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We consider a single-server constant retrial queueing system with a Poisson arrival process and exponential service and retrial
times, in which the server may break down when it is working.The lifetime of the server is assumed to be exponentially distributed
and once the server breaks down, it will be sent for repair immediately and the repair time is also exponentially distributed. There
is no waiting space in front of the server and arriving customers decide whether to enter the retrial orbit or to balk depending on
the available information they get upon arrival. In the paper, Nash equilibrium analysis for customers’ joining strategies as well as
the related social and profit maximization problems is investigated. We consider separately the partially observable case where an
arriving customer knows the state of the server but does not observe the exact number of customers waiting for service and the fully
observable case where customer gets informed not only about the state of the server but also about the exact number of customers
in the orbit. Some numerical examples are presented to illustrate the effect of the information levels and several parameters on the
customers’ equilibrium and optimal strategies.

1. Introduction

Queueing systems in which arriving customers who find
the server occupied may retry for service after a period
of time are called retrial queues or queues with repeated
orders. Among trials, a customer is said to be in “orbit”. The
retrial queueing systemhas been studied extensively due to its
wide applications in telephone switching systems, telecom-
munication networks, and computer networks. The retrial
queueing literature is quite extensive. For a recent account,
the readers are referred to the books of Falin and Templeton
[1] and Artalejo and Gómez-Corral [2] in which they have
summarized the main models and methods thoroughly.

In the retrial queueing literature, the vast majority
of articles assume that each customer seeks for service
independently of other customers in orbit after a random
time. In such cases, the total retrial rate of the system depends
on the number of retrial customers in orbit. Nevertheless,
in reality there are other types of queueing situations in
which the repeated customers form a queue in orbit and only

the head customer of the orbit can request a service after a
random retrial time. This type of retrial discipline is called
“constant retrial policy” and it arises from some applications
in the computer and communication networks where the
retrial rate is controlled by some automatic mechanism.
It was introduced in Fayolle [3], who studied a telephone
exchange model as an M/M/1 retrial queue in which the
orbiting customer who finds the server unavailable joins the
tail of the queue. Farahmand [4] called this discipline a retrial
queue with FCFS orbit. Later on, both retrial policies are
incorporated by assuming the linear retrial policy introduced
in Artalejo and Gómez-Corral [5].

Recently, Economou and Kanta [6] studied the equi-
librium customer strategies and the social and profit max-
imization problems in the constant retrial system. They
investigated two information cases: the unobservable case
where the customers know only the state of the server (busy
or idle) and the observable case where they also get informed
about the number of customers in the retrial orbit. The
customers’ behavior is taken into account to identify theNash

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 379572, 14 pages
http://dx.doi.org/10.1155/2014/379572



2 Mathematical Problems in Engineering

equilibrium joining strategies. It differs from equilibrium
analysis of retrial systems with the classical retrial policy; see,
for instance, Kulkarni [7], Elcan [8], Hassin and Haviv [9],
and Zhang et al. [10] and Wang et al. [11], among others.
However, although we have found several retrial models with
servers subject to breakdowns that consider orbits as FCFS
queues, for example, in Atencia et al. [12], and Li and Zhao
[10]. To the authors’ knowledge, no work has been done on
such queueing systems from an economic view. Thus, in this
paper, we propose to study such an M/M/1 retrial queue
with the constant retrial policy and server’s breakdowns and
repairs as an extension of the paper considered by Economou
and Kanta [6] who have also considered the observable
single-server queue with breakdowns and repairs, see [13].
To this end, the methodology will be based on the game-
theoretic analysis and optimization.

This paper is organized as follows. In Section 2, we give
the model description and the natural reward-cost structure.
In Sections 3 and 4, we determine Nash equilibrium, social,
and profit maximization strategies for joining the retrial orbit
in the partially observable case and the fully observable case,
respectively. In Section 5, some numerical examples are given
to illustrate the effect of the information levels and several
parameters on the customers’ strategies. Finally, in Section 6,
some conclusions are given.

2. Model Description

We consider a single-server retrial queue without waiting line
in which customers arrive according to a Poisson process at
rate 𝜆. The service times are assumed to be exponentially
distributed with parameter 𝜇. During the busy periods, the
server may break down and once breakdown occurs, the
server will be repaired immediately. The customer being
served will stay at the service area waiting for the server
restored.The lifetime of the server is assumed to be exponen-
tially distributed with parameter 𝜉, and the repair time is also
exponentially distributed with parameter 𝜂.

Customers that find the server idle upon arrival will
occupy the server immediately and start being served. On
completion of the service, they leave the system. Upon
arrival, if the server is busy, the arriving customers will join
the retrial orbit and then retry for service according to an
FCFS discipline. That is, only the customer at the head of
the orbiting queue can repeat his request for service. We
assume that retrial times are exponentially distributed with
parameter𝛼. Obviously, the retrials can success onlywhen the
server is idle. In addition, newly arriving customers that find
the server broken will leave the system and never enter the
retrial orbit. Finally, it is assumed that the interarrival times,
service times, lifetime of the server, repair times, and retrial
times are mutually independent.

We denote the state of the system at time 𝑡 by a random
vector (𝐼(𝑡),𝑁(𝑡)), where 𝐼(𝑡) denotes the state of the server,
0, 1, 2 corresponding to the state of idle, busy or broken,
respectively. And 𝑁(𝑡) is the number of customers in the
orbit. Then (𝐼(𝑡),𝑁(𝑡)) is a continuous-time Markov chain
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Figure 1: Transition rate diagram of the original model.

with state space 𝑆 = {0, 1, 2} × {0, 1, 2, . . .} and the related
transition rates are given by

𝑞(0,𝑗)(1,𝑗) = 𝜆, 𝑗 ≥ 0, (1)

𝑞(1,𝑗)(0,𝑗) = 𝜇, 𝑗 ≥ 0, (2)

𝑞(1,𝑗)(1,𝑗+1) = 𝜆, 𝑗 ≥ 0, (3)

𝑞(0,𝑗)(1,𝑗−1) = 𝛼, 𝑗 ≥ 1, (4)

𝑞(1,𝑗)(2,𝑗) = 𝜉, 𝑗 ≥ 0, (5)

𝑞(2,𝑗)(1,𝑗) = 𝜂, 𝑗 ≥ 0. (6)

The corresponding transition rate diagram is shown in
Figure 1.

We focus on studying the behavior of customers when
they are allowed to decidewhether to join or balk based on the
available information upon their arrival, including the queue
length and/or the state of the server. In this paper, we assume
that on completion of service, every customer receives a
reward of 𝑅 units. Besides, we assume that there exists a
waiting cost of 𝐶 units per time unit that is continuously
accumulated from the time that the customer arrives at the
system till the time he leaves the system after being served.
We further assume that

𝑅 >
𝐶 (𝜉 + 𝜂)

𝜇𝜂
. (7)

If this condition fails to hold, even the customer that finds the
server idle will never enter the system, because of the negative
net benefit. So, the above condition ensures that this queue is
not empty.

We consider separately two information cases, that is,
(1) partially observable case: arriving customers just observe
the state of the server; (2) fully observable case: arriving
customers get informed not only about the state of the server
but also about the exact number of customers in the orbit.
When the server is idle, customers will immediately enter the
system, but when the server is busy, customers have to decide
whether to enter the orbit or leave the system. We further
assume that decisions are irrevocable: retrials of balking and
reneging of entering customer are not allowed.
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3. The Partially Observable Case

As we have mentioned, a customer who finds the server idle
will enter the system, because condition (7) ensures that his
reward exceeds his expected waiting cost. In addition, the
decision of the customer who finds the server idle will never
be affected by the other customers. So, we just need to study
the behavior of the customers that find the server busy upon
arrival. We further assume that when an arriving customer
finds the server busy, he will enter the orbit with probability
𝑟, because the customer does not know the exact number
of customers in the orbit. In order to identify the individual
equilibrium, social, and profitmaximizing strategies, we need
to examine the stationary probabilities of the system and then
evaluate other key performances of the system. Based on the
above assumptions, the transition rate of the corresponding
Markov chain given in (3) should be substituted by

𝑞(1,𝑗)(1,𝑗+1) = 𝜆𝑟, 𝑗 ≥ 0. (8)

Then, we have the following propositions.

