
Research Article
Multiple Na\ve Bayes Classifiers Ensemble for Traffic
Incident Detection

Qingchao Liu,1,2 Jian Lu,1,2 Shuyan Chen,1,2 and Kangjia Zhao3

1 Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
2 Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China
3Department of Civil & Environment Engineering, National University of Singapore, Singapore 119078

Correspondence should be addressed to Jian Lu; lujian 1972@seu.edu.cn

Received 16 January 2014; Revised 26 March 2014; Accepted 27 March 2014; Published 28 April 2014

Academic Editor: Erik Cuevas

Copyright © 2014 Qingchao Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study presents the applicability of the Näıve Bayes classifier ensemble for traffic incident detection. The standard Naive
Bayes (NB) has been applied to traffic incident detection and has achieved good results. However, the detection result of the
practically implementedNBdepends on the choice of the optimal threshold, which is determinedmathematically by using Bayesian
concepts in the incident-detection process. To avoid the burden of choosing the optimal threshold and tuning the parameters and,
furthermore, to improve the limited classification performance of the NB and to enhance the detection performance, we propose an
NB classifier ensemble for incident detection. In addition, we also propose to combine the Naı̈ve Bayes and decision tree (NBTree)
to detect incidents. In this paper, we discuss extensive experiments that were performed to evaluate the performances of three
algorithms: standard NB, NB ensemble, and NBTree. The experimental results indicate that the performances of five rules of the
NB classifier ensemble are significantly better than those of standard NB and slightly better than those of NBTree in terms of some
indicators. More importantly, the performances of the NB classifier ensemble are very stable.

1. Introduction

The functionality of automatically detecting incidents on
freeways is a primary objective of advanced traffic manage-
ment systems (ATMS), an integral component of the Nation’s
Intelligent Transportation Systems (ITS) [1]. Traffic incidents
are defined as nonrecurring events such as accidents, disabled
vehicles, spilled loads, temporarymaintenance and construc-
tion activities, signal and detector malfunctions, and other
special and unusual events that disrupt the normal flow of
traffic and cause motorist delay [2, 3]. If the incident cannot
be handled timely, it will increase traffic delay, reduce road
capacity, and often cause second traffic accidents. Timely
detection of incidents is critical to the successful implemen-
tation of an incident management system on freeways [4].

Incident detection is essentially a pattern classification
problem, where the incident and nonincident traffic patterns
are to be recognized or classified [5]. That is to say, incident
detection can be viewed as a pattern recognition problem that

classifies traffic patterns into one of the two classes: noninci-
dent and incident classes.The classification is normally based
on spatial and temporal traffic pattern changes during an inci-
dent. The spatial pattern changes refer to the traffic pattern
alterations over a stretch of a freeway. The temporal traffic
pattern changes refer to the traffic pattern alterations over
consecutive time intervals. Typically, traffic flow maintains
a consistent pattern at upstream and downstream detector
stations.When an incident occurs, however, traffic flow at the
upstream of incident scene tends to be congested while that at
the downstream station tends to be light due to the blockage
at incident site. These changes in the traffic flow are reflected
in the detector data obtained from both the upstream and
downstream stations [5]. Therefore, an AID problem is
essentially a classification problem. Any good classifier is a
potential tool for the incident detection problem. Based on
this idea, in our approach to incident detection in general, we
treat the problem as one of pattern classification problems.
Under normal traffic operation, traffic parameters (speeds,
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occupancies, and volumes) both upstream and downstream
from a given freeway site are expected to have more or less
similar patterns in time (except under bottleneck situations).
In the case of an incident, this normal pattern is disrupted.
Patterns of incident develop increased occupancies and drop
in speeds for instance.

Automated incident detection (AID) systems, which
employ an incident detection algorithm to detect incidents
from traffic data, aim to improve the accuracy and efficiency
of incident detection over a large traffic network. Early AID
algorithmdevelopment focused on simple comparisonmeth-
ods using raw traffic data [6, 7]. To enhance algorithm perfor-
mance and to achieve real-time incident detection, advanced
methods have been suggested, which include image process-
ing [8], artificial neural networks [9], support vectormachine
[4], and data fusion [10]. Although these new published
methods represent significant improvements, performance
stability and transferability are still major issues concerning
the existing AID algorithms. To enhance freeway incident
detection and to fulfill the universality expectations for AID
algorithms, the classic Bayesian theory has attracted many
scientists’ attention. Due to the Naı̈ve Bayes ensemble and
Näıve Bayes, and decision tree (NBTree) algorithm simplicity
and easy interpretation, the applications of this approach can
be found in an abundant literature. However, the report of
its application to traffic engineering is rare. It provides ample
motivation to investigate thismodel performance on incident
detection.

There are drawbacks which limit its applications; the
optimal threshold and parameter of Näıve Bayes (NB) have
a great effect on the generalization performance, and setting
the parameters of the NB classifier is a challenging task.
At present, there is no structured method to choose them.
Typically, the optimal threshold and parameters have to been
chosen and tuned by trial and error. Some studies have
applied search techniques for this problem; however, a large
amount of computation time will still be involved in such
search techniques, which are themselves computationally
demanding.

