X + 2r + 2

[
n + 1

2

]

− 2L + 1)̂ei . (5.10)

Proof. For 1 ≤ i ≤ n − s let us introduce the column vectors

xi = (i + 1)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

αi
1

αi
2

αi
3
...

αi[n/2]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, yi = (2X + 2n − i + 1)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

αi
1

αi
2

αi
3
...

αi[n/2]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus Ci (X) = x2i−2 − y2i . Consider B1 and suppose n is even, odd case is similar.
Notice that

B1 =
n/2∑

t=0

(−1)t Bt
1,

where Bt
1 is the determinant of the matrix with the columns yn, yn−2, . . . , yn−2t+2,

xn−2t−2, . . . , x0. We have

Bt
1 =

n/2−1∏

r=t

(n − 2r − 1)
t−1∏

r=0

(2X + 2r + n + 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αn
1 . . . αn−2t+2

1 αn−2t−2
1 . . . 1

αn
2 . . . αn−2t+2

2 αn−2t−2
2 . . . 1

...
...

...
...

αn
n/2 . . . αn−2t+2

n/2 αn−2t−2
n/2 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n/2−1∏

r=t

(n − 2r − 1)
t−1∏

r=0

(2X + 2r + n + 1)�êt

since the elementary symmetric polynomials êt are particular Schur polynomials.
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Hence B1 has the required form. It is easy to see that we can adopt the same strategy
used to expand B1 to deal with each BL , 1 ≤ L ≤ n/2 − s + 1. ��
Lemma 5.11. Let s = 0 and let BL be defined by (5.10) with X ∈ R≥0. Suppose that

�
∏[n/2]

i=1 αi �= 0. Then for even n ∃L , 1 ≤ L ≤ n/2 + 1 s.t. BL �= 0. For odd n
∃L , 2 ≤ L ≤ n+3

2 s.t. BL �= 0.

Proof. By Lemma 5.9 we have

BL =�
[n/2]∏

i=1

α2L−2
i

[n/2]∑

i=0

(−1)i
[n/2]∏

r=i+1

(2[n/2] − 2r + 2L − 1)

×
i∏

r=1

(2X + 2r + 2

[
n + 1

2

]

− 2L + 1)̂ei . (5.12)

Suppose BL = 0 for 1 ≤ L ≤ n/2+1 if n is even and suppose BL = 0 for 2 ≤ L ≤ n+3
2 if

n is odd. Let us cancel�
∏[n/2]

i=1 α2L−2
i and consider the resulting conditions as a system

of linear equations for the unknowns ê0, ê1, . . . , ê[n/2]. Refer to the corresponding matrix
as Q. We will show that the determinant |Q| �= 0, which would be a contradiction as
ê0 �= 0. We consider |Q| as a polynomial in X . First we show |Q| is not identically zero
in X . Set 2X + 2[n/2]+ 1 = 0. Let us enumerate the rows of Q by L = 1, 2, . . . , n/2 + 1
when n is even and L = 2, . . . , n+3

2 when n is odd, and the columns of Q by i =
0, 1, . . . , [n/2]. Then it follows from (5.12) that the first i entries in the i-th column are
0. So |Q| is the product of the diagonal entries and this is non-zero.

Next we show that there are no positive values of X for which |Q| = 0. Note that as
a polynomial in X , |Q| has degree

∑[n/2]
i=0 i = [n/2]([n/2]+1)

2 . Let us subtract the (i + 1)st
column from the i th column of Q, i = 0, 1, . . . , [n/2] − 1. Then the Lth entry of the
i th column is given by

(−1)i
[n/2]−1∏

r=i

(2[n/2] − 2r + 2L − 3)
i−1∏

r=0

(2X + 2r + 2[(n + 1)/2] − 2L + 3)

+ (−1)i
[n/2]−1∏

r=i+1

(2[n/2] − 2r + 2L − 3)
i∏

r=0

(2X + 2r + 2[(n + 1)/2] − 2L + 3)

= (−1)i
[n/2]−1∏

r=i+1

(2[n/2] − 2r + 2L − 3)
i−1∏

r=0

(2X + 2[(n + 1)/2] − 2L + 3 + 2r)

× 2(X + n).

We can repeat this process (subtracting the (i + 1)st column from the i th column of Q
where i = 0, 1 . . . , [n/2] − k at the k-th iteration) to see that the expression

[n/2]∏

i=1

(X + n + 1 − i)[n/2]−i+1

is a factor of |Q|. This expression has the same total degree in X as |Q| and is non-zero
for X ≥ 0. So |Q| �= 0 and we are done. ��

Now we are in the position to determine all the even coefficients of the Hilbert series
starting with a certain degree.
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Proposition 5.13. Let i = 2(m + n + t), where t ∈ Z≥0. Then bi = i + 1 − m − n in the
Hilbert series (5.1).

Proof. Let q be a homogeneous polynomial of degree 2m + 2n + 2t ,

q =
2m+2n+2t∑

i=0

ai x2m+2n+2t−i yi ,

where ai ∈ C and a2 j−1 = 0 for 1 ≤ j ≤ m. Consider the quasi-invariance con-
ditions for q for the vectors β1, . . . , βn . The matrix of the corresponding system of
linear equations for the coefficients of q has the following structure after elementary
transformations

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+2n+2t−1
1 α2m+2n+2t−3

1 . . . α5
1 α3

1 α1

Aα2m+2n+2t−1
2 α2m+2n+2t−3

2 . . . α5
2 α3

2 α2

α2m+2n+2t−1
3 α2m+2n+2t−3

3 . . . α5
3 α3

3 α3

...
... . . .

...
...

...

α2m+2n+2t−1
n α2m+2n+2t−3

n . . . α5
n α3

n αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.14)

where the block A consists of n + t columns Ai

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)α2i−2
1 − (2m + 2n + 2t − 2i + 1)α2i

1

(2i − 1)α2i−2
2 − (2m + 2n + 2t − 2i + 1)α2i

2

(2i − 1)α2i−2
3 − (2m + 2n + 2t − 2i + 1)α2i

3
...

(2i − 1)α2i−2
n − (2m + 2n + 2t − 2i + 1)α2i

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with 1 ≤ i ≤ n + t . Suppose the rank of the matrix (5.14) is not full, so the rank is less
than n. We are going to show that at least one n × n minor is non-zero, a contradiction
which implies the rank of the original matrix is in fact n. First we assume that

αi = −α[n/2]+i , 1 ≤ i ≤ [n/2], and αn = 0 if n is odd. (5.15)

This assumption will be justified later. Then for odd n the matrix (5.14) can be rearranged
to the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+2n+2t−1
1 α2m+2n+2t−3

1 . . . α5
1 α3

1 α1

0α2m+2n+2t−1
2 α2m+2n+2t−3

2 . . . α5
2 α3

2 α2

α2m+2n+2t−1
3 α2m+2n+2t−3

3 . . . α5
3 α3

3 α3

...
... . . .

...
...

...

α2m+2n+2t−1
[n/2] α2m+2n+2t−3

[n/2] . . . α5[n/2] α3[n/2] α[n/2]
0

B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.16)
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where block B consists of n + t columns of the form

Ci =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)α2i−2
1 − (2m + 2n + 2t − 2i + 1)α2i

1

(2i − 1)α2i−2
2 − (2m + 2n + 2t − 2i + 1)α2i

2

(2i − 1)α2i−2
3 − (2m + 2n + 2t − 2i + 1)α2i

3
...