Proposition 1. Consider the partially observable constant
retrial queue with breakdowns and repairs, in which customers
enter the system with probability 𝑟 whenever the server is
busy, with probability 1 whenever the server is idle, and never
enter the system whenever the server is broken. The stationary
probabilities of the system are given by

𝑝0 (1) =
𝜂 (𝜇 − 𝜆𝑟)

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
,

𝑝1 (1) =
𝜆𝜂

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
,

𝑝2 (1) =
𝜆𝜉

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
.

(9)

Proof. Let 𝑝𝑖,𝑛 (𝑖 = 0, 1, 2; 𝑛 = 0, 1, 2, . . .) denote the
stationary probabilities of the system at state (𝑖, 𝑛), in which
𝑖 denotes the state of the server and 𝑛 denotes the number of
customers in the orbit. According to the transition principle
of the stationary probabilities, we get the following balance
equations:

𝜆𝑝0,0 = 𝜇𝑝1,0, (10)

(𝜆 + 𝛼) 𝑝0,𝑛 = 𝜇𝑝1,𝑛, 𝑛 ≥ 1, (11)

(𝜇 + 𝜉 + 𝜆𝑟) 𝑝1,0 = 𝛼𝑝0,1 + 𝜂𝑝2,0 + 𝜆𝑝0,0, (12)

(𝜇 + 𝜉 + 𝜆𝑟) 𝑝1,𝑛 = 𝛼𝑝0,𝑛+1 + 𝜂𝑝2,𝑛 + 𝜆𝑝0,𝑛 + 𝜆𝑟𝑝1,𝑛−1,

𝑛 ≥ 1,

(13)

𝜂𝑝2,𝑛 = 𝜉𝑝1,𝑛, 𝑛 ≥ 0. (14)

The transition rate diagram is shown in Figure 2.
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Figure 2: Transition rate diagram of the partially observable case.

In order to solve the stationary probabilities of the system,
we define the following generating functions:

𝑝𝑖 (𝑧) =

∞

∑

𝑛=0

𝑝𝑖,𝑛𝑧
𝑛
, (15)

where 𝑖 = 0, 1, 2. Multiplying (10) by 𝑧0 and (11) by 𝑧𝑛, 𝑛 ≥ 1

and summing over 𝑛, we get

(𝜆 + 𝛼) 𝑝0 (𝑧) = 𝜇𝑝1 (𝑧) + 𝛼𝑝0,0. (16)

Similarly, we can obtain 𝑝1(𝑧) and 𝑝2(𝑧) from (12)–(14)

[−𝜆𝑟𝑧
2
+ 𝑧 (𝜇 + 𝜉 + 𝜆𝑟)] 𝑝1 (𝑧)

= (𝜆𝑧 + 𝛼) 𝑝0 (𝑧) + 𝜂𝑧𝑝2 (𝑧) − 𝛼𝑝0,0,

𝜂𝑝2 (𝑧) = 𝜉𝑝1 (𝑧) .

(17)

Using the above three equations, we yield

𝑝0 (𝑧) =
𝛼 (𝜇 − 𝜆𝑟𝑧)

[𝛼𝜇 − (𝜆 + 𝛼) 𝜆𝑟𝑧]
𝑝0,0,

𝑝1 (𝑧) =
𝜆𝛼

[𝛼𝜇 − (𝜆 + 𝛼) 𝜆𝑟𝑧]
𝑝0,0,

𝑝2 (𝑧) =
𝜉𝜆𝛼

𝜂 [𝛼𝜇 − (𝜆 + 𝛼) 𝜆𝑟𝑧]
𝑝0,0.

(18)

Using normalizing equation 𝑝0(1) + 𝑝1(1) + 𝑝2(1) = 1, we
obtain

𝑝0,0 =
𝜂

𝛼

𝛼𝜇 − (𝜆 + 𝛼) 𝜆𝑟

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
. (19)

Therefore, it is readily seen that the conclusion (9) can be
derived based on the above results.

Remark 2. We need to determine the stable condition of this
model in fact, from (10), (12), and (14), we obtain 𝜆𝑟𝑝1,0 =

𝛼𝑝0,1. In addition, from (11), (13), and (14), we get 𝜆𝑟𝑝1,𝑗 −
𝛼𝑝0,𝑗+1 = 𝜆𝑟𝑝1,𝑗−1 −𝛼𝑝0,𝑗 (𝑗 ≥ 1). Proceeding to this recursive
process, we get 𝜆𝑟𝑝1,𝑗 = 𝛼𝑝0,𝑗+1, (𝑗 ≥ 1). Using (11) again, we
obtain

𝑝0,𝑗+1 =
𝜆𝑟 (𝜆 + 𝛼)

𝛼𝜇
𝑝0,𝑗, 𝑗 ≥ 1. (20)
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So the system is stable if and only if

𝜆𝑟 (𝜆 + 𝛼)

𝛼𝜇
< 1. (21)

Proposition 3. In the partially observable case, the expected
overall queue length of this constant retrial queueing system
and the expected mean sojourn time of an arriving customer
that finds the server busy and decides to join the retrial orbit
are given, respectively, by

ELoverall =
𝜆
2
𝑟𝜇𝜂 + 𝜆𝜇𝛼 (𝜉 + 𝜂)

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)] × [𝛼𝜇 − 𝜆𝑟 (𝜆 + 𝛼)]
,

(22)

ESsystem =
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜂 [𝛼𝜇 − (𝜆 + 𝛼) 𝜆𝑟]
+
𝜂 + 𝜉

𝜇𝜂
. (23)

Proof. According to the PASTA property, we know that the
total arrival rate in the orbit is given by

𝜆 = 𝜆𝑟𝑝1 (1) . (24)

Then the expected mean queue length in the orbit ENorbit is
given by

ENorbit =
∞

∑

𝑛=1

𝑛 (𝑝0,𝑛 + 𝑝1,𝑛 + 𝑝2,𝑛)

= 𝑝
󸀠

0 (1) + 𝑝
󸀠

1 (1) + 𝑝
󸀠

2 (1) .

(25)

Differentiating (18) with respect to 𝑧 and taking 𝑧 = 1 yields

ENorbit =
𝜆
2
𝑟 (𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜆

2
𝑟𝜇𝜂

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)] × [𝛼𝜇 − 𝜆𝑟 (𝜆 + 𝛼)]
.

(26)

Then, the expected sojourn time of an arriving customer that
finds the server busy and decides to join in the retrial orbit is
given by

ESsystem =
ENorbit

𝜆
+
𝜉 + 𝜂

𝜇𝜂
. (27)

In the above equation, the first term ENorbit/𝜆 equals to the
mean waiting time in the orbit, and the second term (𝜉 +

𝜂)/𝜇𝜂 means the generalized service time in a unreliable
system, (see [14]). Using (24) and (26) yields (23). The
expected overall queue length in the system ELoverall satisfies

ELoverall

= 𝑝
󸀠

0 (1) + 𝑝
󸀠

1 (1) + 𝑝
󸀠

2 (1) + 𝑝1 (1) + 𝑝2 (1)

=
𝜆
2
𝑟𝜇𝜂 + 𝜆𝜇𝛼 (𝜉 + 𝜂)

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)] × [𝛼𝜇 − 𝜆𝑟 (𝜆 + 𝛼)]
.

(28)

In the following part of this paper, we assume that

𝜆 (𝜆 + 𝛼)

𝛼𝜇
< 1. (29)

This assumption originally comes from (21), but it has been
modified slightly. This means the system is stable under any
strategy 𝑟 followed by the customers. Under this condition,
we are going to study the customers’ equilibrium joining
strategy. We have the following theorem.

Theorem 4. In the partially observable single-server constant
retrial queue, we can derive a uniquemixed equilibrium joining
strategy “enter the orbit with probability 𝑟𝑒 when finding the
server busy upon arrival,” when condition (29) holds. The
probability 𝑟𝑒 is given by

𝑟𝑒 =

{{{{{

{{{{{

{

0, if 𝑅
𝐶
≤ 𝑡𝐿𝑒;

𝑟
∗
𝑒 , if 𝑡𝐿𝑒 <

𝑅

𝐶
< 𝑡𝑈𝑒;

1, if 𝑅
𝐶
≥ 𝑡𝑈𝑒,

(30)

where

𝑟
∗

𝑒 =
𝛼𝜇

𝜆 (𝜆 + 𝛼)
−
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜆𝜂 (𝜆 + 𝛼)
(
𝑅

𝐶
−
𝜉 + 𝜂

𝜇𝜂
)

−1

, (31)

𝑡𝐿𝑒 =
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
+
𝜉 + 𝜂

𝜇𝜂
, (32)

𝑡𝑈𝑒 =
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜂 (𝜇𝛼 − 𝜆 (𝜆 + 𝛼))
+
𝜉 + 𝜂

𝜇𝜂
. (33)

Proof. Suppose that all customers follow the same joining
strategy 𝑟when the server is busy at their arrival instant.Then
we can get the expected net benefit of a customer who decides
to enter the system

𝑆𝑒 (𝑟) = 𝑅 − CESsystem

= 𝑅 − 𝐶[
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜂 (𝛼𝜇 − (𝜆 + 𝛼) 𝜆𝑟)
+
𝜂 + 𝜉

𝜇𝜂
] .