A natural and reasonable question is whether we can
increase or at least maintain NB performance, while, at the
same time, avoiding the burden of choosing the optimal
threshold and tuning the parameters. Some researchers have
proposed classifier ensembles to address this problem. The
performance of classifier ensemble has been investigated
experimentally, and it appears to consistently give better
results [11–13]. Kittler et al. [12] used different combining
schemes based on multiple classifier ensembles, and six rules
were introduced into ensemble learning to search for accurate
and diverse classifiers to construct a good ensemble. The
presented method works on a higher level and is more direct
than other search based methods of ensemble learning. The
previous research illustrated that ensemble techniques are
able to increase the classification accuracy by combining their
individual outputs [14, 15]. While these general methods are
preexisting, their application into the specific problem and
their integration into the proposed model for the detection
of traffic incident are new. It is expected that the NB classifier
ensemble has more generalization ability, but the method has

not been seen discussed in the context of incident detection.
Coupling this expectation of reasonably accurate detection
with the attractive implementation characteristics of the NB
classifier ensemble, we propose to apply the NB classifier
ensemble achieved by the combination of different rules to
detect incidents. The NB classifier ensemble algorithm trains
many individual NB classifiers to construct the classifier
ensemble and then uses this classifier ensemble to detect
the traffic incidents. It needs to train many times. Taking
this into account, we also propose NBTree [16] for incident
detection. The NBTree splits the dataset by applying an
entropy-based algorithm and uses standard NB classifiers at
the leaf node to handle attributes.TheNBTree applies strategy
to construct a decision tree and replaces leaf nodes with NB
classifiers. We have performed some experiments to evaluate
the performances of the standard NB, NB ensemble, and
NBTree algorithms.The experimental results indicate that the
performances of five rules of the NB classifier ensemble are
significantly better than those of standard NB and slightly
better than those ofNBTree in terms of some indicators.More
importantly, the performances of the NB classifier ensemble
are very stable.

The remaining part of the paper is structured as follows.
Section 2 introduces the combination schemes of the NB
classifier ensemble. The general performance criteria of AID
are presented in Section 3. Section 4 is devoted to empirical
results. In this section, we evaluate the performances of the
three algorithms: standard NB, NB ensemble, and NBTree.
Finally, the conclusions are drawn in Section 5.

2. Na\ve Bayes Classifier and
Combining Schemes

2.1. Classification and Classifier. A dataset generally consists
of feature vectors, where each feature vector is a description
of an object by using a set of features. For example, take a
look at the synthetic dataset as shown in Figure 1. Here, each
object is a data point described by the features 𝑥-coordinate,
𝑦-coordinate, and color, and a feature vector looks like (0.8,
0.9, yellow) or (0.9, 0.1, red). Features are also called attributes,
a feature vector is also called an instance, and sometimes a
dataset is called a sample.

Näıve Bayes classifier ensemble is a predictive model that
wewant to construct or discover from the dataset.Theprocess
of generating models from data is called learning or training,
which is accomplished by a learning algorithm. In supervised
learning, the goal is to predict the value of a target feature
on unseen instances, and the learned model is also called a
predictor. For example, if we want to predict the color of the
synthetic data points, we call “yellow” and “red” labels, and
the predictor should be able to predict the label of an instance
forwhich the label information is unknown, for example, (0.7,
0.7). If the label is categorical, such as color, the task is called
classification and the learner is also called classifier.

2.2. Naı̈ve Bayes Classifier. To classify a test instance 𝑥, one
approach is to formulate a probabilistic model to estimate
the posterior probability 𝑃(𝜔 | 𝑥) of different 𝜔’s and predict
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Instance: (X, Y; color)
(1) If (X < 0.25 and Y > 0.75) or

(X > 0.75 and Y < 0.25) then→

(2) If (X > 0.75 and Y > 0.75) then→

Y ∈ [0.25, 0.50]) then→

(3) If (X < 0.25 and Y < 0.25) then→

(4) If (X ∈ [0.25, 0.50] and

Figure 1: The synthetic dataset.

the one with the largest posterior probability; this is the
maximum a posteriori (MAP) rule. By Bayes Theorem, we
have

𝑃 (𝜔 | 𝑥) =

𝑃 (𝜔 | 𝑥) 𝑃 (𝜔)

𝑃 (𝑥)

, (1)

where 𝑃(𝜔) can be estimated by counting the proportion of
class𝜔 in the training set and𝑃(𝑥) can be ignored sincewe are
comparing different 𝜔’s on the same 𝑥. Thus we only need to
consider 𝑃(𝑥 | 𝜔). If we can get an accurate estimate of 𝑃(𝑥 |
𝜔), we will get the best classifier in theory from the given
training data, that is, the Bayes optimal classifier with the
Bayes error rate, the smallest error rate in theory. However,
estimating 𝑃(𝑥 | 𝜔) is not straightforward, since it involves
the estimation of exponential numbers of joint-probabilities
of the features. To make the estimation tractable, some
assumptions are needed. The naive Bayes classifier assumes
that, given the class label, the 𝑛 features are independent of
each other within each class. Thus, we have