(2i − 1)α2i−2
[n/2] − (2m + 2n + 2t − 2i + 1)α2i[n/2]

(2i − 1)02i−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.17)

where 1 ≤ i ≤ n + t . When n is even the block B and the columns Ci have the same form
(5.17) with the final row removed. In this case the matrix B with columns Ci coincides
with the matrix B with columns Ci (X) defined by (5.8) with X = m + t . By Lemma
5.11 the block B contains at least one non-zero n/2 × n/2 minor when n is even. When
n is odd B contains a non-zero n+1

2 × n+1
2 minor which contains the last row and the first

column of B.
In order to show that the rank of the original matrix (5.14) is n it is left to justify

the assumption (5.15). Since the block B contains at least one non-zero [ n+1
2 ] × [ n+1

2 ]
minor, it contains at least one non-zero minor of each size k × k, where 1 ≤ k ≤ [ n+1

2 ].
Suppose the rank of matrix (5.14) is not n so any n × n minor is zero. Consider

Q1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α2n−1
1 α2n−3

1 α2n−5
1 . . . α3

1 α1

α2n−1
2 α2n−3

2 α2n−5
2 . . . α3

2 α2

α2n−1
3 α2n−3

3 α2n−5
3 . . . α3

3 α3
...

α2n−1
n α2n−3

n α2n−5
n . . . α3

n αn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n∏

i=1

αi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α2n−2
1 α2n−4

1 α2n−6
1 . . . α2

1 1

α2n−2
2 α2n−4

2 α2n−6
2 . . . α2

2 1

α2n−2
3 α2n−4

3 α2n−6
3 . . . α2

3 1
...

α2n−2
n α2n−4

n α2n−6
n . . . α2

n 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

So Q1 = 0 implies that α2
i = α2

j for some 1 ≤ i < j ≤ n, or αk = 0 for some

k, 1 ≤ k ≤ n. Suppose first that
∏

i< j (α
2
i − α2

j ) �= 0. Then after relabelling of the
indecies α1 = 0. Hence the original matrix has the following form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 0 0

Aα2m+2n+2t−1
2 α2m+2n+2t−3

2 . . . α5
2 α3

2 α2

α2m+2n+2t−1
3 α2m+2n+2t−3

3 . . . α5
3 α3

3 α3

...
... . . .

...
...

...

α2m+2n+2t−1
n α2m+2n+2t−3

n . . . α5
n α3

n αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where the block A consists of n + t columns each with the following structure

Di =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)02i−2

(2i − 1)α2i−2
2 − (2m + 2n + 2t − 2i + 1)α2i

2
(2i − 1)α2i−2

3 − (2m + 2n + 2t − 2i + 1)α2i
3

...

(2i − 1)α2i−2
n − (2m + 2n + 2t − 2i + 1)α2i

n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with 1 ≤ i ≤ n + t . In this situation the n × n determinant

Q
′
1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 . . . 0

D1
α2n−3

2 α2n−5
2 α2n−7

2 . . . α2

α2n−3
3 α2n−5

3 α2n−7
3 . . . α3

...
...

...
...

α2n−3
n α2n−5

n α2n−7
n . . . αn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0.

So we may assume that α2
1 = α2

2 after relabelling. In this situation the matrix (5.14) is
equivalent by row transformations to the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 0 0

Â
α2m+2n+2t−1

1 α2m+2n+2t−3
1 . . . α5

1 α3
1 α1

α2m+2n+2t−1
3 α2m+2n+2t−3

3 . . . α5
3 α3

3 α3
...

... . . .
...

...
...

α2m+2n+2t−1
n α2m+2n+2t−3

n . . . α5
n α3

n αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.18)

where the block Â consists of n + t columns each with the following structure
⎛

⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)α2i−2
1 − (2m + 2n + 2t − 2i + 1)α2i

1
0

(2i − 1)α2i−2
3 − (2m + 2n − 2i + 2t + 1)α2i

3
...

(2i − 1)α2i−2
n − (2m + 2n − 2i + 2t + 1)α2i

n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with 1 ≤ i ≤ n + t . Note that the rows 1, 3 . . . , [n/2], [n/2] + 1 of Â coincide up to
relabelling of the αi with the matrix B̂ formed by the first [n/2] rows of the matrix B
from (5.16), (5.17). As rkB = [ n+1

2 ] and rkB̂ = [n/2] the first row of the matrix Â
contains some non-zero entry which we denote by B1×1. Now, consider the following
minor of the matrix (5.18)

Q2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 . . . 0 0 B1×1

α2n−3
1 α2n−5

1 α2n−7
1 . . . α3

1 α1 0

α2n−3
3 α2n−5

3 α2n−7
3 . . . α3

3 α3

*α2n−3
4 α2n−5

4 α2n−7
4 . . . α3

4 α4

...
...

...
...

...

α2n−3
n α2n−5

n α2n−7
n . . . α3

n αn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Since B1×1 �= 0, Q2 = 0 implies that α2
i = α2

j for some 3 ≤ i < j ≤ n or αk = 0

for k �= 1, 2. Suppose that
∏n

i< j;i, j=3(α
2
i − α2

j ) �= 0 so α3 = 0 up to relabelling. Then
(5.18) is equivalent to a matrix which has minor

Q
′
2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 . . . 0 0
B2×2

0 0 0 . . . 0 0

α2n−5
1 α2n−7

1 α2n−9
1 . . . α3

1 α1

*α2n−5
4 α2n−7

4 α2n−9
4 . . . α3

4 α4

...
...

...
...

...

α2n−5
n α2n−7

n α2n−9
n . . . α3

n αn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where B2×2 is a 2 × 2 submatrix of the first two rows of A such that the corresponding
minor |B2×2| �= 0. Such a submatrix exists since rkB̂ = [ n

2 ]. So we have Q
′
2 �= 0. So

we may assume that α2
1 = α2

2 and α2
3 = α2

4 up to relabelling. It is not hard to see that we
can continue in this way to deduce that (up to relabelling) α2

i = α2[n/2]+i , 1 ≤ i ≤ [n/2].
If n is even this justifies the assumption (5.15). Suppose now that n is odd. Then the
matrix (5.14) is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+2n+2t−1
1 α2m+2n+2t−3

1 . . . α5
1 α3

1 α1

0α2m+2n+2t−1
2 α2m+2n+2t−3

2 . . . α5
2 α3

2 α2

α2m+2n+2t−1
3 α2m+2n+2t−3

3 . . . α5
3 α3

3 α3

...
... . . .

...
...

...

α2m+2n+2t−1
n−1

2
α2m+2n+2t−3

n−1
2

. . . α5
n−1

2
α3

n−1
2

α n−1
2

0 B̂

α2m+2n+2t−1
n α2m+2n+2t−3

n . . . α5
n α3

n αn ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.19)

where the block B̂ is up to relabelling the first (n − 1)/2 rows of the block B introduced
in (5.16), (5.17). Thus we can consider the following minor of (5.19)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

αn
1 αn−2

1 . . . α3
1 α1

0
αn

2 αn−2
2 . . . α3

2 α2

...
... . . .

...
...

αn
n−1

2
αn−2

n−1
2

. . . α3
n−1

2
α n−1

2

0 B n−1
2 × n−1

2

αn
n αn−2

n . . . α3
n αn ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.20)

where B n−1
2 × n−1

2
corresponds to a non-zero (n − 1)/2 × (n − 1)/2 minor of B̂. We have

Q
′
n−1 = 0 implies that αn = 0. This justifies the assumption (5.15) for odd n. ��
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Corollary 5.21. For any configuration A of type (m, 1n) we have

P2m+2n−1,∞ = t2m+2n−1

(1 − t)2
(m + n − (m + n − 1)t).

Proof. Using Propositions 5.6 and 5.13 we have

P2m+2n−1,∞ =
∑

i≥2m+2n−1

(i + 1 − m − n)t i =
∑

i≥2m+2n−1

i t i − (m + n − 1)
∑

i≥2m+2n−1

t i

= t2m+2n−1(2m + 2n − 1 − 2(m + n − 1)t)

(1 − t)2
− (m + n − 1)t2m+2n−1

1 − t
.