(34)

We observe that 𝑆𝑒(𝑟) is strictly decreasing whenever 𝑟 ∈

[0, 1] and it has a unique maximum

𝑆𝑒 (0) = 𝑅 − 𝐶[
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
+
𝜂 + 𝜉

𝜇𝜂
] (35)

and a unique minimum

𝑆𝑒 (1) = 𝑅 − 𝐶[
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜂 (𝛼𝜇 − 𝜆 (𝜆 + 𝛼))
+
𝜂 + 𝜉

𝜇𝜂
] . (36)

Therefore, we consider the following cases.

(i) When 𝑅/𝐶 ∈ ((𝜂 + 𝜉)/𝜇𝜂, 𝑡𝐿𝑒], 𝑆𝑒(𝑟) is nonpositive
whenever 𝑟 ∈ [0, 1], so the best response is balking,
and the equilibrium joining probability is 𝑟𝑒 = 0.
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(ii) When 𝑅/𝐶 ∈ (𝑡𝐿𝑒, 𝑡𝑈𝑒), there exists a unique solution
of the equation 𝑆𝑒(𝑟) = 0, which is given by (31).

(iii) Similarly, when 𝑅/𝐶 ∈ [𝑡𝑈𝑒,∞), the net benefit is
always positive, so we obtain the rest branch of the
theorem.

Because of themonotonicity of the function 𝑆𝑒(𝑟), the best
response is 1 whenever the joining probability 𝑟 is smaller
than 𝑟𝑒. If 𝑟 > 𝑟𝑒, the best response is 0 for the net benefit
is negative. If 𝑟 = 𝑟𝑒, any strategy is a best response and
customers are indifferent between entering the system and
leaving. This shows that an individual’s best response is a
decreasing function of the strategy selected by the other
customers; that is the higher the joining probability of other
customers, the lower the net benefit. Therefore, we have an
“avoid-the-crowd” (ATC) situation.

We will proceed to determine the solutions of the social
and profitmaximization problems; that is, we need to find the
optimal joining probabilities 𝑟soc and 𝑟prof that maximize the
social net benefit and the administrator’s profit per unit time.
Wefirstly consider the socialmaximization problem.Wehave
the following theorem.

Theorem 5. In the partially observable single-sever constant
retrial queue, there exists a uniquemixed joining strategy “enter
the retrial orbit with probability 𝑟soc when the sever is busy”
that maximizes the social net benefit per time unit, in which
condition (29) holds. The probability 𝑟soc is given by

𝑟soc =

{{{{{

{{{{{

{

0, if 𝑅
𝐶
≤ 𝑡𝐿soc;

𝑟
∗
soc, if 𝑡𝐿soc <

𝑅

𝐶
< 𝑡𝑈soc;

1, if 𝑅
𝐶
≥ 𝑡𝑈soc,

(37)

where

𝑟
∗

soc =
𝐵0𝜇𝛼 − 𝜆 (𝜉 + 𝜂) − 𝜇𝜂

𝜆 (𝜆 + 𝛼) 𝐵0 − 𝜆𝜂
, (38)

𝐵0 =
√
𝜂
2
(𝜆𝑅 + 𝐶)

𝐶𝛼 (𝜆 + 𝛼)
, (39)

𝑡𝐿soc =
(𝜆 + 𝛼) [𝜆 (𝜉 + 𝜂) + 𝜇𝜂]

2
− 𝜇
2
𝜂
2
𝛼

𝜆𝜇2𝜂2𝛼
, (40)

𝑡𝑈soc =
𝛼 (𝜆 + 𝛼) [𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆)]

2
− 𝜂
2
[𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]

2

𝜆𝜂2[𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]
2

.

(41)

Proof. For a given joining strategy 𝑟, the system behaves
stationarily when condition (29) holds. Customers that find
the server busy will join the orbit with probability 𝑟. When
all customers follow the same strategy 𝑟, the social net benefit
per time unit is given by

𝑆soc (𝑟) = 𝜆
∗
(𝑟) 𝑅 − CELoverall, (42)

where 𝜆∗(𝑟) denotes the mean effective arrival rate of the
system, and ELoverall denotes the expectedmean queue length
of the system (including the customer in the server) under
the strategy 𝑟. The mean effective arrival rate is given by

𝜆
∗
(𝑟) = 𝜆𝑝0 (1) + 𝜆𝑟𝑝1 (1) =

𝜆𝜇𝜂

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
. (43)

Using (22) and (43), social net benefit is given by

𝑆soc (𝑟) =
𝜆𝜇𝜂

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
𝑅 − 𝐶𝜆

×
𝜆𝜇𝜂𝑟 + 𝜇𝛼 (𝜉 + 𝜂)

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)] [𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)]
.

(44)

It can be written as

𝑆soc (𝑟) =
𝜇𝜂 (𝜆𝑅 + 𝐶)

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
−

𝐶𝜇𝛼

𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)
. (45)

Differentiating the above equation with respect to 𝑟, we get

𝑑

𝑑𝑟
𝑆soc (𝑟) =

𝜆𝜇𝜂
2
(𝜆𝑅 + 𝐶)

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)]
2
−

𝐶𝜇𝛼𝜆 (𝜆 + 𝛼)

[𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)]
2
,

(46)

𝑑

𝑑𝑟
𝑆soc (𝑟) = 0

⇐⇒
𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)

𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)
= √

𝜂
2
(𝜆𝑅 + 𝐶)

𝐶𝛼 (𝜆 + 𝛼)
.

(47)

From (46), we obtain

𝑑

𝑑𝑟
𝑆soc (𝑟) |𝑟=0 =

𝜆𝜇𝜂
2
(𝜆𝑅 + 𝐶)

[𝜆 (𝜉 + 𝜂) + 𝜇𝜂]
2
−
𝐶𝜇𝛼𝜆 (𝜆 + 𝛼)

(𝜇𝛼)
2

,

𝑑

𝑑𝑟
𝑆soc (𝑟) |𝑟=1 =

𝜆𝜇𝜂
2
(𝜆𝑅 + 𝐶)

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆)]
2

−
𝐶𝜇𝛼𝜆 (𝜆 + 𝛼)

[𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]
2
.

(48)

Letting (𝑑/𝑑𝑟)𝑆soc(𝑟)|𝑟=0 = 0 and (𝑑/𝑑𝑟)𝑆soc(𝑟)|𝑟=1 = 0, we
obtain 𝑅/𝐶 = 𝑡𝐿soc and 𝑅/𝐶 = 𝑡𝑈soc, respectively. Then

𝑑

𝑑𝑟
𝑆soc (𝑟) |𝑟=0 ≤ 0 ⇐⇒

𝑅

𝐶
≤ 𝑡𝐿soc, (49)

𝑑

𝑑𝑟
𝑆soc (𝑟) |𝑟=1 ≥ 0 ⇐⇒

𝑅

𝐶
≥ 𝑡𝑈soc. (50)

Therefore, we consider the following situations.

(i) When 𝑅/𝐶 ≤ 𝑡𝐿soc, function 𝑆soc(𝑟) is decreasing
whenever 𝑟 ∈ [0, 1], so the best response is balking;
then 𝑟soc = 0.
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(ii) When 𝑡𝐿soc < 𝑅/𝐶 < 𝑡𝑈soc, there exists a positive
number 𝑟0, so that function 𝑆soc(𝑟) increases when
𝑟 ∈ (0, 𝑟0] and decreases when 𝑟 ∈ [𝑟0, 1) then 𝑟0 is the
point that maximizes the function 𝑆soc(𝑟). By solving
(47), we know that the unique maximum of 𝑆soc(𝑟) is
attained at (𝐵0𝜇𝛼 − 𝜆(𝜉 + 𝜂) − 𝜇𝜂)/(𝜆(𝜆 + 𝛼)𝐵0 − 𝜆𝜂).
Therefore, 𝑟soc given by (38) is the social maximizing
strategy.