𝑃 (𝑥 | 𝜔) =

𝑛

∏

𝑖=1

𝑃 (𝑥
𝑖
| 𝜔) (2)

which implies that we only need to estimate each feature value
in each class in order to estimate the conditional probability,
and therefore the calculation of joint-probabilities is avoided.
In the training stage, the naive Bayes classifier estimates

the probabilities 𝑃(𝜔) for all classes 𝜔 ∈ 𝜔 and 𝑃(𝑥
𝑖
| 𝜔) for

all features 𝑖 = 1, 2, . . . , 𝑛 and all feature values 𝑥
𝑖
from the

training set. In the test stage, a test instance will be predicted
with label 𝜔 if 𝜔 leads to the largest value of all the class labels

𝑃 (𝜔 | 𝑥) ∝ 𝑃 (𝜔)

𝑛

∏

𝑖=1

𝑃 (𝑥
𝑖
| 𝜔) . (3)

As demonstrated in paper [17], for a threshold level of
0.0006, 65.4% of incidents were identified. However, if the
threshold cannot be chosen appropriately, fewer incidents
will be identified correctly. As known frommachine learning,
the naive Bayesian classifier provides a simple approach,
with clear semantics, for representing, using, and learning
probabilistic knowledge. The method is designed for use in
supervised induction tasks, in which the performance goal
is to accurately predict the class of test instances and in
which the training instances include class information. In this
way, it avoids choosing the optimal threshold and tuning the
parameters manually.

2.3. Combining Schemes

2.3.1. Five Rules. Themost widely used probability combina-
tion rules [12] are the product rule, the sum rule, themin rule,
and the max rule. Given 𝑁 classifiers and 𝑐

1
, . . . , 𝑐

𝑁
, classes

𝜔
1
, . . . , 𝜔

𝐾
, these are defined as follows.

Product rule:

𝑃 (𝜔
𝑘
| x
1
, . . . , x

𝑁
) =

1

𝑃 (𝜔
𝑘
)

𝑁

∏

𝑛=1

𝑃 (𝜔
𝑘
| x
𝑛
) , (4)

where x
𝑛
is the input to the 𝑛’th classifier and 𝑃(𝜔

𝑘
) is the a

priori probability for class 𝜔
𝐾
.

Sum rule:

𝑃 (𝜔
𝑘
| x
1
, . . . , x

𝑁
) =

1

𝑁

𝑁

∑

𝑛=1

𝑃 (𝜔
𝑘
| x
𝑛
) . (5)

Min rule:

𝑃 (𝜔
𝑘
| x
1
, . . . , x

𝑁
) =

min
𝑛
𝑃 (𝜔
𝑘
| x
𝑛
)

∑
𝐾

𝑘=1
min
𝑛
𝑃 (𝜔
𝑘
| x
𝑛
)

. (6)

Max rule:

𝑃 (𝜔
𝑘
| x
1
, . . . , x

𝑁
) =

max
𝑛
𝑃 (𝜔
𝑘
| x
𝑛
)

∑
𝐾

𝑘=1
max
𝑛
𝑃 (𝜔
𝑘
| x
𝑛
)

. (7)

Majority vote rule:

Δ
𝑘𝑖
=

{

{

{

1 if 𝑃 (𝜔
𝑘
| x
𝑖
) =

𝐾max
𝑗=1

𝑃 (𝜔
𝑗
| x
𝑖
)

0 otherwise,

𝑁

∑

𝑖=1

Δ
𝑖
=

𝐾max
𝑘=1

𝑁

∑

𝑖=1

Δ
𝑘𝑖
.

(8)

Note that for each class 𝜔
𝑘
, the sum on the right hand side of

(8) simply counts the votes received for this hypothesis from
the individual classifiers. The class that receives the largest
number of votes is then selected as the majority decision.
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2.3.2. Combine Decision Tree and Naı̈ve Bayes. The Näıve
Bayesian tree (NBTree) algorithm is similar to the classical
recursive partitioning schemes, except that the leaf nodes cre-
ated are näıve Bayesian classifiers instead of nodes predicting
a single class [16]. First, define a measure called entropy that
characterizes the purity of an arbitrary collection of instances.
Given a collection 𝑆, if the target attribute can take on 𝑐
different values, then the entropy of 𝑆 relative to this 𝑐-wise
classification is defined as

Entropy (𝑆) = −
𝑐

∑

𝑖=1

𝑝
𝑖
log
2
(𝑝
𝑖
) , (9)

where 𝑝
𝑖
is the proportion of 𝑆 belonging to class 𝑖. The

information gain, Gain(𝑆, 𝐴), of an attribute 𝐴, the expected
reduction in entropy caused by partitioning the examples
according to this attribute relative to 𝑆, is defined as