��

6. Hilbert Series of the Algebra QA(m,1n)

In this section we complete the derivation of the Hilbert series of the algebra of quasi-
invariants QA for the configuration A = A(m,1n). This configuration was defined in
Sect. 3, Definition 2.11 in terms of the elementary symmetric polynomials ei of the
variables z j = e2iϕ j where the vectors of A had the form (cosϕ j , sin ϕ j ). In Sect. 5 we
studied the quasi-invariance conditions for the configurations of type (m, 1n) consisting
of vectorsβi = (1, αi ). We worked with such conditions by making use of the elementary
symmetric polynomials êr of α2

i (see Proposition 5.13 and its proof, Lemma 5.9 and
the notation before the lemma). Thus we start with the rearranging the definition of the
configuration A(m,1n) in terms of quantities êr . We keep the notation of the previous
sections.

Proposition 6.1. Suppose a configuration A of type (m, 1n) satisfies the symmetry prop-
erties (5.15) and

êr =
([n/2]

r

) r∏

i=1

2[ n+1
2 ] − 2i + 1

2m + 2i − 1
, (6.2)

where 0 ≤ r ≤ [n/2]. Then A is equivalent to A(m,1n).

More exactly we show that the configuration A defined by Proposition 6.1 coincides
with the configuration A(m,1n) rotated by π/2 after renumbering of vectors. That is the
parameters are related by α j = cot ϕ j for j = 1, . . . , n, and the vectors of A(m,1n) of
multiplicity 1 are renumbered so that ϕ j + ϕ[n/2]+ j ∈ πZ, for 1 ≤ j ≤ [n/2].

We prove Proposition 6.1 by establishing the following two lemmas. Define u j =
sin2 ϕ j for 1 ≤ j ≤ [n/2]. Denote by fi , 0 ≤ i ≤ [n/2], the i-th elementary symmetric
polynomial in the variables u j . First we find in Lemma 6.3 the values of the elementary
symmetric polynomials fi for the configuration A(m,1n). Then we check in Lemma 6.8
that these fi lead to the relations (6.2).

Lemma 6.3. For the configuration A(m,1n) the elementary symmetric polynomials fi ,
0 ≤ i ≤ [n/2], take the values

fi =
([n/2]

i

)

2−i
i∏

s=1

2m + 2[n/2] − 2s + 1

(m + n − s)
. (6.4)
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The outline of the proof of Lemma 6.3 is as follows. When n is even one can check
that

er =
r∑

i=0

(−1)i 22i
(

n − 2i

r − i

)

fi , (6.5)

where 0 ≤ r ≤ n/2. This expression is derived via directly expressing the symmetric
polynomials er through the variables ui . Then we have to show that

(−1)r
(

n

r

)(
m + r − 1

r

)(
m + n − 1

r

)−1

=
r∑

i=0

(−1)i 2i
(

n − 2i

r − i

)(
n/2

i

) i∏

s=1

2m + n − 2s + 1

m + n − s
. (6.6)

Recall the Saalschütz’s theorem (see e.g. [17]) for the generalised hypergeometric func-
tion

3 F2(a, b,−p; c, 1 + a + b − c − p; 1) = (c − a)p(c − b)p

(c)p(c − a − b)p
, (6.7)

where (α)p = �(α + p)/�(α). The identity (6.6) follows upon specialising (6.7) for
a = −r, b = r − n, p = m + n−1

2 , c = − n−1
2 . We refer for further details including the

case of odd n to [18].

Lemma 6.8. Suppose that for 0 ≤ r ≤ [n/2]

fr =
([n/2]

r

)

2−r
r∏

s=1

2m + 2[n/2] − 2s + 1

(m + n − s)
.

Then for 0 ≤ r ≤ [n/2] we have

êr =
([n/2]

r

) r∏

s=1

2[ n+1
2 ] − 2s + 1

2m + 2s − 1
. (6.9)

Scheme of proof. The symmetric polynomials êr are elementary symmetric polynomials
in u−1

i − 1, 1 ≤ i ≤ [n/2]. They can be expressed through the elementary symmetric

polynomials fi in the variables ui factored by f[n/2] = ∏[n/2]
i=1 ui . This leads to the

formula

êr =
r∑

i=0

(−1)i 2i
([n/2] − i

r − i

)([n/2]
i

) i−1∏

s=0

m + [ n+1
2 ] + s

2m + 2s + 1
.

So one has to check the identity

r∑

i=0

(−1)r−i 2i
([n/2] − i

r − i

)([n/2]
i

) i−1∏

s=0

m + [ n+1
2 ] + s

2m + 2s + 1
=

([n/2]
r

) r∏

s=1

2[ n+1
2 ] − 2s + 1

2m + 2s − 1
.

(6.10)

Notice that
([n/2]−i

r−i

)([n/2]
i

) = ([n/2]
r

)(r
i

)
and cancel

([n/2]
r

)
in both sides of (6.10). After

the cancellation each side of (6.10) is a polynomial in n of degree r with the highest
coefficient 1 both for even and odd n cases. It is easy to see in each case that the roots
of the corresponding pair of polynomials coincide which implies the Lemma.

We continue to study the quasi-invariance conditions for the configuration A(m,1n)

with the help of Proposition 6.1. Firstly we note the following technical result.
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Lemma 6.11. Let

êr =
([n/2]

r

) r∏

i=1

2[ n+1
2 ] − 2i + 1

2m + 2i − 1
, (6.12)

where 0 ≤ r ≤ [n/2]. For 1 ≤ s ≤ [n/2] and 1 ≤ L ≤ [(n + 1)/2] − s + 1 let BL be
defined by (5.10) with X = m − s. Then BL = 0.

Proof. We have

BL = �

[n/2]∏

i=1

α2L−2
i

[n/2]∑

i=0

(−1)i
[n/2]∏

r=i+1

(2[n/2] − 2r + 2L − 1)

×
i∏

r=1

(2m − 2s + 2r + 2[(n + 1)/2] − 2L + 1)̂ei

= y�
[n/2]∏

i=1

α2L−2
i

[n/2]∑

i=0

(−1)i
([n/2]

i

)

U (i),

where

y =
[n/2]∏

r=1

(2m + 2r − 1)−1
[n/2]−1∏

r=[(n+1)/2]−s−L+1

(2m + 2r + 1)

×
L∏

r=2L−[(n+1)/2]
(2[(n + 1)/2] − 2L + 2r − 1),

and

U (x) =
[(n+1)/2]−s−L∏

r=0

(2m + 2x + 2r + 1)
L̃∏

r=0

(2[(n + 1)/2] − 2x + 2r + 1),

with L̃ = L − 2 when n is even, and L̃ = L − 3 when n is odd. Note that U (x) is a
polynomial of degree [n/2] − s < [n/2]. It follows that BL = 0 by a standard result on
sums of binomial coefficients. ��

We will also need the following few lemmas.

Lemma 6.13. Let BL be defined by (5.10) with X ≥ 0, and suppose that�
∏[n/2]

i=1 αi �=
0. The system of equations BL = 0 where 1 ≤ L ≤ n/2 if n is even and 2 ≤ L ≤ n+1

2 if
n is odd as the system of linear equations for the unknowns ê1, . . . , ê[n/2] has a unique
solution.

The Lemma follows from the proof of Lemma 5.11. Recall now the notation of
Lemma 5.9.
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Lemma 6.14. Let 0 ≤ s ≤ n − 1. Fix q ∈ Z≥0 such that q ≥ s − [(n + 1)/2]. Let
κ = {k1, k2, . . . , kq} where 1 ≤ ki ≤ [n/2] are such that ki �= k j if i �= j . Take L ∈ Z

such that 1 ≤ L ≤ q + [(n +1)/2]− s +1. Let Dκ
L be the minor of B formed by taking the

square submatrix with columns CL(X),CL+1(X), . . . ,CL+[n/2]−q−1(X) and we include
all rows of B except rows k1, k2, . . . kq . Then

Dκ
L =�κ

[n/2]∏

i=1
i �∈κ

α2L−2
i

[n/2]−q∑

i=0

(−1)i
[n/2]−q∏

r=i+1

(2[n/2] − 2r − 2q + 2L − 1)

×
i∏

r=1

(2X + 2r + 2q + 2[(n + 1)/2] − 2L + 1)̂eκi , (6.15)

where�κ = ∏[n/2]
i< j

i, j /∈κ
(α2

i −α2
j ), and êκi denotes the i-th elementary symmetric polynomials

in the variables α2
i , 1 ≤ i ≤ [n/2], i �= k j where j = 1, . . . , q.