(iii) When 𝑅/𝐶 ≥ 𝑡𝑈soc, function 𝑆soc(𝑟) is increasing
whenever 𝑟 ∈ [0, 1], so the best response is 1.

We now compare the optimal joining strategy of the
social maximization problem and the individual equilibrium
joining strategy. Their relation is given by the following
theorem.

Theorem 6. In our single-server constant retrial rate queue
with breakdowns and repairs, the joining probabilities 𝑟𝑒 and
𝑟soc are ordered as

𝑟soc ≤ 𝑟𝑒. (51)

Proof. When the stable condition (29) holds, it is easy to show
that 𝑡𝐿𝑒 < 𝑡𝐿soc < 𝑡𝑈𝑒 < 𝑡𝑈soc, where 𝑡𝐿𝑒, 𝑡𝐿soc, 𝑡𝑈𝑒, 𝑡𝑈soc
are defined in Theorems 4 and 5. We consider the following
cases.

(i) If 𝑅/𝐶 ≤ 𝑡𝐿𝑒, according to (30) and (37), 𝑟soc = 𝑟𝑒 = 0.

(ii) If 𝑡𝐿𝑒 < 𝑅/𝐶 ≤ 𝑡𝐿soc then, 𝑟𝑒 ∈ (0, 1) and 𝑟soc = 0. So,
𝑟soc < 𝑟𝑒.

(iii) If 𝑡𝐿soc < 𝑅/𝐶 < 𝑡𝑈𝑒, then 𝑟𝑒 ∈ (0, 1) and 𝑟soc ∈ (0, 1).
But we can get that 𝑟soc < 𝑟𝑒 after some algebra.

(iv) If 𝑡𝑈𝑒 ≤ 𝑅/𝐶 < 𝑡𝑈soc then, 𝑟𝑒 = 1 and 𝑟soc ∈ (0, 1).
Therefore, 𝑟soc < 𝑟𝑒 is obviously satisfied.

(v) Finally, if 𝑅/𝐶 ≥ 𝑡𝑈soc, then 𝑟𝑒 = 𝑟soc = 1.

From the above analysis, we complete the proof.

The above result can be explained by the perspective of an
economic viewpoint. In the process of individual equilibrium
analysis, we notice that customers will enter the orbit as long
as their net benefit is nonnegative. Then, individual’s rational
behavior causes excessive use of the resource in equilibrium;
that is to say, individual’s optimization leads to the system
havingmore congestion thanwhat is socially desirable, which
is the appearance of the negative externality.

Having considered the individual equilibrium strategy
and social maximization problem, we will further identify
the profit optimization joining strategy. In our model, we
suppose that every customer will be imposed an entrance
fee 𝑝 by the administrator. By imposing the entrance fee,
customers’ reward decreases to 𝑅 − 𝑝; then their strategy will
differ. We will determine the strategy 𝑟prof that maximizes the
administrator’s profit per time unit. The result is given by the
following.

Theorem 7. In the partially observable single-server constant
retrial queue, we can derive a unique mixed joining strategy
“enter the orbit with probability 𝑟prof when the server is busy”
that maximizes the administrator’s net profit per time unit
when condition (29) holds. The probability 𝑟prof is given by

𝑟prof =

{{{{{

{{{{{

{

0, if 𝑅
𝐶
≤ 𝑡𝐿prof;

𝑟
∗
prof, if 𝑡𝐿prof <

𝑅

𝐶
< 𝑡𝑈prof;

1, if 𝑅
𝐶
≥ 𝑡𝑈prof,

(52)

where

𝑟
∗

prof =
𝐶0𝜇𝛼 − 𝜆 (𝜉 + 𝜂) − 𝜇𝜂

𝜆 (𝜆 + 𝛼)𝐶0 − 𝜆𝜂
, (53)

𝐶0 =
√
𝜂
2
(𝜆𝑅
󸀠
+ 𝐶)

𝐶(𝜆 + 𝛼)
2
, (54)

𝑅
󸀠
= 𝑅 − 𝐶

𝜉 + 𝜂

𝜇𝜂
, (55)

𝑡𝐿prof

=
(𝜆 + 𝛼)

2
[𝜆 (𝜉 + 𝜂) + 𝜇𝜂]

2
+ 𝜆𝜇𝜂𝛼

2
(𝜉 + 𝜂) − 𝜇

2
𝜂
2
𝛼
2

𝜆𝜇2𝜂2𝛼2
,

(56)

𝑡𝑈prof = (𝜇(𝜆 + 𝛼)
2
[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆)]

2

+ [𝜆𝜂 (𝜉 + 𝜂) − 𝜇𝜂
2
] [𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]

2
)

× (𝜆𝜇𝜂
2
[𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]

2
)
−1
.

(57)

Proof. For a given joining strategy 𝑟, we define the function
𝑆prof(𝑟) to be the administrator’s net profit per time unit. Let
𝜆
∗
(𝑟) be the mean effective arrival rate in the system; we

further assume that the entrance fee that the administrator
imposes on customers is 𝑝(𝑟). Then, we have

𝑆prof (𝑟) = 𝜆
∗
(𝑟) 𝑝 (𝑟) , (58)

where 𝜆∗(𝑟) is given by (43). In order to obtain 𝑆prof(𝑟), we
need to determine the entrance fee 𝑝(𝑟). Noticing (34), we
yield

𝑅 − 𝑝 (𝑟) = 𝐶(
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜂 [𝛼𝜇 − 𝜆𝑟 (𝜆 + 𝛼)]
+
𝜉 + 𝜂

𝜇𝜂
) , (59)

from which we obtain

𝑝 (𝑟) = 𝑅 − 𝐶
𝜉 + 𝜂

𝜇𝜂
− 𝐶

(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝜂 [𝛼𝜇 − 𝜆𝑟 (𝜆 + 𝛼)]
. (60)

Because if the entrance fee 𝑝 < 𝑝(𝑟), the administrator can
improve their net benefit through increasing the entrance
fee, but if 𝑝 > 𝑝(𝑟), the individual’s net benefit is negative,
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customers will balk. So, (59) always holds whenever 𝑟 ∈ [0, 1].
Therefore, the net profit of the administrator can be calculated
as follows:
𝑆prof (𝑟) = 𝜆

∗
(𝑟) 𝑝 (𝑟)

=
𝜇𝜂 (𝜆𝑅

󸀠
+ 𝐶)

𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)
− 𝐶

𝜇 (𝜆 + 𝛼)

𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)
,

(61)

where 𝑅󸀠 is given by (55). Differentiating the equation with
respect to 𝑟, we get

𝑑

𝑑𝑟
𝑆prof (𝑟) =

𝜆𝜇𝜂
2
(𝜆𝑅
󸀠
+ 𝐶)

[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)]
2

−
𝐶𝜇𝜆(𝜆 + 𝛼)

2

[𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)]
2
,

𝑑

𝑑𝑟
𝑆prof (𝑟) = 0

⇐⇒
𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆𝑟)

𝜇𝛼 − 𝜆𝑟 (𝜆 + 𝛼)
= √

𝜂
2
(𝜆𝑅
󸀠
+ 𝐶)

𝐶(𝜆 + 𝛼)
2
.

(62)

The rest of the proof can proceed along the same line with the
proof of Theorem 5.

Now, we are going to compare the joining probabilities
when considering the social and profit maximization prob-
lems. The result is given by the following theorem.

Theorem 8. In our model when condition (29) holds, the
optimal joining probabilities 𝑟soc and 𝑟prof are ordered as

𝑟prof ≤ 𝑟soc. (63)

Proof. Firstly, we proceed to compare the relations
among 𝑡𝐿soc, 𝑡𝑈soc, 𝑡𝐿prof, 𝑡𝑈prof. Rewrite the expressions
of 𝑡𝐿soc, 𝑡𝑈soc, 𝑡𝐿prof, 𝑡𝑈prof given inTheorems 5 and 7:

𝑡𝐿soc =
(𝜆 + 𝛼) [𝜆 (𝜉 + 𝜂) + 𝜇𝜂]

2

𝜆𝜇2𝜂2𝛼
−
1

𝜆
,

𝑡𝑈soc =
𝛼 (𝜆 + 𝛼) [𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆)]

2

𝜆𝜂2[𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]
2

−
1

𝜆
,

𝑡𝐿prof =
(𝜆 + 𝛼)

2
[𝜆 (𝜉 + 𝜂) + 𝜇𝜂]

2

𝜆𝜇2𝜂2𝛼2
+
𝜉 + 𝜂

𝜇𝜂
−
1

𝜆
,

𝑡𝑈prof =
(𝜆 + 𝛼)

2
[𝜆 (𝜉 + 𝜂) + 𝜂 (𝜇 − 𝜆)]

2

𝜆𝜂2[𝜇𝛼 − 𝜆 (𝜆 + 𝛼)]
2

+
𝜉 + 𝜂

𝜇𝜂
−
1

𝜆
.