Gain (𝑆, 𝐴) = Entropy (𝑆) − ∑

V∈value(𝐴)

󵄨
󵄨
󵄨
󵄨
𝑆V
󵄨
󵄨
󵄨
󵄨

|𝑆|

Entropy (𝑆V) ,

(10)

where value (𝐴) is the set of all possible values for attributes
𝐴 and 𝑆V is the subset of 𝑆 for which attribute 𝐴 has value
V. NBTree is a hybrid approach that attempts to utilize
the advantage of both decision trees and näıve Bayesian
classifiers. It splits the dataset by applying an entropy-based
algorithm and uses standard näıve Bayesian classifiers at the
leaf node to handle attributes. NBTree applies strategy to
construct a decision tree and replaces leaf nodes with NB
classifiers.

3. Performance Criteria of Aid

3.1. Definition of DR, FAR, MTTD, and CR. Four primary
measures of performance, namely, detection rate (DR), false
alarm rate (FAR), mean time to detection (MTTD), and
classification rate (CR), are used to evaluate traffic incident
detection algorithms. We will quote the definitions from
[18, 19].

DR is defined as the number of incidents correctly
detected by the traffic incident detection algorithmdivided by
the total number of incidents known to have occurred during
the observation period:

DR = number of incident cases detected
total number of incident cases

× 100%. (11)

FAR is defined as the proportion of instances that were
incorrectly classified as incident instances based on the total
instances in the testing set. Out of the total number of
applications of the model to the dataset, FAR is calculated
to determine how many incident alarms were falsely set.
In order to decrease FAR, persistent test is often used. An
incident alarm is triggered whenever 𝑛 consecutive outputs
of the model exceed the threshold, which is called persistent
check of 𝑛

FAR = number of false alarm cases
total number of non-incident cases

× 100%.
(12)

MTTD is computed as the average length of time between the
start of the incident and the time the alarm is initiated.When
multiple alarms are declared for a single incident, only the
first correct alarm is used for computing the detection rate
and the mean time to detect

MTTD =
𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑖
+ ⋅ ⋅ ⋅ + 𝑡

𝑚

𝑚

. (13)

Besides these three measures, we also use classification
rate (CR) as an index to test traffic incident detection
algorithms. Of the total number of applications of cycle
length data or input instances, the percentage of correctly
classified instances (including both incident and nonincident
instances) by the model is computed as CR

CR =
number of instances correctly classified

total number of instances
× 100%.

(14)

3.2. Area under the ROC Curve (AUC). Receiver opera-
tor characteristic (ROC) curves illustrate the relationship
between the DR and the FAR from 0 to 1. Often the
comparison of two or more ROC curves consists of either
looking at the area under the ROC curve (AUC) or focusing
on a particular part of the curves and identifying which curve
dominates the other in order to select the best-performing
algorithm. AUC, when using normalized units, is equal to
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one
(assuming “positive” ranks higher than “negative”) [20]. It
can be shown that the area under the ROC curve is closely
related to theMann-Whitney𝑈, which testswhether positives
are ranked higher than negatives. It is also equivalent to the
Wilcoxon test of ranks [21]. The AUC is related to the Gini
coefficient (𝐺

1
) by the formula [22]. In this way, it is possible

to calculate the AUC by using an average of a number of
trapezoidal approximations:

AUC = 𝐺1 + 1
2

, (15)

where 𝐺
1
= 1 − ∑

𝑛

𝑘=1
(𝑋
𝑘
− 𝑋
𝑘−1
)(𝑌
𝑘
+ 𝑌
𝑘−1
).

3.3. Statistics Indicators. In statistics, the mean absolute error
(MAE) is a quantity used to measure how close forecasts or
predictions are to the eventual outcomes. The mean absolute
error is given by

MAE = 1
𝑛

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌̂
𝑖
− 𝑌
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
. (16)

The root-mean-square error (RMSE) is a frequently used
measure of the differences between values predicted by a
model or an estimator and the values actually observed.
These individual differences are called residuals when the
calculations are performed over the data sample that was
used for estimation and are called prediction errors when
computed out of sample. The RMSE serves to aggregate
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the magnitudes of the errors in predictions for various times
into a single measure of predictive power:

RMSE = √ 1
𝑛

𝑛

∑

𝑖=1

(𝑌̂
𝑖
− 𝑌
𝑖
)

2

. (17)

The equality coefficient (EC) is useful for comparing different
forecast methods; for example, whether a fancy forecast is
in fact any better than a naı̈ve forecast repeating the last
observed value. The closer the value of EC is to 1, the better
the forecast method. A value of zero means the forecast is no
better than a näıve guess:

EC = 1 −
√∑
𝑛

𝑖=1
(𝑌
𝑖
− 𝑌̂
𝑖
)

2

√∑
𝑛

𝑖=1
𝑌
2

𝑖
+ √∑

𝑛

𝑖=1
𝑌̂
2

𝑖

.
(18)