The proof is same as the one of Lemma 5.9.

Lemma 6.16. In the assumptions of Lemma 6.14 let L be fixed. Suppose that q ≥ 1 and
that �

∏[n/2]
i=1 αi �= 0. Then ∃κ such that Dκ

L �= 0.

Proof. Suppose that Dκ
L = 0 for the following collections of κ = κ j = {1, 2, . . . , q −

1, q + j − 1}, where j = 1, . . . , [n/2] − q + 1. We cancel the term �κ
∏[n/2]

i=1
i �∈κ j

α2L−2
i

in the equation D
κ j
L = 0, and consider the resulting conditions as a system of linear

equations for the unknowns

xi =(−1)i
[n/2]−q∏

r=i+1

(2[n/2]−2r −2q +2L−1)
i∏

r=1

(2X + 2r + 2q + 2[(n + 1)/2]−2L + 1),

where i = 0, . . . , [n/2]−q. The system takes the matrix form AY = 0, where A = (a jl),
1 ≤ j ≤ [n/2] − q + 1, 0 ≤ l ≤ [n/2] − q, a jl = ê

κ j
l and Y = (x0, . . . , x[n/2]−q). Note

that the determinant of A has degree

1 + 2 + · · · + ([n/2] − q) =
([n/2] − q + 1

2

)

as a polynomial in α2
q , . . . , α

2[n/2]. We claim that det A �= 0. This can be seen by setting

α2
l = α2

m for q ≤ l < m ≤ [n/2]. In this situation we have ê
κl−q+1
i = ê

κm−q+1
i for all

0 ≤ i ≤ [n/2] − q and thus det A = 0. Since det A has degree
([n/2]−q+1

2

)
it has no

zeroes under our assumptions. This is a contradiction as x0 �= 0 so Y �= 0. ��
Lemma 6.17. In the notation of Lemma 6.14, set s = 1. Fix q = 1 and k ∈ N such that
1 ≤ k ≤ [n/2]. Suppose X ≥ 0 and�

∏[n/2]
i=1 αi �= 0. Then ∃L , 2 ≤ L ≤ [(n + 1)/2]+ 1

such that Dk
L �= 0.

The proof is same as the one of Lemma 5.11.
Now we investigate the dimension of homogeneous quasi-invariants of degree 2(m +

n −1). It appears that this dimension is the same for any configuration A of type (m, 1n)

except for one configuration whose geometry is fully fixed, namely for the configuration
A(m,1n).



M. Feigin, D. Johnston

Proposition 6.18. Let A be a configuration of type (m, 1n). Then b2(m+n−1) = m +n −1
in the Hilbert series (5.1), unless A is equivalent to A(m,1n).

Proof. Let q be a homogeneous quasi-invariant polynomial of degree 2(m + n − 1), let

q =
2m+2n−2∑

i=0

ai x2m+2n−2−i yi ,

where ai ∈ C, and a2 j−1 = 0 for 1 ≤ j ≤ m. The matrix of the system of quasi-
invariance conditions for the vectors β1, . . . , βn for the coefficients of q has the structure

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+2n−3
1 α2m+2n−5

1 . . . α5
1 α3

1 α1

Aα2m+2n−3
2 α2m+2n−5

2 . . . α5
2 α3

2 α2

α2m+2n−3
3 α2m+2n−5

3 . . . α5
3 α3

3 α3
...

... . . .
...

...
...

α2m+2n−3
n α2m+2n−5

n . . . α5
n α3

n αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.19)

where the block A consists of n − 1 columns each with the following structure

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)α2i−2
1 − (2m + 2n − 2i − 1)α2i

1

(2i − 1)α2i−2
2 − (2m + 2n − 2i − 1)α2i

2

(2i − 1)α2i−2
3 − (2m + 2n − 2i − 1)α2i

3
...

(2i − 1)α2i−2
n − (2m + 2n − 2i − 1)α2i

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with 1 ≤ i ≤ n − 1. Assume initially that the symmetry assumption (5.15) holds. Then
the matrix M is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+2n−3
1 α2m+2n−5

1 . . . α5
1 α3

1 α1

0α2m+2n−3
2 α2m+2n−5

2 . . . α5
2 α3

2 α2

α2m+2n−3
3 α2m+2n−5

3 . . . α5
3 α3

3 α3
...

... . . .
...

...
...

α2m+2n−3
[n/2] α2m+2n−5

[n/2] . . . α5[n/2] α3[n/2] α[n/2]
0

B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6.20)

where the block B consists of n − 1 columns, each of which has the following structure
for odd n:

Ci =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2i − 1)α2i−2
1 − (2m + 2n − 2i − 1)α2i

1

(2i − 1)α2i−2
2 − (2m + 2n − 2i − 1)α2i

2

(2i − 1)α2i−2
3 − (2m + 2n − 2i − 1)α2i

3
...

(2i − 1)α2i−2
[n/2] − (2m + 2n − 2i − 1)α2i[n/2]

(2i − 1)02i−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6.21)
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where 1 ≤ i ≤ n − 1. In the case of even n the last row in Ci should be removed. By
Lemma 6.17 there exists a non-zero ([n/2]−1)× ([n/2]−1)minor B([n/2]−1)×([n/2]−1)
of B where B is the submatrix of B formed by the first [n/2] rows. Thus it follows that
rkM ≥ n−1. The existence of this minor B([n/2]−1)×([n/2]−1) also allows us to reproduce
the arguments from the proof of Proposition 5.13 which justify the assumption (5.15)
if rkM < n. Thus it follows that rkM ≥ n − 1, and that the symmetry (5.15) holds if
rkM = n − 1.

Suppose now that rkM = n −1 that is b2(m+n−1) �= m + n −1. Then any n ×n minor
of M must vanish. By Lemma 5.9 in its notation we have

BL =�
[n/2]∏

i=1

α2L−2
i

[n/2]∑

i=0

(−1)i
[n/2]−1∏

r=i

(2[n/2] − 2r + 2L − 3)

×
i−1∏

r=0

(2m + 2r + 2n − 2[n/2] − 2L + 1)̂ei ,

where 1 ≤ L ≤ n/2 if n is even and 2 ≤ L ≤ n+1
2 if n is odd. Note that for even n BL

equals the minor of B where the columns L , . . . , L +n/2−1 are kept. In case of odd n BL
has same absolute value as the minor of B where the columns 1, L , . . . , L +(n−1)/2−1
are kept.

Thus BL = 0 for the specified range of L . Regard the resulting conditions as a system
of linear equations for the unknowns ê0, ê1, . . . , ê[n/2]. Then by Lemma 6.13 the solution
is unique, and it is given by

êr =
([n/2]

r

) r∏

i=1

2[(n + 1)/2] − 2i + 1

2m + 2i − 1

for 0 ≤ r ≤ [n/2] by Lemma 6.11. Thus A is equivalent to A(m,1n) by Proposition 6.1.
��

Now we determine the even coefficients bi of the Hilbert series PA(m,1n )
where

min(2m + 2, n + 1) ≤ i ≤ 2m + 2n −4. These even coefficients remained unknown after
the general analysis of Sect. 5.

Lemma 6.22. Let A = A(m,1n). Let i = 2(m + n − s), where 1 ≤ s ≤ [n/2]. Then
bi = i − m − n + 2 in the Hilbert series (5.1).