(64)

It is readily shown that 𝑡𝐿soc < 𝑡𝐿prof and 𝑡𝑈soc < 𝑡𝑈prof. But
the relation between 𝑡𝑈soc and 𝑡𝐿prof is undefined. Two cases
may take place; that is, 𝑡𝑈soc < 𝑡𝐿prof or 𝑡𝑈soc ≥ 𝑡𝐿prof. We
consider the situation when 𝑡𝑈soc ≥ 𝑡𝐿prof, the other case can
be analyzed in the same way.Then, we consider the following
cases.

(i) If 𝑅/𝐶 ∈ [(𝜉 + 𝜂)/𝜇𝜂, 𝑡𝐿soc) then, 𝑟soc = 𝑟prof = 0.
(ii) If 𝑅/𝐶 ∈ [𝑡𝐿soc, 𝑡𝐿prof), then 𝑟soc ∈ (0, 1), 𝑟prof = 0.
(iii) If 𝑅/𝐶 ∈ [𝑡𝐿prof, 𝑡𝑈soc), then 𝑟soc ∈ (0, 1) and 𝑟prof ∈

(0, 1). We can take a close look at the expressions of
𝑟soc, 𝑟prof that are presented in Theorems 5 and 7. We
define a function

𝑔 (𝑥) =
𝑥𝜇𝛼 − 𝜆 (𝜉 + 𝜂) − 𝜇𝜂

𝜆 (𝜆 + 𝛼) 𝑥 − 𝜆𝜂
. (65)

Differentiating the above function with respect to 𝑥, we
obtain

𝑔
󸀠
(𝑥) =

𝜆
2
((𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂)

(𝜆 (𝜆 + 𝛼) 𝑥 − 𝜆𝜂)
2

. (66)

It means that function 𝑔(𝑥) increases with respect to 𝑥. On
the other hand, we can easily derive 𝐵0 > 𝐶0, where 𝐵0 and
𝐶0 are given inTheorems 5 and 7.Then, we obtain 𝑟prof < 𝑟soc.

(i) If 𝑅/𝐶 ∈ [𝑡𝑈soc, 𝑡𝑈prof), then 𝑟soc = 1 and 𝑟prof ∈ (0, 1).
(ii) If 𝑅/𝐶 ∈ [𝑡𝑈soc,∞), then 𝑟soc = 1 and 𝑟prof = 1.

We obtain 𝑟soc ≥ 𝑟prof from the above analysis.

Remark 9. Economou and Kanta [6] have studied the indi-
vidual equilibrium strategy and social and profit maximiza-
tion problems in the single-server constant retrial queue in
the partially observable case. In our model, if we let 𝜉 = 0,
we can derive the same results as given in [6]. This is not
accidentally happened, because when 𝜉 = 0, breakdowns
will never occur; then these two models are equivalent. In
addition, notice that customers’ strategies 𝑟𝑒, 𝑟soc, 𝑟prof are
functions of 𝜉/𝜂 where other parameters are fixed. It means
that 𝑟𝑒, 𝑟soc, 𝑟prof only relate to 𝜉/𝜂, whatever was the value 𝜉
and 𝜂 we take in this model.

Remark 10. Another case is that 𝜆(𝜆 + 𝛼)/𝛼𝜇 ≥ 1 is left to
be considered. In this situation, customers’ joining strategies
will be less than 1 when considering the equilibrium, social,
and profit maximization problems, otherwise, the server will
behave unstably. That is to say, we have the following joining
strategies:

𝑟𝑒 =

{{{

{{{

{

0, if 𝑅
𝐶
≤ 𝑡𝐿𝑒;

𝑟
∗
𝑒 , if 𝑅

𝐶
> 𝑡𝐿𝑒,

𝑟𝑠𝑜𝑐 =

{{{

{{{

{

0, if 𝑅
𝐶
≤ 𝑡𝐿soc;

𝑟
∗
soc, if 𝑅

𝐶
> 𝑡𝐿soc,

𝑟prof =

{{{

{{{

{

0, if 𝑅
𝐶
≤ 𝑡𝐿prof;

𝑟
∗
prof, if 𝑅

𝐶
> 𝑡𝐿prof,

(67)

and the relation 𝑟𝑒 ≥ 𝑟soc ≥ 𝑟prof holds all the same.
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Till now, we have completed the analysis of the customers’
strategies of the partially observable retrial queueing system.
We will turn to the fully observable case.

4. The Fully Observable Case

We now focus on the fully observable case assuming cus-
tomers observe not only the state of the server, but also the
exact number of customers in the retrial orbit. Customer
that finds the server idle will enter the system and begin to
be served immediately, so this information is valuable only
for the customer who finds the server busy. We know that
after every service completion and there is no new customer
arriving, the customer at the head of the orbit queue will
successfully retry for service. That means customers in the
orbit are served on an FCFS basis. Therefore, observing the
position in the orbit, they can assess precisely whether to
enter or balk.

Consider a tagged customer that finds the server busy
upon arrival. This customer’s mean overall sojourn time in
the system is not affected by the joining/balking behavior of
the other customers that find the server busy, because if the
tagged customer joins the orbit queue at the 𝑗th position,
then the late customers who find the server busy will join
the queue at the 𝑗 + 1th, 𝑗 + 2th,. . ., positions behind him
in the orbit. So, his sojourn time does not depend on their
decisions, but it depends on the arrival rate, because the newly
arriving customer who finds the server idle will be served
immediately.

To study the general threshold strategy adopted by all
customers in the fully observable case, we will firstly consider
the mean overall sojourn time of the customer who finds the
server idle, busy or broken upon arrival. Let 𝑇(1, 0) be the
mean sojourn time when the server is idle and there is no
customers in the orbit at his arrival instant, and let 𝑇(𝑖, 𝑗)
be the mean sojourn time of a tagged customer at the 𝑗th
position in the orbit, given that the server is at state 𝑖. When
all customers follow the general strategy, the mean overall
sojourn times 𝑇(𝑖, 𝑗) are given by

𝑇 (1, 0) =
𝜉 + 𝜂

𝜇𝜂
, (68)

𝑇 (1, 𝑗) =
1

𝜇 + 𝜉
+

𝜉

𝜇 + 𝜉
𝑇 (2, 𝑗) +

𝜇

𝜇 + 𝜉
𝑇 (0, 𝑗) , 𝑗 ≥ 1,

(69)

𝑇 (0, 𝑗) =
1

𝜆 + 𝛼
+

𝜆

𝜆 + 𝛼
𝑇 (1, 𝑗) +

𝛼

𝜆 + 𝛼
𝑇 (1, 𝑗 − 1) ,

𝑗 ≥ 1,

(70)

𝑇 (2, 𝑗) =
1

𝜂
+ 𝑇 (1, 𝑗) , 𝑗 ≥ 0. (71)

Let us consider a customer in the 𝑗th position of the orbit
when the server is busy. Then this customer has to wait for
an exponentially distributed time with rate 𝜉 + 𝜇 for the
next event to occur, in which the server breaks down or the

service is completed. With probability 𝜉/(𝜉 + 𝜇) breakdown
occurs; then the mean overall sojourn time becomes 𝑇(2, 𝑗)
and the tagged customer remains in the 𝑗th position of the
orbit. On the other hand, with probability 𝜇/(𝜉 + 𝜇), the
service is completed, then the mean overall sojourn time
becomes 𝑇(1, 𝑗 − 1) and the tagged customer moves to the
𝑗 − 1th position. Through the above analysis, we obtain (69).
Considering the other cases in the same line, we obtain the
rest equations.

Solving the above equations, the mean overall sojourn
times are given by

𝑇 (0, 𝑗) = 𝑗
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
, 𝑗 ≥ 1,

𝑇 (1, 𝑗) = 𝑗
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
+
𝜉 + 𝜂

𝜇𝜂
, 𝑗 ≥ 0,

𝑇 (2, 𝑗) = 𝑗
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
+
𝜇 + 𝜉 + 𝜂

𝜇𝜂
,

𝑗 ≥ 0.