Kappa measures the agreement between two raters who each
classify 𝑁 items into 𝐶 mutually exclusive categories. Kappa
is computed as formula (19), 𝑃(𝐴) is the observed agreement
among the raters, and 𝑃(𝐸) is the expected agreement; that
is, 𝑃(𝐸) represents the probability that the raters agree by
chance. The values of Kappa are constrained to the interval
[−1, 1]. Kappa = 1means perfect agreement, Kappa = 0means
that agreement is equal to chance, and Kappa = −1 means
“perfect” disagreement:

Kappa = 𝑃 (𝐴) − 𝑃 (𝐸)
1 − 𝑃 (𝐸)

. (19)

4. Experiments on Traffic Incident Detection

4.1. Parameters and Procedures of Experiments. To describe
the experiments clearly, we first present the definitions for
all parameters and symbols used in experiments. Then, we
describe the experiment procedures in detail.

4.1.1. Parameters of Experiments. Some parameters are
adopted to make the procedures of the experiments more
automatic and optimized. In addition, some symbols are
used to denote specified conceptions. For clarity, we have
presented the definitions of each parameter and symbol in
Table 1.

4.1.2. Construction of Datasets for Training and Testing. The
traffic datamentioned refers to three basic traffic flow param-
eters, namely, volume, speed, and occupancy. The incident is
detected based on section, which means that the traffic data
collected from the upstream and the downstream detection
stations are usually used as model inputs in AID systems. In
Figure 2, A1, namely, the first attribute, so the number of 𝑋-
variables (predictor variables) is 6.Thismeans that thematrix
𝑋used in training themodel has the size 𝑛

𝑆
×6.The test data𝑋

form amatrix of size 𝑛
𝑇
×6. The formal description of matrix

𝑋 and 𝑌 can be written as shown in Figure 2.
One instance consists of at least the following items:

(i) speed, volume, and occupancy of the upstream detec-
tor,

(ii) speed, volume, and density of the downstream detec-
tor,

(iii) traffic state (incident or nonincident),

where the item “traffic state” is a label. The value of the label
is −1 or 1, referring to nonincident or incident, respectively,
which is determined by the incident dataset. Typically, the
model is fit for part of the data (the training set), and the
quality of the fit is judged by how well it predicts the other
part of the data (the test set). The entire dataset was divided
into two parts: a training set that was used to build the model
and a test set that was used to test the model’s detection
ability. Where each row is composed of one observation, 𝑛 is
the number of instances and 𝑦

𝑖
∈ {−1, 1}. The data analysis

problem is to relate the matrix 𝑌 as some function of the
matrix 𝑋 to predict 𝑌 (e.g., traffic state) using the data of 𝑋,
𝑦 = 𝑓(𝑥). The training set was used to develop a Näıve Bayes
classifier ensemble that was, in turn, used to detect incidents
for the test set samples. The output values of the detection
models were then compared with the actual ones for each
of the calibration samples, and the performance criteria were
calculated and compared.

4.1.3. Experiments Procedures. The experiments were per-
formed according to the procedures as shown in Figure 3.

Step 1. Divide the whole dataset𝐷 into training set 𝑆 and test
set 𝑇. We take part of the whole dataset 𝐷 as the training set
𝑆, the other as test set 𝑇 and use the parameter 𝑛

𝑠
to control

the size of the training set 𝑆, and 𝑆 is obtained by taking out
𝑛
𝑠
samples from the front to the back of𝐷.

Step 2. Perform sampling with replacement from training set
𝑆 𝑛 times and then obtain the training subsets 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
.

We use the parameter 𝑟 to control the ratio of the number of
samples in the training subset to the number of samples in
the training set; that is, the number of samples in the training
subset is 𝑛sub = 𝑛𝑠 × 𝑟. The range of 𝑟 is [0, 1].

Step 3. While 𝑘 = 1, 2, 3, . . . , 𝑛, perform the following:

(1) use the training subset 𝑆
𝑘
to train the 𝑘th individual

NB classifier INBC
𝑘
;

(2) use the training subset 𝑆
𝑘
to train the 𝑘th NBTree

classifier INBTreeC
𝑘
;

(3) use the all the 𝑘 existing individual NB classifiers to
construct the 𝑘th ensemble NB classifier ENBC

𝑘
.

Step 4. While 𝑘 = 1, 2, 3, . . . , 𝑛, perform the following:

(1) test the performances of the 𝑘th individual NB classi-
fier INBC

𝑘
on test set 𝑇;

(2) test the performances of the 𝑘th NBTree classifier
INBTreeC

𝑘
on test set 𝑇;

(3) test the performances of the 𝑘th ensemble NB classi-
fier ENBC

𝑘
on test set 𝑇.
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A1 A2 A3 A4 A5 A6 Class

Upstream data Downstream data

MatrixX Matrix Y

First instance

Last instance

...
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Traffic state1

Traffic staten

Speedup 1 Volumeup 1 Occupancyup 1 Speeddn 1 Volumedn 1 Occupancydn 1

Speedup n Volumeup n Occupancyup n Speeddn n Volumedn n Occupancydn n

Figure 2: Construction of traffic datasets.
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Alarm
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Näıve Bayes classifier

Figure 3: A freeway incident detection model based on Näıve Bayes classifier ensemble.
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Table 1: Definition of Symbols and Parameters.