Proof. Let q be a homogeneous quasi-invariant of degree i . Recall thatα2
i = α2[n/2]+i , 1 ≤

i ≤ [n/2], and αn = 0 if n is odd. Then the matrix M expressing the quasi-invariant
conditions as linear equations for the non-zero coefficients of q is equivalent to

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2m+2n−2s−1
1 α2m+2n−2s−3

1 . . . α5
1 α3

1 α1

0α2m+2n−2s−1
2 α2m+2n−2s−3

2 . . . α5
2 α3

2 α2

α2m+2n−2s−1
3 α2m+2n−2s−3

3 . . . α5
3 α3

3 α3
...

... . . .
...

...
...

α2m+2n−2s−1
[n/2] α2m+2n−2s−3

[n/2] . . . α5[n/2] α3[n/2] α[n/2]
0

B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.23)
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The block B consists of n − s columns C1, . . . , Cn−s with the following structure

C j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2 j − 1)α2 j−2
1 − (2m + 2n − 2 j + 1 − 2s)α2 j

1

(2 j − 1)α2 j−2
2 − (2m + 2n − 2 j + 1 − 2s)α2 j

2

(2 j − 1)α2 j−2
3 − (2m + 2n − 2 j + 1 − 2s)α2 j

3
...

(2 j − 1)α2 j−2
[n/2] − (2m + 2n − 2 j + 1 − 2s)α2 j

[n/2]
(2 j − 1)02 j−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where 1 ≤ j ≤ n − s, and the last row should be removed if n is even. We are
going to show at first that rkM < n. It is clear that any n × n minor equals zero
unless we take exactly [ n+1

2 ] columns from the block B. Now, consider the block B.
Let BL be the minor formed by taking the determinant of the square submatrix with
columns CL , CL+1, . . . , CL+[(n+1)/2]−1. Suppose n is even. By Lemma 6.11 BL = 0

for 1 ≤ L ≤ n − s − [n/2] + 1. Since B1 = 0 we have
∑[n/2]

i=1 λiCi = 0 for some
λi ∈ C. We can assume that λ1 �= 0. Indeed, by Lemma 6.16, we can find a non-zero
([n/2]−1)×([n/2]−1)minor in the block with columns C2, . . . , C[n/2]. We can construct

the linear dependence
∑[n/2]

i=1 λiCi = 0 using appropriate ([n/2]−1)×([n/2]−1)minors
as coefficients λi so we can take λ1 �= 0. Thus C1 ∈ 〈C2, C3, . . . , C[n/2]〉. By repeated
application of Lemma 6.16 we can go on to deduce that for 1 ≤ j ≤ n − s − [n/2] + 1,
C j ∈ 〈Cn−s−[n/2]+2, . . . , Cn−s〉. This means that any [n/2]× [n/2] minor taken from the
block B equals zero. So the rank of the matrix (6.23) is at most n − 1.

Let now n be odd. Any non-zero [(n + 1)/2] × [(n + 1)/2] minor of B must contain
the first column and the last row of B. It is equal by absolute value to the corresponding
[(n − 1)/2] × [(n − 1)/2] minor of B where these row and column are removed. By
Lemmas 6.11, 6.16 applied repeatedly for 2 ≤ L ≤ [(n + 1)/2]− s + 1 we conclude that
the dimension of the space spanned by the columns of B is at most (n − 1)/2.

We will now show that the rank of the matrix (6.23) is precisely n − 1. For 1 ≤
k ≤ [n/2], 2 ≤ L ≤ [(n + 1)/2] − s + 2 let Dk

L be the minors formed by taking the
square submatrix with columns CL , CL+1, . . . , CL+[(n+1)/2]−2 where we include all but
the kth row of B. Let n be even. Then by Lemma 6.16 ∃k such that Dk

L �= 0. Denote the
corresponding matrix by D[ n−1

2 ]×[ n−1
2 ]. Then the following (n − 1)× (n − 1) minor of

(6.23) ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αn−1
1 αn−3

1 . . . α5
1 α3

1 α1

0αn−1
2 αn−3

2 . . . α5
2 α3

2 α2

αn−1
3 αn−3

3 . . . α5
3 α3

3 α3
...

... . . .
...

...
...

αn−1
[n/2] αn−3

[n/2] . . . α5[n/2] α3[n/2] α[n/2]
0 D[ n−1

2 ]×[ n−1
2 ]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0.

If n is odd then the matrix D[(n−1)/2]×[(n−1)/2] should be extended by adjoining the
column C1 and the last row of B. ��
Corollary 6.24. Let A = A(m,1n). Then

P2m+n,2m+2n−2
even = (m + 2)t2m+n − mt2m+n+2 − (m + n + 2)t2m+2n + (m + n)t2m+2n+2

(t2 − 1)2
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if n is even, and

P2m+n,2m+2n−2
even

= (m + 3)t2m+n+1 − (m + 1)t2m+n+3 − (m + n + 2)t2m+2n + (m + n)t2m+2n+2

(t2 − 1)2

if n is odd.

Lemma 6.25. Let A satisfy the symmetry property (5.15). Let i = 2(m + n − s), where
[n/2]+ 1 ≤ s ≤ min(n,m + [(n + 1)/2]). Then bi = i/2 −[n/2]+ 1 in the Hilbert series
(5.1).

Proof. The matrix M of the system of linear equations for the non-zero coefficients
of a quasi-invariant q of degree i is equivalent to the form (6.23). It is easy to see
that rkM ≤ [n/2] + n − s as 0 ≤ n − s ≤ [(n + 1)/2]. For even n the block B
contains a non-zero (n − s) × (n − s) minor B(n−s)×(n−s) by Lemma 6.16. Hence the
([n/2] + n − s)× ([n/2] + n − s) minor

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

αn−1
1 αn−3

1 . . . α5
1 α3

1 α1

0αn−1
2 αn−3

2 . . . α5
2 α3

2 α2

αn−1
3 αn−3

3 . . . α5
3 α3

3 α3
...

... . . .
...

...
...

αn−1
[n/2] αn−3

[n/2] . . . α5[n/2] α3[n/2] α[n/2]
0

B(n−s)×(n−s)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0.

The case of odd n is similar. ��
As a corollary we get a part of the Hilbert series with even terms preceding those

found in Corollary 6.24.

Corollary 6.26. Let A satisfy the symmetry property (5.15). If n ≤ 2m + 1 then

P2m+2,2m+n−1
even = (m − n/2 + 2)t2m+2−(m − n/2 + 1)t2m+4−(m + 1)t2m+n + mt2m+n+2

(t2 − 1)2

if n is even and

P2m+2,2m+n−1
even = (m− n−5

2 )t2m+2−(m − n−3
2 )t2m+4−(m + 2)t2m+n+1 + (m + 1)t2m+n+3

(t2 − 1)2

if n is odd. If n ≥ 2m + 1 then

Pn+1,2m+n−1
even = 2tn+2 − tn+4 − (m + 1)t2m+n + mt2m+n+2

(t2 − 1)2

if n is even and

Pn+1,2m+n−1
even = 2tn+1 − tn+3 − (m + 2)t2m+n+1 + (m + 1)t2m+n+3

(t2 − 1)2

if n is odd.



M. Feigin, D. Johnston

It remains to find the odd coefficients bi of the Hilbert series PA(m,1n )
with max(2m +

1, n + 1) ≤ i ≤ 2m + n − 3 and the coefficients bi with n + 1 ≤ i ≤ 2m. We deal with
the latter case first in the following lemma.

Lemma 6.27. Let A satisfy the symmetry property (5.15). Let n ≤ i ≤ 2m. Then in
(5.1) bi = i+1

2 − [ n+1
2 ] if i is odd and bi = i

2 + 1 − [ n
2 ] if i is even.

Proof. Let q be a homogeneous quasi-invariant of degree i . It has no odd powers of y
since i ≤ 2m. Suppose first that i is odd. The matrix of linear equations on the non-zero
coefficients of q, which express quasi-invariance conditions, is equivalent to

A =

⎛

⎜
⎜
⎜
⎜
⎝

αi−1
1 . . . α2

1 1

αi−1
2 . . . α2

2 1
...