(72)

Then, we need to find the general equilibrium strategy
followed by the customers when the server is busy. To ensure
that customer will enter the orbit when finding the server
busy and the queue in the orbit is empty, we further assume
that 𝑅 − 𝐶𝑇(1, 1) > 0. The condition can be written as

𝑅

𝐶
>
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
+
𝜉 + 𝜂

𝜇𝜂
. (73)

This means customers’ reward should be larger in the fully
observable case than in the former case even if the other sys-
tematic parameters are equal. We will identify the customers’
equilibrium threshold strategy, and we have the following
theorem.

Theorem 11. In the fully observable single-server constant
retrial queue, there exists a unique threshold joining strategy
“enter the retrial orbit if there are at most 𝑛𝑒 customers in the
orbit, whenever finding the server busy,” in which condition (73)
holds. The threshold 𝑛𝑒 is given by

𝑛𝑒 = ⌊𝑥𝑒⌋ , (74)

where

𝑥𝑒 =
𝛼𝜇𝜂𝑅 − 𝐶𝛼 (𝜉 + 𝜂)

𝐶 [(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂]
− 1. (75)

This strategy is the unique equilibrium strategy among all
possible strategies.

Proof. Consider a tagged customer that finds the system at
the state (1, 𝑗) upon arrival. If he decides to join, he goes
directly to the orbit and occupies the 𝑗 + 1th position. Then,
his expected net benefit is 𝑆𝑒(𝑗) = 𝑅 − 𝐶𝑇(1, 𝑗 + 1), where

𝑆𝑒 (𝑗) = 𝑅 − 𝐶[(𝑗 + 1)
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
+
𝜉 + 𝜂

𝜇𝜂
] .

(76)
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Figure 3: Transition rate diagram of the fully observable case.

The customer prefers to join if 𝑆𝑒(𝑗) > 0, and he is indifferent
between joining and balking while 𝑆𝑒(𝑗) = 0 and prefers to
balk if 𝑆𝑒(𝑗) < 0. A newly arriving customer will enter if
and only if 𝑗 ≤ 𝑛𝑒 when finding the server busy. By solving
inequality 𝑆𝑒(𝑗) ≥ 0, we obtain the result.

We will elucidate the uniqueness of the equilibrium
threshold joining strategy followed by all customers. Indeed,
if 𝑥𝑒 is an integer number, we just need to let 𝑛𝑒 = 𝑥𝑒; then
we know 𝑆𝑒(𝑛𝑒) = 0 and the mixed threshold strategy is
that prescribes to enter if 𝑛 < 𝑛𝑒, to balk if 𝑛 > 𝑛𝑒 and be
indifferent if 𝑛 = 𝑛𝑒. When 𝑥𝑒 is any positive value, we let
𝑛𝑒 = ⌊𝑥𝑒⌋. Hence, in this case, the equilibrium strategy is also
unique.

We now turn our attention to the social and profit maxi-
mization problems and identify the thresholds 𝑛soc and 𝑛prof
that maximize the social net benefit and the administrator’s
profit per time unit. To consummate this goal, we need to
determine the stationary behavior of the system when all
customers follow the same threshold strategy.

Suppose that all customers that find the server busy follow
the same threshold strategies 𝑛soc and 𝑛prof, respectively. That
is to say, customers who find the sever busy will enter the
system as long as the number of customers in the orbit
is at most 𝑛soc when considering the social maximization
problem, and there is at most 𝑛prof customers in the orbit
when considering the administrator’s optimization problem.
Hence, the maximum number of customers in the orbit
will never be larger than 𝑛 + 1 when customers follow the
same threshold-𝑛 strategy.Then we obtain a continuous-time
Markov chain (𝐼(𝑡),𝑁(𝑡)) with state space 𝑆 = {0, 1, 2} ×

{0, 1, 2, . . . , 𝑛 + 1}, and its transition diagram is given by
Figure 3.

The stationary distribution of the system, (𝑝𝑖,𝑗:(𝑖, 𝑗) ∈ 𝑆),
is given by the following proposition.

Proposition 12. Consider the fully observable single-server
constant retrial queue with breakdowns and repairs, in which
customers follow a threshold-𝑛 strategy; then the stationary
distribution of the system is given by

𝑝0,0 = 𝐵 (𝑛)
𝜇𝛼

𝜆2
,

𝑝0,𝑗 = 𝐵 (𝑛) 𝜌
𝑗−1
, 𝑗 = 1, 2, . . . , 𝑛 + 1,

𝑝1,𝑗 = 𝐵 (𝑛)
𝛼

𝜆
𝜌
𝑗
, 𝑗 = 0, 1, 2, . . . , 𝑛 + 1,

𝑝2,𝑗 = 𝐵 (𝑛)
𝛼

𝜆

𝜉

𝜂
𝜌
𝑗
, 𝑗 = 0, 1, 2, . . . , 𝑛 + 1,

(77)

where

𝜌 =
𝜆 (𝜆 + 𝛼)

𝛼𝜇
,

𝐵 (𝑛) = {
𝜇𝛼

𝜆2
+ (1 + 𝜌 + ⋅ ⋅ ⋅ + 𝜌

𝑛
) +

𝛼

𝜆
(1 + 𝜌 + ⋅ ⋅ ⋅ + 𝜌

𝑛+1
)

+
𝛼𝜉

𝜆𝜂
(1 + 𝜌 + ⋅ ⋅ ⋅ + 𝜌

𝑛+1
)}

−1

.

(78)

Proof. The stationary distribution is obtained from the fol-
lowing balance equations:

𝜆𝑝0,0 = 𝜇𝑝1,0, (79)

(𝜆 + 𝛼) 𝑝0,𝑗 = 𝜇𝑝1,𝑗, 𝑗 = 1, 2, . . . , 𝑛 + 1, (80)

𝜆𝑝1,𝑗 = 𝛼𝑝0,𝑗+1, 𝑗 = 0, 1, 2, . . . , 𝑛, (81)

𝜂𝑝2,𝑗 = 𝜉𝑝1,𝑗, 𝑗 = 0, 1, . . . , 𝑛 + 1, (82)

(𝜇 + 𝜉) 𝑝1,𝑛+1 = 𝜂𝑝2,𝑛+1 + 𝜆𝑝1,𝑛 + 𝜆𝑝0,𝑛+1. (83)

Combining (80) with (81), we can obtain the recursive
relation

𝑝1,𝑗 = 𝑝1,0𝜌
𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1. (84)

Then, we derive the expressions of 𝑝2,𝑗 from (82),

𝑝2,𝑗 =
𝜉

𝜂
𝜌
𝑗
𝑝1,0, 𝑗 = 0, 1, . . . , 𝑛 + 1. (85)

Using (80)–(82), we can get

𝑝0,0 = 𝑝1,0

𝜇𝛼

𝜆2
,

𝑝0,𝑗 = 𝑝1,0𝜌
𝑗−1
, 𝑗 = 1, 2, . . . , 𝑛 + 1,

𝑝1,𝑗 = 𝑝1,0
𝛼

𝜆
𝜌
𝑗
, 𝑗 = 0, 1, 2, . . . , 𝑛 + 1,

𝑝2,𝑗 = 𝑝1,0
𝛼

𝜆

𝜉

𝜂
𝜌
𝑗
, 𝑗 = 0, 1, 2, . . . , 𝑛 + 1.

(86)

Then, with the help of the normalizing equation ∑𝑛+1𝑗=0 𝑝0,𝑗 +
∑
𝑛+1

𝑗=0 𝑝1,𝑗 + ∑
𝑛+1

𝑗=0 𝑝2,𝑗 = 1, we get the expression of 𝑝1,0.

By considering the stationary distribution, we examine
the social welfare maximization threshold strategy. We have
the following result.
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Theorem 13. In our single-server constant retrial queue, in
which the condition (73) holds, we define the following func-
tion:

𝑓 (𝑥) =
(𝜇𝛼 + (𝜉/𝜂) 𝜆𝛼) (𝑥 + 1)

𝜇𝛼 (1 − 𝜌)

−
𝜆 (𝜆 + 𝛼𝜌 (1 + (𝜉/𝜂))) (1 − 𝜌

𝑥+1
)

𝜇𝛼(1 − 𝜌)
2

− 1.