Parameter/Symbol Definition

Symbol

𝐷 The whole dataset
𝑆 Training set
𝑇 Test set
𝑆
𝑘

The 𝑘th subset of training set
INBC

𝑘
The 𝑘th individual Näıve Bayes classifier

ENBC
𝑘

The 𝑘th ensemble Näıve Bayes classifier
INBTreeC

𝑘
The 𝑘th individual NBTree classifier

Parameter

𝑛 The total number of the training subsets
𝑟 The ration of 𝑛sub to 𝑛𝑆
𝑛
𝑇

The number of samples in test set 𝑇
𝑛
𝑆

The number of samples in training set 𝑆
𝑛all The total number of samples in the whole dataset𝐷
𝑛sub The number of samples in the training subset (each training subset has the same number of samples)
𝑛incident The number of incident samples in the whole dataset
𝑛nonincident The number of non-incident samples in the whole dataset

Table 2: Parameter Setting of Experiments.

Parameter Setting of Experiments for I-880 Dataset
Parameter 𝑛 𝑟 𝑛

𝑇
𝑛
𝑆

𝑛sub 𝑛all 𝑛incident 𝑛nonincident

Value 20 0.05 45138 45518 2275 90656 4136 86520
Parameter Setting of Experiments for AYE Dataset

Parameter 𝑛 𝑟 𝑛
𝑇

𝑛
𝑆

𝑛sub 𝑛all 𝑛incident 𝑛nonincident

Value 20 0.05 16000 13500 675 29500 6000 23500

4.2. Experiments on I-880 Dataset

4.2.1. Data Description for I-880 Dataset. We proceeded to
real world data. These data were collected by Petty et al. from
the I-880 Freeway in the San Francisco Bay area, California,
USA. This is the most recent and probably the most well-
known freeway incident dataset collected, and these data have
been used inmany studies related to incident detection. Loop
detector data, with and without incident, was collected from
a 9.2 miles (14.8 km) segment of the I-880 Freeway between
the Marina and Wipple exits, in both directions. There were
18 loop detector stations in the northbound direction and
17 stations in the southbound direction. The data collected
included traffic volume, occupancy, and speed, averaged
across all lanes in 30 s intervals at the same station. In
summary, the training dataset has 45,518 training instances,
of which 2100 are incident instances (from 22 incident cases).
The testing dataset has 45,138 instances in all, including 2036
incident instances (from 23 incident cases). Thus, incident
examples are very rare in this dataset, as only approximately
4.6% and 4.5% incident examples are contained in the
training set and the testing set, respectively. Each instance
has seven features. In addition to the measurements of
speed, volume, and occupancy collected at both the upstream
detector station and the downstream detector station, the
last one is the class label, −1 for nonincident state and 1 for
incident state.

4.2.2. Parameter Setting of Experiments for I-880 Dataset. To
divide 𝑛

𝑆
into 𝑛sub properly, there are some parameters that

need to be set, which can be seen in Table 2. We set values for
each parameter and present the results in Table 2.

In our experiments, we constructed 20 individual NB
classifiers, 20NB ensemble classifiers, and 20 NBTree clas-
sifiers. We tested the performances of the five rules of
each classifier on the I-880 dataset. Then, we calculated
the averages and variances of the performances of the 20
individual NB classifiers, 20NB ensemble classifiers, and 20
NBTree classifiers. The summarized results are in Table 3. In
Table 3, the results are presented with the form average ±
variance, and the best results are highlighted in bold. Tomake
a visual comparison of the performances of all classifiers, we
plotted them in Figures 4 and 5.

4.3. Experiments on AYE Dataset with Noisy Data

4.3.1. Data Description for AYE Dataset. The traffic data used
in this study for the development of the incident detection
models was produced from a simulated traffic system. A
5.8 km section of the Ayer Rajah Expressway (AYE) in
Singapore was selected to simulate incident and nonincident
conditions.This site was selected for incident detection study
because of its diverse geometric configurations that can cover
a variety of incident patterns [23, 24].
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The simulation system generated volume, occupancy, and
speed data at upstream and downstream sites for both inci-
dent and nonincident traffic conditions. The traffic dataset
consisted of 300 incident cases that had been simulated based
on AYE traffic.The simulation of each incident case consisted
of three parts. The first part was the nonincident period
that lasted for 5min. This was after a simulation of a 5min
warm-up time. During the warm-up time, the data contains
noise. The second part was the 10min incident period. This
was followed by a 30min postincident period. Each input
pattern included traffic volume, speed, and lane occupancy
accumulated at 30 s intervals, averaged across all the lanes, as
well as the traffic state. The value of the traffic state label is −1
or 1, referring to nonincident or incident states, respectively.