...
...

αi−1
[ n+1

2 ] . . . α2
[ n+1

2 ] 1

⎞

⎟
⎟
⎟
⎟
⎠
.

Thus rkA = min( i+1
2 , [ n+1

2 ]) = [ n+1
2 ]. So the dimension of homogeneous quasi-

invariants of degree i is bi = i + 1 − i+1
2 − rkA = i+1

2 − [ n+1
2 ]. Now let i be even.

The matrix expressing the quasi-invariance conditions is equivalent to

Ã =

⎛

⎜
⎜
⎜
⎜
⎝

αi−1
1 . . . α3

1 α1

αi−1
2 . . . α3

2 α2
...

...
...

αi−1
[ n

2 ] . . . α3
[ n

2 ] α[ n
2 ]

⎞

⎟
⎟
⎟
⎟
⎠
.

Thus rk Ã = min( i
2 , [ n

2 ]) = [ n
2 ]. So the dimension of homogeneous quasi-invariants of

degree i is bi = i
2 + 1 − [ n

2 ]. ��
Corollary 6.28. Let A satisfy the symmetry property (5.15). Suppose that n ≤ 2m. Then

Pn+1,2m = tn+1 + 2tn+2 − tn+4 − (m − n/2 + 1)t2m+1

(t2 − 1)2

+
−(m − n/2 + 2)t2m+2 + (m − n/2)t2m+3 + (m − n/2 + 1)t2m+4

(t2 − 1)2

if n is even, and

Pn+1,2m = 2tn+1 + tn+2 − tn+3 − (m − n−1
2 )t2m+1

(t2 − 1)2

+
−(m − n−5

2 )t2m+2 + (m − n+1
2 )t

2m+3 + (m − n−3
2 )t2m+4

(t2 − 1)2

if n is odd.

Finally we find the remaining odd coefficients bi of the Hilbert series PA(m,1n )
.

Lemma 6.29. Let A satisfy the symmetry property (5.15). Let i be odd such that 2m +
n − 1 ≥ i ≥ max(2m − 1, n − 1). Then bi = i+1

2 − [ n+1
2 ] in the Hilbert series (5.1).
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Proof. Let q be a homogeneous quasi-invariant of degree i where 2m+1 ≤ i ≤ 2m+n−1
where i is odd. The matrix expressing quasi-invariance conditions as equations on the
coefficients of q can be rearranged to the form

D =
(

0 A
B 0

)

where the block A consists of columns A j , 1 ≤ j ≤ i+1
2 −m, while the block B consists

of columns B j , 1 ≤ j ≤ i+1
2 , with

A j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α
2 j−1
1

α
2 j−1
2

α
2 j−1
3

...

α[n/2]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α
2 j−2
1

α
2 j−2
2

α
2 j−2
3

...

α
2 j−2
[ n+1

2 ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus rkD = min([ n+1
2 ], i+1

2 ) + min( i+1
2 − m, [n/2]) = [ n+1

2 ] + i+1
2 − m. So we have

bi = i+1
2 − [ n+1

2 ]. ��
Corollary 6.30. Let A satisfy the symmetry property (5.15). If 2m ≥ n then

P2m+1,2m+n−1
odd = (m − n/2 + 1)t2m+1 + (n/2 − m)t2m+3 − (m + 1)t2m+n+1 + mt2m+n+3

(t2 − 1)2

if n is even and

P2m+1,2m+n−1
odd = (m − n+1

2 + 1)t2m+1 + ( n+1
2 − m)t2m+3 − mt2m+n + (m − 1)t2m+n+2

(t2 − 1)2

if n is odd. If 2m ≤ n then

Pn+1,2m+n−1
odd = tn+1 − (m + 1)t2m+n+1 + mt2m+n+3

(t2 − 1)2

if n is even and

Pn+1,2m+n−1
odd = tn+2 − mt2m+n + (m − 1)t2m+n+2

(t2 − 1)2

if n is odd.

Thus we arrive at the main result of this section.

Theorem 6.31. The Hilbert series of the algebra of quasi-invariants QA(m,1n )
is given

by

PA(m,1n )
(t) = 1 − t2 + tn+1 + tn+2 + t2m+n + t2m+n+1 − t2m+2n + t2m+2n+2

(t2 − 1)2
.

The Theorem follows from Corollaries 5.4, 5.7, 5.21, 6.24, 6.26, 6.28, 6.30.
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7. Gorenstein Configurations of Type (m, 1n)

Let A be a configuration of non-collinear vectorsβ j ∈ C
2, 0 ≤ j ≤ n, with multiplicities

m j ∈ N. As before we assume that (β j , β j ) �= 0 ∀ j . Let QA ⊂ C[x1, x2] be the
associated algebra of quasi-invariants. Let PA(t) be its Hilbert series.

Definition 7.1. A configuration A is called Gorenstein if PA(t−1) = t M PA(t) for some
M ∈ Z.

This terminology is justified by the fact that the algebra QA is Gorenstein if and only
if the configuration A is Gorenstein. This follows from the Stanley criterion [19] and
the following proposition.

Proposition 7.2. The graded ring QA is Cohen–Macaulay.

Proof. Consider P1 = x2
1 +x2

2 , P2 = ∏n
j=0(β j , x)2m j . It is easy to see that P1, P2 ∈ QA.

Let I ⊂ C[x1, x2] be the ideal generated by P1, P2. Since P1, P2 have no common zeroes
outside the origin it follows that C[x1, x2] and hence QA are finite over C[P1, P2]. It is
easy to see that QA is free over C[P1, P2] (see e.g. [18] for details). ��

Theorem 6.31 implies that the configuration A(m,1n) is Gorenstein. The main result
of this section is the converse statement that there are no other Gorenstein configurations
of type (m, 1n). We establish it by studying the quasi-invariant conditions and possible
Hilbert series PA(t).

Let A be of type (m, 1n) and recall the notations from the beginning of Sect. 5. In
particular, we fix β0 = (0, 1) and we denote β j = (1, α j ) for 1 ≤ j ≤ n. It will be
convenient to introduce the parameter r to be the number of different α2

i , i = 1, . . . , n.
Let us assume that the vectors β j are numerated so thatα2

1, . . . , α
2
r are pairwise different.

Parts of the Hilbert series (5.1) depend on the parameter r only rather than on the full
geometry of the configuration A. In this situation we will be using notations

Pk,l
r =

l∑

i=k

bi t
i , Pk,l

r,odd =
∑

k≤2i+1≤l

b2i+1t2i+1, Pk,l
r,even =

∑

k≤2i≤l

b2i t
2i .

Lemma 7.3. If 2r ≤ m + n then

Pn+1,2m+n−1
r,odd = t2r+1 + t2n+2m−2r+1 − (m + 2)t2m+n+1 + mt2m+n+3

(t2 − 1)2

if n is even and

Pn+2,2m+n−2
r,odd = t2r+1 + t2n+2m−2r+1 − (m + 1)t2m+n + (m − 1)t2m+n+2

(t2 − 1)2

if n is odd.
For 2r > m + n let D be the matrix expressing the quasi-invariance conditions w.r.t.

the vectors β1, . . . , βn for a homogeneous polynomial q of odd degree i with n +1 ≤ i ≤
2m + n −1. Suppose that D has maximal possible rank, that is rkD = min(i + 1−m, n)
if

i + 1

2
≤ r and n − r <

i + 1

2
− m.
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If n,m are even then

Pn+1,2m+n−1
odd = 2tm+n+1 − (m + 2)t2m+n+1 + mt2m+n+3

(t2 − 1)2
.

If n,m are odd then

Pn+1,2m+n−1
odd = 2tm+n+1 − (m + 1)t2m+n + (m − 1)t2m+n+2

(t2 − 1)2
.

If n is even, m is odd then

Pn+1,2m+n−1
odd = tm+n + tm+n+2 − (m + 2)t2m+n+1 + mt2m+n+3

(t2 − 1)2
.