(87)

(88)

If 𝑓(0) > 𝑥𝑒, then the customers’ best response is balking.
Otherwise, there exists a unique threshold-𝑛soc strategy “ enter
the retrial orbit if the number of customers in the orbit is atmost
𝑛soc, whenever customers find the server busy” that maximizes
the social net benefit per time unit. The threshold 𝑛soc is given
by

𝑛soc = ⌊𝑥𝑠𝑜𝑐⌋ , (89)

where 𝑥soc is the unique nonnegative root of the equation
𝑓(𝑥) = 𝑥𝑒.

Proof. In order to determine the optimal threshold 𝑛soc, we
need to compute the effective arrival rate of the system
and the expected mean sojourn time of the system. On the
one hand, when all customers follow the same threshold-𝑛
strategy, the effective arrival rate is given by

𝜆 (𝑛) = 𝜆(

𝑛+1

∑

𝑗=0

𝑝0,𝑗 (𝑛) +

𝑛

∑

𝑗=0

𝑝1,𝑗 (𝑛)) . (90)

On the other hand, by conditioning on the state found by a
customer in the system upon arrival, we obtain the expected
mean sojourn time if entering the system with threshold-𝑛
policy

𝐸 [𝑆 (𝑛)] = 𝐴 + 𝐵, (91)

where

𝐴 =

𝑛+1

∑

𝑗=0

𝑝0,𝑗 (𝑛)

∑
𝑛+1

𝑘=0 𝑝0,𝑘 (𝑛) + ∑
𝑛

𝑘=0 𝑝1,𝑘 (𝑛)

𝜉 + 𝜂

𝜇𝜂
,

𝐵 =

𝑛

∑

𝑗=0

𝑝1,𝑗 (𝑛)

∑
𝑛+1

𝑘=0 𝑝0,𝑘 (𝑛) + ∑
𝑛

𝑘=0 𝑝1,𝑘 (𝑛)

× (
𝜉 + 𝜂

𝜇𝜂
+ (𝑗 + 1)

(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
) .

(92)

The expected social net benefit is given by

𝑆soc (𝑛) = 𝜆 (𝑛) 𝑅 − 𝐶𝜆 (𝑛) 𝐸 [𝑆 (𝑛)] . (93)

Using (90) and (91) and after some algebra, we obtain

𝑆soc (𝑛) = 𝐶
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂

× (𝜆 (𝑛) (𝑥𝑒 + 1) − 𝜆

𝑛

∑

𝑗=0

(𝑗 + 1) 𝑝1,𝑗 (𝑛)) .

(94)

Next, we need to show that 𝑆soc(𝑛) is unimodal and has
only one maximal point. We firstly consider the increments
𝑆soc(𝑛) − 𝑆soc(𝑛 − 1). It is not difficult to show that

𝑆soc (𝑛) − 𝑆soc (𝑛 − 1) ≥ 0 ⇐⇒ 𝑓 (𝑛) ≤ 𝑥𝑒, (95)

where 𝑓(𝑛) is

𝑓 (𝑛) =
𝑓1 (𝑛)

𝑓2 (𝑛)
− 1, (96)

𝑓1 (𝑛) = 𝜆(

𝑛

∑

𝑗=0

(𝑗 + 1) 𝑝1,𝑗 (𝑛) −

𝑛−1

∑

𝑗=0

(𝑗 + 1) 𝑝1,𝑗 (𝑛 − 1)) ,

(97)

𝑓2 (𝑛) = 𝜆 (𝑛) − 𝜆 (𝑛 − 1) . (98)

Using the stationary distribution, we can simplify the expres-
sions of (97) and (98) as follows:

𝑓1 (𝑛) =
𝛼𝐵 (𝑛) 𝐵 (𝑛 − 1) 𝜌

𝑛

𝜆2(1 − 𝜌)
2

× 𝐷, (99)

𝑓2 (𝑛) =
𝜇𝛼
2
𝜌
𝑛

𝜆2
𝐵 (𝑛) 𝐵 (𝑛 − 1) , (100)

where

𝐷 = {(𝜇𝛼 + 𝜆𝛼
𝜉

𝜂
) (𝑛 + 1) (1 − 𝜌) − 𝜆

2

−𝜆𝛼𝜌(1 +
𝜉

𝜂
) + 𝜆
2
𝜌
𝑛+1

+ 𝜆𝛼(1 +
𝜉

𝜂
) 𝜌
𝑛+2

} .

(101)

Plugging (99) and (100) in (96) and replacing 𝑛 by 𝑥, we
obtain (87). To prove the unimodality of 𝑆soc(𝑛), we need to
show that function𝑓(𝑥) is increasing.We define the function
ℎ: [0,∞) → 𝑅 with

ℎ (𝑥) = 𝑓 (𝑥) − 𝑥. (102)

We have

𝑑
2

𝑑𝑥2
ℎ (𝑥) =

[𝜆 + 𝛼𝜌 (1 + (𝜉/𝜂))] 𝜌
𝑥+2

(ln 𝜌)2

(𝜆 + 𝛼) (1 − 𝜌)
2

> 0,

𝑥 ≥ 0.

(103)

Then, function ℎ(𝑥) is a strictly convex function and there
is no flex point with respect to 𝜌 and 𝑥. Therefore, ℎ(𝑥) is
increasing and so is 𝑓(𝑥) = ℎ(𝑥) + 𝑥. Therefore, two cases
may take place.

(i) 𝑓(0) > 𝑥𝑒; then 𝑆soc(𝑛) is decreasing and customers
who find the server busy will balk.

(ii) 𝑓(𝑛soc) ≤ 𝑥𝑒 < 𝑓(𝑛soc + 1); then we have 𝑆soc(𝑛) −
𝑆soc(𝑛−1) ≥ 0 for 𝑛 ≤ 𝑛soc and 𝑆soc(𝑛)−𝑆soc(𝑛−1) < 0
for 𝑛 > 𝑛soc. Then the maximum of 𝑆soc(𝑛) occurs in
𝑛soc = ⌊𝑥soc⌋, in which 𝑥soc is the unique solution of
the equation 𝑓(𝑥) = 𝑥𝑒.
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The last purpose of this paper is to solve the profit max-
imization problem. By imposing an appropriate nonnegative
admission fee 𝑝 on the customers, the administrator can
maximize his net profit per time unit. We have the following
theorem.

Theorem 14. In the fully observable single-server constant
retrial queue with breakdowns and repairs, in which condition
(73) holds, let

𝑔 (𝑥) = 𝑥 + 𝜇 (1 − 𝜌
𝑥+1

)

×(1+(𝜆𝜉/𝜇𝜂)−((𝜆+𝛼𝜌 (1+𝜉/𝜂)) / (𝜆+𝛼)) 𝜌
𝑥+2

)

× (𝜆𝜌
𝑥
(1 − 𝜌)

2
)
−1
,

(104)

if𝑔(0) > 𝑥𝑒, then customers’ best strategy is balking. Otherwise,
there exists a unique threshold joining strategy “ enter the retrial
orbit when the number of customers in the orbit is at most
𝑛prof, whenever finding the server busy” that maximizes the
administrator’s net profit per time unit. The threshold 𝑛prof is
given by

𝑛prof = ⌊𝑥prof⌋ , (105)

where 𝑥prof is the unique nonnegative root of the equation
𝑔(𝑥) = 𝑥𝑒.

Proof. We first need to determine the appropriate entrance
fee 𝑝 that the administrator imposes on the customers in the
system. As we have analyzed in Theorem 7, the entrance fee
𝑝 also satisfies

𝑅 − 𝑝 (𝑛) = 𝐶(
𝜉 + 𝜂

𝜇𝜂
+ (𝑛 + 1)

(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
) .

(106)

From the above equation, we obtain

𝑝 (𝑛) = 𝑅 − 𝐶(
𝜉 + 𝜂

𝜇𝜂
+ (𝑛 + 1)

(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
) .

(107)

The administrator’s profit per time unit is

𝑆prof (𝑛) = 𝜆 (𝑛) 𝑝 (𝑛)

= 𝜆 (𝑛) (𝑅 − 𝐶(
𝜉 + 𝜂

𝜇𝜂
+ (𝑛 + 1)

×
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
))

= 𝐶
(𝜆 + 𝛼) (𝜉 + 𝜂) + 𝜇𝜂

𝛼𝜇𝜂
𝜆 (𝑛) (𝑥𝑒 − 𝑛) .