4.3.2. Parameter Setting of Experiments for the AYE Dataset.
As we used a new dataset to perform the experiments, the
parameter values of the experiments needed to be updated.
The updated parameter values can be seen in Table 2.

4.3.3. Experimental Results with the AYE Dataset. As men-
tioned in Section 4.3.1, the AYE dataset includes noisy data,
which seriously reduces the quality of the detection. There-
fore, the experimental results obtained with the AYE dataset
are much worse than the experimental results from the I-
880 dataset overall. The AYE dataset experimental results are
summarized in Figures 6 and 7 and Table 4. In Table 4, for
each algorithm of standard NB, NB ensemble, and NBTree,
we calculate the averages and variances of the performances
of the total 20 individual classifiers or ensemble classifiers.
The results are presented as average ± variance, and the best
results are highlighted in bold.

4.4. Performance Evaluation. In this subsection, we have
evaluated the performances of all three algorithms, standard
NB, NB ensemble, and NBTree, using the I-880 dataset and
the AYE dataset with noisy data. In Figures 4 and 6, the
subfigures (a)∼(f) evaluate the performances of five rules on
the indicators DR, FAR, MTTD, CR, AUC, and Kappa. In
Figures 5 and 7, the subfigures evaluate the performances of
MAE, RMSE, and EC.

4.4.1. Performance Evaluation for the I-880 Dataset. From
Figures 4 and 5, we can see that the performances of the
sum rule, the max rule, and the min rule are stable and
significantly better than the performances of the product
rule and the majority vote rule. The performances of the
product rule and the majority vote rule fluctuate violently
dynamically, which demonstrates that the performances are
unstable. The reason for this is that the results of the Näıve
Bayes algorithm depend on the appropriate threshold and
parameters, and the algorithm is not resilient to estimation
errors. For example, in Figure 4(a), the DR of the product
rule and the majority vote rule reaches 88% and 82% or
even higher. In contrast, DR can also reach as low as 78%
or even lower. In Figure 5 concerning the product rule,
when the number of classifiers is less than 10, the RMSE
reaches as low as 0.17 or even lower. In contrast, the RMSE

can reach 0.19 or even higher. These results indicate that
when the threshold and parameters are chosen appropriately,
the detection performance can improve. We need to select
an appropriate threshold and parameters to make the NB
ensemble achieve optimal performances, But the procedures
for choosing an appropriate threshold and parameters need
to use the trial and error method. Until now, there has not
been a structuredway to choose these values.There is another
significant phenomenon that can be found from the data in
Figures 4 and 5. When the number of classifiers increases,
the performance of the five rules mitigates their fluctuation,
and they tend to achieve a stable value. The reason for this
is that the multiple classifiers ensemble can compensate for
the defect of a single classifier to some extent. From Figure 4,
we can also see that the performances of the sum rule, the
max rule, and the min rule on each indicator are very close
to each other. As for the indicators DR, FAR, AUC, and
Kappa, the performance of the sum rule is slightly better
than that of the max rule and the min rule. As mentioned
above, AUC and Kappa can evaluate the performances more
comprehensively than can the other four indicators. To make
an overall evaluation, the performances of the NB ensemble
are slightly better than those of the Näıve Bayes.

In Table 3, the average DR value of Näıve Bayes is 82.28%,
whereas the average DR value of the five rules ranges from
81.93% to 89.63%. This indicates that the NB ensemble algo-
rithm is more sensitive to the traffic incidents and can detect
more traffic incidents than can the standard Näıve Bayes
algorithm. The average MTTD value of NBTree is 1.36min,
which indicates that the NBTree algorithm can detect the
incidents more quickly than NB ensemble algorithm. The
average value of CR of NBTree is 98.31%, which indicates that
NBTree can achieve the higher classification accuracy of the
incident instance than can the Näıve Bayes and NB ensemble
algorithm. The average Kappa value of NBTree is 0.8052,
which indicates that the performance of NBTree classifier
is significantly better than those of the other classifiers. In
addition, it can detect more incidents than the NB ensemble,
but the experimental results are not the same. The reason
for this is that the FAR of NBTree is the highest. FAR
improves the performance of the NBTree classifier.TheMAE,
RMSE, and EC of the product rule are best, which indicates
that the predicted value of the product rule is the closest
approximation.