If n is odd, m is even then

Pn+1,2m+n−1
odd = tm+n + tm+n+2 − (m + 1)t2m+n + (m − 1)t2m+n+2

(t2 − 1)2
.

Proof. First let q be a homogeneous quasi-invariant of degree i with n +1 ≤ i ≤ 2m −1,
i odd. The matrix D expressing the quasi-invariance conditions as equations on the
coefficients of q consists of i+1

2 columns B j

B j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α
2 j−2
1

α
2 j−2
2

α
2 j−2
3
...

α
2 j−2
r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where 1 ≤ j ≤ i+1
2 . We have rkD = min(r, i+1

2 ), so that

bi =
{

0 if n + 1 ≤ i ≤ 2r − 1,
i+1
2 − r if 2r + 1 ≤ i ≤ 2m − 1.

(7.4)

Now let q be a homogeneous quasi-invariant of degree i with max(n + 1, 2m + 1) ≤
i ≤ 2m + n − 1, and i is odd. The matrix expressing quasi-invariance conditions as
equations on the coefficients of q can be rearranged to the form

D =
(

0 A
B ∗

)

,

where the block A consists of columns A j , 1 ≤ j ≤ i+1
2 −m, while the block B consists

of columns B j , 1 ≤ j ≤ i+1
2 , with

A j =

⎛

⎜
⎜
⎜
⎜
⎝

α
2 j−1
r+1

α
2 j−1
r+2
...

α
2 j−1
n

⎞

⎟
⎟
⎟
⎟
⎠
, B j =

⎛

⎜
⎜
⎜
⎜
⎝

α
2 j−2
1

α
2 j−2
2
...

α
2 j−2
r

⎞

⎟
⎟
⎟
⎟
⎠
.

Suppose first that 2r ≤ m + n. Then there are three possibilities for the shapes of the
blocks A, B:
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(I) i+1
2 ≤ r, i+1

2 − m ≤ n − r,
(II) i+1

2 > r, i+1
2 − m ≤ n − r,

(III) i+1
2 > r, i+1

2 − m > n − r.

Note that rkM = i + 1 − m in the case (I), rkM = r + i+1
2 − m in the case (II) and

rkM = n in the case (III). Hence the dimension bi of homogeneous quasi-invariants of
degree i where n + 1 ≤ i ≤ 2m + n − 1, with i odd, is given by

bi =

⎧
⎪⎨

⎪⎩

0 if i ≤ 2r − 1,
i+1
2 − r if 2r + 1 ≤ i ≤ 2m + 2n − 2r − 1,

i + 1 − m − n if 2m + 2n − 2r + 1 ≤ i ≤ 2m + n − 1.
(7.5)

Thus for even n the dimensions (7.5) together with (7.4) give

Pn+1,2m+n−1
r,odd =

2m+2n−2r−1∑

i=2r+1
i odd

(
i + 1

2
− r

)

t i +
2m+n−1∑

i=2n+2m−2r+1
i odd

(i + 1 − m − n)t i

=
m+n−r−1∑

s=r

(s + 1 − r)t2s+1 +
m+n/2−1∑

s=n+m−r

(2s + 2 − m − n)t2s+1

= t2r+1 + t2n+2m−2r+1 − (m + 2)t2m+n+1 + mt2m+n+3

(t2 − 1)2
,

where we used the identities

b∑

s=a

ts = ta − tb+1

1 − t
,

b∑

s=a

(s + 1)t s = (a + 1)ta − ata+1 − (b + 2)tb+1 + (b + 1)tb+2

(1 − t)2
.

(7.6)
The case of odd n is similar.

Suppose now that 2r > m + n. Then there are three possibilities for the shapes of the
blocks A, B: the cases (I), (III) are as above while the case (II) is replaced with

(II′) i+1
2 ≤ r, i+1

2 − m > n − r .

We have rkD = min(i + 1 − m, n) in the case (II′) due to the assumptions. Hence the
dimension bi of homogeneous quasi-invariants of odd degree i , where n + 1 ≤ i ≤
2m + n − 1, is given by

bi =
{

0 if i ≤ m + n − 1,
i + 1 − m − n if m + n ≤ i ≤ 2m + n − 1,

where we used that for i ≤ m + n − 1 < 2r − 1 we are in the cases (I), (II′) with
rkD = i + 1 − m, and that the case (I) is impossible for i ≥ m + n. Thus we have

Pn+1,2m+n−1
r,odd =

2m+n−1∑

i=m+n
i odd

(i + 1 − m − n)t i ,

which gives the required expressions with the help of formulas (7.6). ��
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Lemma 7.7. If m + n is odd then

Pn+1,2m+2n−2
even

= t2[ n+2
2 ] − t2[ n+4

2 ] + tm+n+1 + tm+n+3 − (m + n + 1)t2m+2n + (m + n − 1)t2m+2n+2

(t2 − 1)2

+
m+n−1∑

j=[(n+2)/2]
a2 j t

2 j ,

where a2 j ∈ Z≥0 ∀ j . If m + n is even then

Pn+1,2m+2n−2
even

= t2[ n+2
2 ] − t2[ n+4

2 ] + 2tm+n+2 − (m + n + 1)t2m+2n + (m + n − 1)t2m+2n+2

(t2 − 1)2

+
m+n−1∑

j=[(n+2)/2]
a2 j t

2 j ,

where a2 j ∈ Z≥0 ∀ j .

Proof. Let bi be the dimension of the space of homogeneous quasi-invariant polynomials
of even degree i such that n + 1 ≤ i ≤ 2(m + n − 1). We claim that bi ≥ 1 for i ≤ m + n
and bi ≥ i + 1 − m − n for i > m + n. Indeed, consider the matrix D expressing the
quasi-invariant conditions for the non-zero coefficients of the polynomial of degree i .
It is easy to see that the columns of D are linearly dependent hence bi ≥ 1. Let now
i > m +n. Assume firstly that i ≥ 2m. Then D has i +1−m > n columns and rkD ≤ n,
hence bi ≥ i + 1 − m − n as required. Suppose now that m + n < i < 2m. Then after
the elementary transformations the matrix D takes the form

D̃ =

⎛

⎜
⎜
⎜
⎜
⎝

αi−1
1 . . . α3

1 α1

αi−1
2 . . . α3

2 α2
...

...
...

αi−1
r . . . α3

r αr

⎞

⎟
⎟
⎟
⎟
⎠
,

so rkD = rkD̃ ≤ min(i/2, r) ≤ min(m, n) = n. Then bi ≥ i/2 + 1−n > i + 1−m −n
since i < 2m.

Let Pn+2,2m+2n−2
g,even be the segment of the Hilbert series where we take the minimal

values bi from the above estimates:

Pn+1,2m+2n−2
g,even =

m+n∑

i=n+1
i even

t i +
2m+2n−2∑

i=m+n+1
i even

(i + 1 − m − n)t i . (7.8)
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If m + n is odd then (7.8) takes the form

Pn+1,2m+2n−2
g,even =

(m+n−1)/2∑

i=[(n+2)/2]
t2i +

m+n−1∑

i=(m+n+1)/2

(i + 1 − m − n)t2i

= t2[(n+2)/2]−t2[(n+4)/2]+tm+n+1+tm+n+3−(m + n + 1)t2m+2n +(m + n − 1)t2m+2n+2

(t2 − 1)2
(7.9)

upon applying (7.6). Similarly, if m + n is even then

Pn+1,2m+2n−2
g,even =

(m+n)/2∑

i=[(n+2)/2]
t2i +

m+n−1∑

i=(m+n+2)/2

(i + 1 − m − n)t2i (7.10)

and the statement follows from the relations (7.6). ��
Corollaries 5.4, 5.7, 5.21 and Lemmas 7.3, 7.7 imply the following statement.