(108)

We will proceed to prove the unimodality of the function
𝑔(𝑥). From (108), we get

𝑆prof (𝑛)

𝑆prof (𝑛 − 1)
≥ 1 ⇐⇒ 𝑔 (𝑛) ≤ 𝑥𝑒, (109)

where 𝑔(𝑛) = 𝑛 + 𝜆(𝑛 − 1)/(𝜆(𝑛) − 𝜆(𝑛 − 1)). Simplifying
(90) and using (98) and (100), we obtain the expression of
𝑔(𝑛); substituting 𝑛 by 𝑥, we obtain (100).We can examine the
function 𝑔(𝑥) is increasing. Then we consider the following
two cases.

(i) 𝑔(0) > 𝑥𝑒, then function 𝑆prof(𝑛) is decreasing and the
customers’ best response is balking.

(ii) 𝑔(𝑛prof) ≤ 𝑥𝑒 < 𝑔(𝑛prof + 1); then 𝑆prof(𝑛) − 𝑆prof(𝑛 −
1) ≥ 0 for 𝑛 ≤ 𝑛prof and 𝑆prof(𝑛) − 𝑆prof(𝑛 − 1) < 0 for
𝑛 > 𝑛prof. Then the maximum of 𝑆prof(𝑛) is attained at
𝑛prof = ⌊𝑥prof⌋, where 𝑥prof is the unique solution of
𝑔(𝑥) = 𝑥𝑒.

Remark 15. In this case, if we take a close look at the
expressions of thresholds 𝑛𝑒, 𝑛soc, and 𝑛prof, we will find
that these thresholds are also functions of 𝜉/𝜂 when other
parameters are fixed. Furthermore, we let 𝜉 equal to zero, then
this case is equivalent to themodel studied in [6], andwe have
the same results when counterpart problems are considered.
So, it is also a special case of this model.

Now we finish the analysis of the single-server retrial
queueing systemwith constant retrial rate in the partially and
fully observable cases.We obtain the entrance probabilities in
the partially observable case and the thresholds in the latter
case. In the following section, wewill present some numerical
examples to support our results.

5. Numerical Examples

In this section, wewill investigate the effects of the parameters
on the customers’ mixed strategies in this constant retrial
queueing system. Figures 4, 5, and 6 present the influence
of the parameters on the equilibrium joining probability
𝑟𝑒 and optimal entrance probabilities 𝑟soc and 𝑟prof, where
parameters 𝜆, 𝛼, and 𝜉/𝜂 vary, respectively. In these figures,
we can clearly see that 𝑟𝑒 ≥ 𝑟soc ≥ 𝑟prof, which has been proved
inTheorems 6 and 8.

Now, we pay our attention to the fully observable case.
Figures 7–10 depict the equilibrium and optimal joining
thresholds vary with respect to parameters 𝜆, 𝜇, 𝛼, and 𝜉/𝜂.
From these four figures, we can see 𝑛prof ≤ 𝑛soc ≤ 𝑛𝑒. Indeed,
the relation 𝑛soc ≤ 𝑛𝑒 is obvious from Theorems 11 and 13.
On the one hand, we can obtain that ℎ(0) = 𝑓(0) > 0, and
because function ℎ(𝑥) is increasing and ℎ(𝑥soc) ≥ 0, then we
get 𝑓(𝑥soc) − 𝑥soc ≥ 0. But on the other hand, 𝑓(𝑥soc) = 𝑥𝑒
which means 𝑥soc ≤ 𝑥𝑒. Taking floors we obtain the result
𝑛soc ≤ 𝑛𝑒. The relation 𝑛prof ≤ 𝑛soc is not proved theoretically,
but it can be traced numerically.

Figure 7 shows the thresholds when we consider the indi-
vidual equilibrium, social, and profitmaximization threshold
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Figure 5: Individual equilibrium strategy and optimal entrance
probabilities vary with respect to 𝛼, 𝜆 = 0.5, for 𝜇 = 1, 𝜉 = 0.02,
𝑅 = 10, and 𝐶 = 1.

strategies with respect to 𝜆. We can see that the thresholds
finally converge to 0. On the one hand, it is true that when 𝜆
becomes larger, there are more customers arriving per time
unit. So customers in the orbit will wait longer to successfully
retry for service. On the other hand, from (74) we can see that
𝑛𝑒 is decreasingwith respect to𝜆. And because of the function
𝑆soc(𝑛) and 𝑆prof(𝑛), we can see that thresholds 𝑛soc and 𝑛prof

0 1 2 3 4 5 6

En
tr

an
ce

 p
ro

ba
bi

lit
ie

s

0

0.2

0.4

0.6

0.8

1

re
rsoc
rprof

𝜉/𝜂

Figure 6: Individual equilibrium strategy and optimal entrance
probabilities vary with respect to 𝜉/𝜂, for 𝜇 = 1, 𝜆 = 0.5, 𝛼 = 2,
𝑅 = 10, and 𝐶 = 1.
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Figure 7: Individual equilibrium threshold and optimal thresholds
vary with respect to 𝜆, for 𝜉 = 0.02, 𝜇 = 1, 𝜂 = 1, 𝛼 = 2, 𝑅 = 40, and
𝐶 = 1.

finally become zero for large value of 𝜆. We have 𝑛prof ≤ 𝑛soc
as 𝜆 varies. When considering the variation of parameters 𝜇
and𝛼 in Figures 8 and 9, takingmean service and retrial times
of the system into consideration, we can easily explain the
outcomes, and we also have 𝑛prof ≤ 𝑛soc.

Figure 10 presents the thresholds vary with respect to 𝜉/𝜂.
On the one hand, from the expression of 𝑛𝑒 and functions
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Figure 9: Individual equilibrium threshold and optimal thresholds
vary with respect to 𝛼, for 𝜉 = 0.02, 𝜇 = 1, 𝜂 = 1, 𝜆 = 0.5, 𝑅 = 40,
and 𝐶 = 1.

𝑆soc(𝑛) and 𝑆prof(𝑛), we know that thresholds decrease to 0
when 𝜉/𝜂 exceeds a positive number. On the other hand,
when 𝜉/𝜂 increases, it means that the lifetime of the system
becomes shorter; then the customers in the orbit need to wait
longer for the server restored. So, the thresholds decrease
with respect to 𝜉/𝜂. When 𝜉/𝜂 varies, we can clearly see that
𝑛prof ≤ 𝑛soc.

6. Conclusions

We have analyzed the equilibrium and optimal entrance
probabilities in the partially observable case and the coun-
terpart thresholds in the fully observable case. We have an
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Figure 10: Individual equilibrium threshold and optimal thresholds
vary with respect to 𝜉/𝜂, for 𝜆 = 1, 𝜇 = 1, 𝛼 = 2, 𝑅 = 40, and 𝐶 = 1.

“avoid-the-crowd” (ATC) situation in the former case. It
was observed that individual’s net benefit is decreasing with
respect to the entrance probability 𝑟, and the individual’s best
response is a decreasing function of the strategy selected by
the other customers. In the fully observable case, we obtained
that the individual’s net benefit decreases with respect to the
number of customers in the orbit, but the social welfare and
the administrator’s net benefit are concave with respect to the
number of customers in the orbit.

Both in the partially observable case and the fully
observable case, the solutions of the social maximization
problem are smaller than the solutions of the individual
equilibrium problem. This is aroused by the fact that the
former customers imposed negative externality on the late
arriving customers. Rational individuals in an economic
system prefer to maximize their own benefit, but if customers
want to maximize their social net benefit, they need to
cooperate rather than ignore the negative externality that is
imposed on the other customers. We observed that 𝑟𝑒 ≥

𝑟soc ≥ 𝑟prof in the partially observable case and 𝑛prof ≤

𝑛soc ≤ 𝑛𝑒 in the fully observable case, which mean that, when
considering optimization problems, the effective service rate
can not satisfy the customers’ desirable service demand. This
further implicates that there are some customers who can not
obtain service in some cases even if they are identical.

The effect of the server unreliability on the system
performance cannot be ignored. It was readily seen that cus-
tomers’ equilibrium entrance probability, optimal entrance
probability, and the related threshold strategies all decrease
as 𝜉/𝜂 increases. This is very important in management
process. When 𝜉/𝜂 increases, some customers’ interest will
be undermined and decreases the social welfare and the
administrator’s net profit at the same time. So it is very crucial
to improve the reliability of the sever to achieve the goal of
optimal management.
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