4.4.2. Performance Evaluation Using AYE Dataset with Noisy
Data. From Figures 6 and 7, we can see that when the dataset
includes noisy data, the performances of the sum rule, the
max rule, and the min rule are still stable and significantly
better than the performances of the product rule and the
majority vote rule. In addition, we also find that the perfor-
mances of the sum rule, the max rule, and the min rule are
much better than those of the product rule and the majority
vote rule on the indicators of DR, FAR, CR, and Kappa.
Among the five rules, it appears that the min rule yields the
highest average MAE, whereas the other rules are similar. As
far as EC is concerned, the five rules perform at a similar
level that is better than that of the NBTree. The opposite case
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Figure 4: Experimental results of five rules for the Naı̈ve Bayes ensembles as applied to the I-880 dataset: (a) performance with DR; (b)
performance with FAR; (c) performance with MTTD; (d) performance with CR; (e) performance with AUC; (f) performance with Kappa.
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Figure 5: Bar chart comparison of five rules for Naı̈ve Bayes classifier ensembles as applied to the I-880 dataset. The red bar is MAE, the
green bar is RMSE, and the blue bar is EC.
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Figure 7: Bar chart comparison of five rules for Naı̈ve Bayes classifier ensembles as applied to the AYE dataset.The red bar is MAE, the green
bar is RMSE, and the blue bar is EC.
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is observed with RMSE. Comparing Figure 4 and Figure 5,
we find that the performances of all five rules are reduced in
Figure 5. The reason for this is that the noisy data involved
in the process of training a single classifier result in the
final output of the NB ensemble being worse. However, the
performances of the sum rule, the max rule, and the min rule
are reduced, which indicates that the sum rule, the max rule,
and themin rule have a better ability to tolerate the noisy data
among the five rules.

In Tables 3 and 4, the dataset we used is extremely
unbalanced. A very high CR, even exceeding 90%, does
not indicate good detection performance. In Table 4, the
average DR value of the Näıve Bayes algorithm is 71.12% and
the average DR value of the NBTree algorithm is 72.75%.
Both values are less than 75%, which is unsatisfactory for
practical applications. The DR values of the product rule
and the majority rule are even lower (64.57% and 62.46%,
resp.). These results indicate that if the average accuracy of
the individual NB classifiers is lower, the average accuracy
of the ensemble classifiers, which are constructed using
these individual classifiers, will become even lower than the
average accuracy of the individual NB classifiers in certain
combination rules.

Therefore, we should avoid drawing noisy data into the
NB ensemble.The standard Näıve Bayes and NBtree are both
individual classifiers, and they only need to train one time. In
contrast to standard Näıve Bayes and NBtree, NB ensemble
needs to train many individual NB classifiers to construct
the NB ensemble. The training time of the NB ensemble
is relatively long. From Figures 4(a)–4(f), we can see that
in order to obtain relatively better performance, the NB
ensemble needs approximately 15 individual NB to construct
theNB ensemble; that is, theNB ensemble algorithmneeds to
train 15 times.Thus, compared withNB ensemble, the NBtree
algorithm saves a large amount of time cost.

5. Conclusions

The Näıve Bayes classifier ensemble is a type of ensemble
classifier based on Naı̈ve Bayes for AID. In contrast to
Näıve Bayes, the NB classifier ensemble algorithm trains
many individual NB classifiers to construct the classifier
ensemble and then uses this classifier ensemble to detect the
traffic incidents, and it avoids the burden of choosing the
optimal threshold and tuning the parameters. In our research,
we take the traffic incident detection problem as a binary
classification problem based on the ILD data and use the
NB ensemble to divide the traffic patterns into two groups:
an incident traffic pattern and nonincident traffic pattern. In
this paper, we have performed two groups of experiments to
evaluate the performances of the three algorithms: standard
Näıve Bayes, NB ensemble, and NBTree. In the first group of
experiments, we used all the three algorithms as applied to the
I-880 dataset without noisy data. The results indicate that the
performances of the five rules of the NB ensemble are signif-
icantly better than those of standard Näıve Bayes and slightly
better than those ofNBTree in terms of some indicators.More
importantly, the NB ensemble performance is very stable. To

further test the stability of the three algorithms, we applied
the three algorithms to the AYE dataset with noisy data in the
second group of experiments. The experimental results indi-
cate that the NB ensemble has the best ability to tolerate the
noisy data among the three algorithms. After analyzing the
experimental results, we found that if the average accuracy
of the individual NB classifiers is lower, the average accuracy
of the ensemble classifiers constructed by these individual
classifiers will become even lower than the average accuracy
of the individual NB classifiers. To obtain good results for the
NB ensemble classifier, we should avoid drawing the noisy
data into the ensemble. NBTree is an individual classifier that
needs to train only one time, whereas the NB ensemble needs
to train many individual NB classifiers to construct the NB
ensemble. As a result, compared with the NBTree algorithm,
theNBTree algorithm reduces the time cost.The contribution
of this paper is that it presents the development of a freeway
incident detection model based on the Naı̈ve Bayes classifier
ensemble algorithm.TheNB ensemble not only improves the
performances of traffic incidents detection but also enhances
the stability of the performances with an increased number
of classifiers. The advantage of NBTree is that the MTTD
value is better than that of the NB ensemble algorithm.
We believe that the NB ensemble algorithm and NBTree
can be successfully utilized in traffic incidents detection and
the other classification problems. In a future study, we will
concentrate on constructing an NB ensemble and scaling up
the accuracy of NBTree to detect traffic incidents.
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