Corollary 7.11. If 2r ≤ m + n then the Hilbert series (5.1) takes the form

P(t) = Pg,r (t)

(t2 − 1)2
+

m+n−1∑

j=[(n+2)/2]
a2 j t

2 j , (7.12)

where a2 j ∈ Z≥0 ∀ j and

Pg,r (t) = 1 − t2 + t2r+1 + t2n+2m−2r+1 + tm+n+1 + tm+n+3

when m + n is odd, and

Pg,r (t) = 1 − t2 + t2r+1 + t2n+2m−2r+1 + 2tm+n+2

when m + n is even.
If 2r > m + n then the Hilbert series (5.1) takes the form

P(t) = Pg(t)

(t2 − 1)2
+

m+n−1∑

j=[(n+2)/2]
a2 j t

2 j +
m+[n/2]−2∑

i=[ n+1
2 ]

a2i+1t2i+1,

where a2 j , a2i+1 ∈ Z≥0 ∀i, j and

Pg(t) = 1 − t2 + tm+n + tm+n+1 + tm+n+2 + tm+n+3

when m + n is odd, and

Pg(t) = 1 − t2 + 2tm+n+1 + 2tm+n+2

when m + n is even.

Remark 7.13. Note that it follows from Proposition 6.18, Lemmas 6.22, 7.7 and the
calculations (7.8)–(7.10) that a2(m+n−1) �= 0 if and only if A is equivalent to the config-
uration A(m,1n), in which case a2(m+n−1) = 1.
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We are now ready to prove the main result of this section.

Theorem 7.14. Let a configuration A of type (m, 1n) be Gorenstein. Then A is equiva-
lent to the configuration A(m,1n).

Proof. We have P(t) is palindromic. Suppose first that 2r ≤ m + n. We rearrange
the terms given by (7.12) to the common denominator. Observe that the only terms
of odd degree in the numerator are t2r+1 and t2(m+n−r)+1. Now, suppose the degree of
the numerator is not 2(m + n + 1). Then t2r+1 and t2(m+n−r)+1 cannot ‘match’, so the
total degree must be odd. However this means −t2 must match with some term with
odd power, which is not possible as the coefficients are different. So the total degree is
2(m + n + 1). This means that a2(m+n−1) �= 0. It follows from Remark 7.13 that A is
equivalent to A(m,1n).

Now suppose that 2r > m + n. Note that in this case r �= [ n+1
2 ] and so A �= A(m,1n).

By Remark 7.13 this implies a2m+2n−2 = 0. Suppose that n + m is even and that A is
Gorenstein. Let us rearrange the series P(t) as

P(t)

=
1−t2 + 2tm+n+1 +2tm+n+2 +(t2−1)2

∑m+[n/2]−2

i=[ n+1
2 ] a2i+1t2i+1 +

∑m+n+1
j=[ n

2 ]+1(a2 j−4−2a2 j−2 +a2 j )t
2 j

(t2 − 1)2
,

(7.15)

where we put a2[n/2]−2 = a2[n/2] = a2(m+n) = a2(m+n+1) = 0. Let d be the degree of
the numerator of (7.15).

Suppose that d is odd. Then d ≤ 2m + 2[n/2] + 1. Notice that all the even powers
t2 j in the numerator of (7.15) vanish for m + n + 2 ≤ 2 j ≤ 2(m + n). This follows
from the palindromicity of the numerator of (7.15). Indeed, if any of these powers has
non-zero coefficient then it should match with some odd power tk since d is even.
However the coefficient at tk is zero unless k ≥ 2[(n + 1)/2] + 1. In the latter case
k + 2 j ≥ 2[(n + 1)/2] + 1 + m + n + 2 > d since n ≥ m, as r ≤ n, so this is
impossible and the mentioned even powers vanish. Consider the even powers t2 j with
m + n + 4 ≤ 2 j ≤ 2(m + n). It follows recursively that a2 j−4 = 0. Consider now the
even power tm+n+2. It comes with the coefficient

am+n+2 − 2am+n + am+n−2 + 2 = am+n−2 + 2 �= 0. (7.16)

This is a contradiction which implies that d is even.
Consider now the odd terms in the numerator of (7.15) which form the palindromic

polynomial by themselves. Let p, q ∈ N, p ≤ q, be such that a2p+1 and a2q+1 be
respectively the first and the last non-zero coefficient a2i+1 from the numerator. Note that
they exist since otherwise the only remaining odd term tm+n+1 has degree bigger than d/2.
Notice that the degree n + m + 1 ≥ 2p + 1 and define q̂ = max(q, (m + n)/2−2). Define
c j = a2q̂+1−2 j − a2p+1+2 j . For 0 ≤ j < q̂ − m+n

2 + 2 we have from the palindromicity
that c j = 2c j−1 − c j−2 and it follows that c j = 0. Then cq̂−(m+n)/2+2 = −2. Let now
q̂ − (m + n)/2 + 2 ≤ j ≤ [(q̂ − p + 1)/2]. It follows from c j = 2c j−1 −c j−2 recursively
that c j = −2 j + 2q̂ − m − n + 2.

If q̂ − p is even then c(q̂−p)/2 = p + q̂ −m −n +2 < 0 since d = (2p +1)+(2q̂ +5) ≤
2(m +n). On the other hand c(q̂−p)/2 = 0 from the definition, which is a contradiction. If
q̂ − p is odd then it follows that c(q̂−p−1)/2 + c(q̂−p+1)/2 = 2(p + q̂ −m −n + 2) < 0. On
the other hand c(q̂−p−1)/2 + c(q̂−p+1)/2 = 0 from the definition, which is a contradiction.
Hence A is not Gorenstein when 2r > m + n.
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In the case m + n is odd the arguments are similar. The odd term 2tm+n+1 in the
numerator of (7.15) is replaced with two odd terms tm+n + tm+n+2. The total degree
d is still even. Indeed, the arguments are same except that the consideration of even
power tm+n+3 gives am+n+3 − 2am+n+1 + am+n−1 + 1 = am+n−1 + 1 �= 0 in place of the
relation (7.16). Then q̂ should be defined by q̂ = max(q, (n +m +1)/2−2) and one gets
cq̂−(m+n+1)/2+2 = −1. The formula c j = −2 j +2q̂−m−n+2 for j ≥ q̂−(m+n+1)/2+2
and the subsequent arguments remain unchanged. ��

8. Concluding Remarks

In this paper we studied the class BA of Baker–Akhiezer configurations on the plane.
In the case when at most one multiplicity is arbitrary, our results are most complete.
Indeed, all the corresponding configurations are explicitly described in terms of sym-
metric polynomials of the coordinates of the vectors, there is a description in terms of
Darboux transformations too. In this case we also computed the Hilbert series of the
corresponding algebras of quasi-invariants and noted the algebras are Gorenstein. We
described the class G of all configurations with Gorenstein quasi-invariants and arrived
to the same configurations:

BA = G. (8.1)

It would be interesting to clarify whether the coincidence (8.1) holds for more general
multiplicities of lines on the plane and also for the configurations in higher dimensions.
Although this looks plausible, none of the two inclusions seems clear to us. A Gaussian
bilinear form on the space of quasi-invariants when a configuration satisfies the condi-
tions (α j (k)) can be defined (cf. [10]), it might be relevant to the analysis of the Goren-
stein property. Furthermore, it would be important to clarify in the two-dimensional
case whether the configurations Aq

(m,m̃,1n)
that we considered in this paper exhaust the

set BA.
A further remark is on the class of locus configurations BAw that admit the weaker

version of the Baker–Akhiezer function [3]. In the two-dimensional case these configu-
rations are described in [5,8] (see also [9]). As all our planar configurations BA happen
to be real it would be interesting to clarify whether the subclass of real configurations
from BAw coincides with the class BA both in the two-dimensional case and in higher
dimensions.

Finally, papers [20,21] deal with the correspondence between ‘geometric data’ and
commutative rings of partial differential operators, particularly, in two variables. Thus
it would be interesting to describe the geometric data corresponding to the rings of
quasi-invariants considered in this paper.
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